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Abstract: The effect of longitudinal wall-oscillation for the stability of two 
dimensional channel flow is numerically investigated using the direct numerical 
simulation (DNS). In ordinary circumstances, the flow between two flat plates 
transits from laminar to turbulent state when the Reynolds number determined by 
typical quantities of the flow exceeds a critical value. With longitudinal wall-
oscillation, however, it is found that the transition is accelerated or decelerated 
depending on the parameters of the wall-oscillation even if the Reynolds number is 
fixed to supercritical condition. From the flow visualization, it is clearly shown that 
the development of the streaks near the walls are suppressed by the wall-oscillation 
for the accelerated case. Also, the results obtained by the Floquet analysis support 
the features shown by the DNS. 
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1     Introduction 
 

Drag reduction is one of the most important issue on the public transport systems. For the aircraft, 
the account of skin friction in the total drag is relatively large. Intensity of the skin friction depends on 
condition of the boundary layer flow. In general, the skin friction is large when the boundary layer 
flow is turbulent. Thus, from the view point of the flow control, our interest is how to decrease the 
turbulent shear stress, or how to delay the laminar-turbulent transition. 
  In this context, investigation for the plane Poiseuille flow, so called the channel flow, is a realistic 
and useful example because it can be described as an exact solution of a linear equation derived from 
the Navier-Stokes equation, and some theoretical and numerical investigation have revealed its 
essential futures1,2). Thus there are various studies of the plane Poiseuille flow aiming at drag 
reduction. As for the passive control, wavy wall or roughness surface were investigated3,4). On the 
other hand, as active control, wavy walls, vibrating walls, or suction/blowing walls were examined5-8). 
  As the study of the active control, Jung et al.9) firstly pointed out about reduction of the wall shear 
stress for a turbulent channel flow due to spanwise wall-oscillation. Succeeded study by Quadrio and 
Ricco10) numerically demonstrated the friction-drag reduction of 44.7%, which corresponds to the net 
energy saving of 7.3%. This modified flow not only has the advantage of the amount of the drag 
reduction, but also has an analogy with simple coupling of the channel flow with the Stokes layer. 
Thus, many efforts have been devoted to this problem11,12). 
  Although this modified channel flow with spanwise wall-oscillation can be simplified based on the 
Stokes layer, its basic flow is fundamentally three dimensional flow. Thus, for the purpose of more 
simplification, modified channel flow with longitudinal wall-oscillation should be studied. From this 
view point, the authors focused on the stabilizing effect of the longitudinal wall-oscillation on the 
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plane Poiseuille flow. Since the Stokes layer is also an exact  solution of the linear equation derived 
from the Navier-Stokes equation as same as the plane Poiseuille flow, this modified flow can be 
described a superposition of those two exact solutions. Therefore, the linear stability analysis based on 
the Floquet theory is applied together with the DNS. That is, the DNS can demonstrate detail 
character of the flow field and the Floquet analysis can show general feature of the system easily. 
  In Section 2, the results of the DNS study are presented. In Section 3, the study using the linear 
stability analysis based on the Floquet theory is described. Finally conclusions are given in Section 4. 
 

 

2     Numerical Analysis 
2.1     Two-Dimensional Channel Flow 
 
Figure 1 shows a model flow considered.  Here, Ω and 
Uw are frequency and amplitude of the longitudinal 
wall-oscillation. Thus, parameters describing this 
system are Ω, Uw, and the Reynolds number defined as 
Re≡h Umax/ν, where Umax is the maximum value of the 
mean  flow, ν the kinematic viscosity and h a half 
distance between two walls. In the present study, Re is 
fixed as 10000, which is a supercritical one, for 
convenience. 
 

The coordinate system of (x,y,z) corresponding to the physical space is taken for x in the 
streamwise direction, y in the direction normal to the wall, z in the spanwise direction. As mentioned 
before, the modified flow dealt here can be thought as a superposition of the exact solutions of a 
linear government equation as the follows, 
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here ρ is the dencity. This equation is derived from the incompressible Navier-Stokes equation under 
the parallel flow assumption. In this context, the flow can be represented as U=U(U(y,t),0,0), and 
U(y,t) is, 
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here, 2/k , and i denotes the imaginary unit. The former part of Eq.(2) is contribution of the 
plane Poiseuille flow, and the latter is the Stokes layer. In the Floquet analysis, Eq.(2) is used as the 
basic flow. 
 
2.2     Direct Numerical Simulation 
 

The numerical space is set as x∈[0,4π], y∈[-1,1], z∈[0,2π]. The flow filed is described as a 
superimposition of the disturbance u=u(u,v,w) on the basic flow U(y,t). If the pressure can be written 
as pRx e  /2 ,  the dimensionless equation for u is obtained from the Navier-Stokes equation, 
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here, ex denotes an unit vector in x the direction. The incompressible condition is, 
0 u .                 (4) 

The velocity u is expanded by the Fourier series for x, z directions on the Chebyshev collocation 
points yj. 
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Fig.1 Schematic view of the modified channel flow. 
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Then, Eq.(3) is calculated by the Fourier-Chebyshev spectral method13) for u(kx,yj,kz,t) with the 
initial disturbances given as, 
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where ε is a small parameter and q is a random function which satisfied the solenoidal condition. 
Energy norm for the Fourier modes (kx,kz) per unit mass is defined as the follow. 
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2.3     Results 
 
A typical results is shown in Fig.2 for the case of (Ω, Uw)=(0.0,0.0) which corresponds to the genuine 
plane Poiseuille flow. The curves in this figure represent the time variation of energy for each Fourier 
mode E(kx,kz). The solid lines correspond to two-dimensional disturbance, namely E(kx,0), and the 
dotted lines correspond to three-dimensional ones. In this calculation, the simulation has been started 
with the initial disturbances of order 109, but a specific disturbance with relatively large amplitude of 
order 105. This large disturbance is a Fourier mode of E(1,0), which is called the Tollmien-Schlichting 
(TS) wave. Because it is well known that the TS mode is dominant and leads to the laminar-turbulent 
transition under the flow condition considered here, the large TS mode is initially added to the initial 
disturbance in order to save the computing time-cost. In the present study, all of the simulation 
examined are including this TS mode. 
 

 
 
 
 
 

From this figure, it can be seen that after the transient phase the energy of the each mode develop 
with time and the laminar-turbulent transition occurs at about t=230 in this case. 

Some results with wall-oscillation are shown Fig.3-5 for the case of (Ω, Uw)=(0.25,0.3), (0.05,0.2), 
and (0.15,0.2).  The result of Fig.3 seems to almost same as non-oscillating case of Fig.2 except for 
oscillation in the time variation of the energy for each Fourier mode. It can be easily supposed that 
this oscillation is caused by the oscillation of the walls. Actually, it was confirmed that the period of 
the oscillation appearing on the time variation of the energy coincides with that of the wall-oscillation. 
In Fig.4, the laminar-turbulent transition is accelerated by the wall-oscillation. In this case, it takes 
only about 80 non-dimensional time for the transition. On the other hand, the result of the Fig.5, the 
transition to turbulent is slightly delayed by the wall oscillation.  
 
 

Fig. 2 Variation of energy for each Fourier mode for 
the case of (Ω, Uw)=(0,0) 

Fig. 3 Variation of energy for each Fourier mode for 
the case of (Ω, Uw)=(0.25,0.3) 
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It is found from such parametric study that the 

laminar-turbulent transition of the flow can roughly 
be grouped in three patterns depending on the wall-
oscillation. Result of this parametric study is shown 
in Fig.6. The circles correspond to the accelerated 
cases, the diamonds to the decelerated, and square to 
the less affected cases. It seems that the accelerated 
cases exist in small Ω region. 
 
Figure 7 shows a contour of instantaneous vorticity 
for (a) at t=150 of Fig.3, and (b) at t=50 of Fig.4. 
The white color corresponds to the streamwise 
components, and the dark color corresponds to 
spanwise components. In the case without wall-
oscillation, relatively large scale coherent structures 
so called “streak” or “lambda shaped vortex” exists 
near the walls. However, at least at this instant, the 
small scale spanwise vortices exist instead of the 
streak. It might be conjectured that the absence of the 
streamwise coherent structure leads to the results of the 
acceleration of the transition. 
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Fig. 4 Variation of energy for each Fourier mode for 
the case of (Ω, Uw)=(0.05,0.2) 

Fig. 5 Variation of energy for each Fourier mode for 
the case of (Ω, Uw)=(0.15,0.2) 

Fig. 6 Results of the parametric study.

Fig. 7 Flow visualization by the streamwise vorticity (represented by white contour). 
(a) at t=150 of Fig.3. (b) at t=50 of Fig.4. 
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3     Floquet Analysis 
3.1     Time-Dependent Ordinary Equation 
 
  When the flow field is described by the basic flow U and the small disturbance u’ and p’, the 
linearized disturbance equation for u’ can be derived from the Navier-Stokes equation as the follows. 
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Now, we assume that the small disturbance can be described as a modal plane wave, 
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here α, γ are real wave number in x, z direction, respectively. Substituting Eq.(9) into Eq.(8) with the 
equation of continuity, we obtain time-dependent Orr-sommerfeld equation, which takes the form of 
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where D is the differential operator in y direction. 
 
3.2     Floquet Exponet 
 
  If Eq.(10) can be rewritten as the form, 
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because of the periodicity of function G, we can expect from the Floquet theory that the solution of 
Eq.(11) can be described as the follows, 
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Here φi(y,t) is a periodic function with the period T, and μi is a complex number called as Floquet 
exponents. If the real part ofμi is positive, the system should be unstable. 
  Thus, in order to rewrite Eq.(10) as the form of Eq.(11), the Chebyshec spectral collocation method 
is employed. For this, Gauss-Lobatto scheme is adopted for the collocation points, 
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 Then, Eq.(10) can be rewritten as the follows, 
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where Dij
(2) is the differential matrix of the order (N+1) x (N+1). If  the inverse matrix of (Dij

(2) - α2 -
γ2 ) exists, Eq.(14) can be written in, 
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When the function v̂  is expanded by N, Eq.(14) is written in the follows. 
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If Eq.(16) is simply described as, 
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from the Floquet theory, we can expect that the solution of Eq.(17) have the form of, 
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Here Φ(t) is an arbitrary periodic function with the period T, and Q consists of N Floquet exponents. 
Because of the character of the periodic function Φ(t), 
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Therefore, the Floquet exponents are obtained as the follows. 
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When the eigenvalues of the matrix Q denote asμi and the eigenvalues of F as σi, we can obtain the 
Floquet exponents in the form of, 
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Thus, if we know the matrix F, the Floquet exponents are obtained from Eq.(22). In general, the 
matrix F can be numerically obtained by the integration of Eq.(17) during the period T. In the present 
study, the Cranc-Nicorson method is employed for this process. 
 
3.3     Results 
 
  Figure 8 shows a typical velocity profiles at each 
1/8 period of the wall-oscillation. Because of the 
symmetry, the only lower half is shown. Substituting 
these profiles into U in Eq.(10), the time-integration 
of Eq.(17) is executed in order to obtain F(T). Before 
the parametric study, the calculation of the Floquet 
exponent was checked by putting Uw in Eq.(2) onto 0. 
In this case, the Floquet exponent should be 
equivalent to the eigenvalue of the plane Poiseuille 
flow. Table 1 shows the comparison of the 
eigenvalues obtained in the present study with the 
results by Orszag(1). It seems that the accuracy of the 
numerical scheme using here is sufficient. 

Result of the parametric study is shown in Fig. 9 as 
a contour map on Ω-Uw plane. The white color region 
represent the positive area of the Floquet exponent, 
which corresponds to the unstable region, and the 
black one corresponds to the stable one. The dash-
dotted lines in this figure are written by each 0.002 of 
the Floquet exponent, and the solid line represents 
zero eigenvalue, namely the neutral curve. It can be 
seen that the stable region exists as a deep crevasse 
along Uw axis. From the comparison with Fig. 6, the 
bottom of the stable region agrees well with 
decelerated region estimated by the DNS. Although 
the unstable region near the Uw axis also corresponds 
to each other, some portion of the accelerated region 
by the DNS exists in the stable crevasse. This 

discrepancy might come from a reason that DNS can 
reproduce the nonlinear phenomena. From analogy of 
the Stokes layer, it can easily speculate that the 
condition with small Ω is equivalent to with large 

 ωr ωi 
present 0.23753e+00 0.37397e-02 
Orszag(1) 0.23752464 0.00373967 

Fig.8 Velocity profiles at some instance. 
 
 
 
 
 
 

Table 1 Comparison of the eigenvalues. 
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disturbance. Thus some cases estimated as the 
acceleration by DNS correspond to the 
transient growth with large disturbances. 
 

4     Conclusion 
 

The effect of longitudinal wall-oscillation 
on the plane Poiseuille flow is studied by 
direct numerical simulation (DNS) and the 
Floquet analysis based on the linear stability 
analysis. From the DNS, the laminar-turbulent 
transition is accelerated or decelerated 
depending on the frequency of the wall-
oscillation Ω and its amplitude Uw. In the 
accelerated case, it is cleared by the flow 
visualization that the growth of the coherent 
structure near the walls are suppressed by the 
wall-oscillation. The result obtained by the 
Floquet analysis agrees well with the DNS 
analysis and a deep stable crevasse appears in the 
parameter space. 
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