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Abstract: Leading-edge wing planform variations modeled after protuberances seen on humpback
whale flippers are believed to result in improved lift and drag characteristics in the near-stall
regime. The unconventional geometry makes flow predictions highly sensitive to turbulence models
which are otherwise well validated for conventional wings at high Reynolds numbers. We carry
out a computational study aimed at validating a RANS approach for the analysis of tubercles
in a Reynolds number range 62,500 - 500,000. Comparisons with experimental observations are
presented and the relevant flow physics are discussed.
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1 Introduction

Since the 2004 paper by Miklosovic, Murray, Howle and Fish [1], there has been a growing body of empirical
evidence which demonstrates potential benefits of the so-called tubercular leading edge wings. Tubercles
are bio-inspired aerodynamic devices that originate from the morphology of the humpback (Magaptera no-
vaeangliae) whale flipper, whose appearance resemble knuckles extruding out of the wing leading edge. The
humpback is known for performing tight turning maneuvers, and biologists have inferred that tubercles are
responsible for the generation of the necessary aerodynamic forces. Since the radius of curvature of the
maneuver is inversely proportional to the lift, one should conclude that tubercles might contribute to the
increased maximum lift.

Stall delay and stall mitigation appear to be achievable by properly placing tubercles on the leading edge
of a wing and it is believed that the the physical mechanism controlling the observed stall mitigation involves
the generation of stream-wise vorticity which energizes the viscous layer. From this point of view, optimizing
tubercle shape and placement would be equivalent to the problem of optimizing vortex generators by using
CFD, which is per se a challenging computational problem, but CFD analysis of tubercular wings presents
additional complications.

One source of difficulties is that wing planform and span-loading play a significant role in determining
the aerodynamic performance of the tubercles, and the tubercles’ size and distribution should be tailored
to a given wing planform and span-wise load distribution. Van Nierop et al [2] attempted to analyze these
issues by using Prandtl lifting line approach, an inviscid theory which cannot account directly for the viscous
phenomena controlling separation and stall. On a fully three dimensional wing, tubercles may actually act
as fences and decrease the span-wise flow, and depending on the location and span loading they could be
particularly efficient on delaying the outboard stall. This is strongly suggested by the results of several CFD
studies, including our own, which utilize a whale flipper planform [3]. In order to properly understand the
flow physics and the shape parameters controlling the efficiency of the tubercles, it is therefore advisable
to try to decouple the planform from the tubercle shapes. This has indeed been done experimentally by
Miklosovic et al [4], Hansen et al [5] and Johari et al [6] but we are not aware of any extensive CFD analysis
performed on these simpler configurations.
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One additional complication is that there also exists empirical evidence suggesting that tubercles might
actually be detrimental. As it was noted by Hansen et al [5] it appears that the studies showing negative
effects are at a Reynolds number less than 300,000, while those showing benefits are generally at Reynolds
number greater than 500,000. This strong dependence on Reynolds number can be a challenge for RANS
methods which are generally not well calibrated for low Reynolds number, potentially transitional flow.

For these reasons, although the ultimate goal of our study is to use shape optimization tools of the
class developed at Princeton by Jameson, Martinelli and Pierce [7] to determine optimal shapes of tubercled
wings, we found it necessary to preface the optimization study by a careful CFD analysis of this class of
flow. The results of this study are the subject of this paper.

Most of the experimental data available for validation are for low Reynolds numbers, in the range 120,000
- 270,000. This is a difficult regime for RANS solvers because of the uncertainties related to the performance
of turbulence models in transitional regimes, and the ability of RANS solvers to properly capture laminar
separation bubbles which might be present. In the present work, we use the experimental study of Mikloso-
vic [4] for validation and we attempt to characterize the effects of geometry parameters by analyzing the
flow separation patterns leading to stall of several tubercular wings with a sinusoidal planform.

A finite volume method developed at Princeton over the past two decades, one that is well validated for
high Reynolds number flows, is employed. The multigrid iterative scheme allows one to compute a steady
calculation of this size with modest computational resources. When coupled with an appropriate backward
difference formula (BDF), it is feasible to compute the time dependent stall and post stall regimes on meshes
with 15-25 million cells. Although our numerical method is well documented in the literature it will be
briefly reviewed in the following section.

2 Numerical Method

The discretization of the spatial operators is accomplished by using a finite volume method to the integral
form of the RANS equations. Both cell centered and vertex based schemes [8] have been developed in our
group at Princeton over a period of ten years from 1985-1995; a cell centered formulation was used for
this study. The convective fluxes are computed using the integral form of the conservation laws, which has
the advantage that no assumption of the differentiability of the solution is implied. In general the control
volumes could be arbitrary, but in this work we use the hexahedral cells of a body-conforming curvilinear
mesh. To include the viscous terms of the Navier-Stokes equations into the spatial discretization scheme
it is necessary to approximate the velocity derivatives ∂ui

∂xj
, which constitute the stress tensor σij . These

derivatives are evaluated by applying Gauss’ formula to a control volume V with boundary S:∫
V

∂ui
∂xj

dV =

∫
S

uinjdS ,

where nj is the outward normal. For a hexahedral cell this gives

∂ui
∂xj

=
1

V

∑
faces

ui nj S , (1)

where ui is an estimate of the average of ui over the face, nj is the jth component of the normal, and S is
the face area. Very efficient, low storage implementations of this formula were developed, in which one can
store only two planes of data.

Discretizations of this type reduce to central differences on a regular Cartesian grid, and in order to
eliminate possible odd-even decoupling modes allowed by the discretization of the convective terms some
form of background artificial dissipation must be added.

The effects of numerical diffusion, which may be introduced either explicitly to avoid decoupling or im-
plicitly by means of upwind formulas, could adversely impact the overall accuracy of the solution. Thus,
extreme care in devising an appropriate numerical diffusion or upwind method is required.[9] Several dissi-
pation schemes have been developed and thoughrouly validated for viscous flow [10]; we refer the interested
reader to the available literature [11, 12].
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When the space discretization procedure is implemented separately from the discretization in time, it
leads to a set of coupled ordinary differential equations which can be written in the form

dw

dt
+ R(w) = 0, (2)

where w is the vector of the flow variables at the mesh locations, and R(w) is the vector of the residuals,
consisting of the flux balances defined by the spatial discretization together with the added dissipative terms.
If the objective is simply to reach the steady state and details of the transient solution are immaterial, the
time-stepping scheme may be designed solely to maximize the rate of convergence. For steady flow multigrid
acceleration is applied to a multistage time-stepping scheme, which yields rapid convergence to a steady
state even for the large meshes used in this study. The explicit nature of the multigrid time-stepping scheme
makes it suitable for efficient implementation on parallel computers.[13, 14]

The parallelization strategy of choice developed in collaboration with J. Alonso [15, 16] uses a domain
decomposition model, a SPMD (Single Program Multiple Data) approach, and the MPI (Message Passing
Interface) library for message passing. The resulting codes are readily portable to different parallel computing
platforms as well as to homogeneous and heterogeneous networks of workstations.

Communication between subdomains is performed through halo cells surrounding each subdomain bound-
ary. Since both the convective and the viscous fluxes are calculated at the cell faces (boundaries of the control
volumes), all six neighboring cells are necessary, thus requiring the existence of a single level halo for each
processor in the parallel calculation. The calculation of the dissipative fluxes requires values from the twelve
neighboring cells (two adjacent to each face). For each processor, some of these cells will lie directly next to
an interprocessor boundary, in which case the values of the flow variables residing in a different processor
will be necessary to calculate the fluxes. The actual communication routines used are all of the asynchronous
(or non-blocking) type.

2.1 BDF scheme for time accurate flow

In the stall and post-stall regime, time accurate calculations need to be performed to account for the un-
steadiness of flow filed. In this regime we used an implicit, dual time-stepping multigrid approach. The idea,
first put forth by Jameson in 1991 [17] and extended to the RANS equations by Alonso and Martinelli [18],
is to use an implicit scheme with a large stability region (A-stable or stiffly stable) and to solve the implicit
equations at each time step by inner iterations using an accelerated time evolution scheme in artificial time.
The second order BDF is

3

2∆t
wn+1 − 2

∆t
wn +

1

2∆t
wn−1 +R(wn+1) = 0. (3)

With a dual time stepping one solves

dw

dt∗
+

3

2∆t
w − 2

∆t
wn +

1

2∆t
wn−1 +R(w) = 0 (4)

in pseudo time t∗ to reach a steady state satisfying equation (3). This construction of an implicit scheme
allows one to use fast steady state solvers, such as the multigrid time-stepping used for our steady calculations,
while maintaining all the advantages of an implicit method. This approach has been successfully validated
for computing time-dependent compressible [18] and incompressible viscous flow [19].

3 Validation Study

As it was mentioned in the introduction, predictions using RANS in the Reynolds number of interest is
particularly difficult. Moreover, in order to understand the flow physics controlling the performance of
tubercles, we chose to decouple the effects of span loading from the effects attributable solely to the tubercle
geometry. In decoupling planform effects from that of the tubercles, the experimental work by Miklosovic et
al [18] compared a straight wing with a NACA0020 airfoil to a sinusoidally varying tubercle geometry based
on the NACA0020, and we chose to use this geometry as a baseline.

3



3.1 Wing Geometry

(a) Straight NACA0020 section.

(b) Tubercle wing cross-section.

(c) Channel wing cross-section.

(d) Tubercle wing planform.

Figure 1: Wing geometries.

For the tubercled wing, the leading edge of the planform
is given by

xLE = 0.04 cos (4.878πz) (5)

where z is the coordinate along the span. To create the
tubercles, the cross-section is modified by a non-linear
shearing transformation that maintains the leading edge
radius, the position of maximum thickness, and the airfoil
shape behind that point [20].

dη′ =

{
(1 +B sinπη)dη ∀ η < 0.3

dη ∀ η ≥ 0.3
(6)

η =
x0 − xLE

C ′
η′ =

x′ − xLE
C ′

B = k0

(
C ′

C0
− 1

)
where x0 is the unscaled NACA0020 coordinate, C ′ ≡
xTE − xLE is the local scaled chord length determined
by the given leading edge variation 5, and C0 is the un-
modified chord length, taken throughout this work as 1.
Integrating equation 6 gives

η′ =

{
η − B

π cosπη + k1 ∀ η < 0.3

η ∀ η ≥ 0.3
(7)

For the η < 0.3 case the scaled coordinate is then

x′ = x0 − C ′
k

π
(C ′/C0 − 1) cosπ

x0 − xLE
C ′

+ k1 (8)

where the integration constant k1 can be found from the
condition that the modified leading edge point xLE corre-
sponds to the leading edge point x0,LE of the unmodified
section where η′ = 0,

k1 = xLE−x0,LE+
k0
π

(
C ′

C0
− 1

)
C ′ cos

(
π
x0,LE − xLE

C ′

)
(9)

The k0 term can be determined by requiring a smooth
transition at η = η′ = 0.3,

k1 =
k0
π

(
C ′

C0
− 1

)
cos 0.3π →

k0 =
x0,LE − xLE

C′/C0−1
π

[
C ′ cos

(
π
x0,LE−xLE

C′

)
− cos 0.3π

] (10)

The cross-section that results from this transformation
can be seen in figure 1.

In order to begin characterizing the design space for
these unconventional wings, we also test another variation
defined by maintaining straight leading and trailing edges
and scaling only the thickness of the cross-section by the
same sinusoidal variation. This has the effect of creating smooth channels in the flow direction. Side views
of the geometries can be seen in figure 1.
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3.2 Meshing and Computation

All geometries tested here were meshed with a single C-block consisting of 16.7 million cells created by
hyperbolic extrusion from the wing surface. The surface meshes have 128 faces on each side of the chord in
the streamwise direction and 256 in the spanwise direction. For conventional wings fewer cells are typically
used, resulting in higher aspect ratio cells near the body, which gives acceptable accuracy as the typical
gradients in the spanwise and streamwise directions are very small compared to those normal to the body.
The geometries of interest here naturally create significant flow variations in the spanwise and streamwise
directions, requiring much denser surface meshes. Convergence rates and accuracy for ∼ 5 million cell grids
were generally poor; Weber et al [3] previously noted a 10% change in CL in refining from 1.4 to 2.3 million
cells on the similar three-dimensional finite wing case.

For the non-straight wings, two full periods of the variation were meshed in order to capture possible
larger scale flow features, with periodic boundary conditions applied in the spanwise direction. The first grid
point was placed at 4.37 × 10−5 chord lengths from the wing surface, giving the first cell-centered solution
node at y+ = 0.5 for a Re = 500, 000 flow. The same grids are used for the less restrictive Re = 275, 000
simulations, which constitute the bulk of this work. Since a primary goal of the simulations is the accurate
prediction of separation and near-wall flow behavior that affect stall, this resolution was chosen to eliminate
the need to use wall functions in the RANS solution. The two equation SST (shear stress transport) k − ω
turbulence model of Menter was used, which is noted to produce good results in separated flows and can be
used without a wall model [21, 22]. All simulations were performed at M∞ = 0.1.

Princeton’s Della research computing cluster was used for the simulations. It is comprised of 128 compute
nodes with 12 2.67GHz Intel Westmere CPU cores on each node. Simulations below α = 10◦ were run in
steady mode, requiring 72 CPU-hours to converge. Above α = 10◦ unsteady features started to emerge,
necessitating time-accurate simulations which typically converged to a statistically steady state in 192-240
CPU-hours. Most calculations were run on a single node using 6 or 12 cores and required between 12 and
20 hours wall-time. This scaling is linear with the number of iterations required. Additionally, parallel
performance of the code scales almost linearly with the number of cores used.

3.3 Results

Figures 2(a) and 2(b) show a comparison of the results obtained for all the configurations of this study and
include the experimental data available for the two of them - the straight leading edge baseline wing and the
sinusoidal tubercle shaped by the shearing transformation discussed in the previous section. A comparison
with the results obtained for the baseline wing with a Spalart-Allmaras (blue circles) and Menter SST (red
circles) indicates that the SST model reproduces more closely the experimental curves, and therefore was
selected for the remainder of this study. Overall the trend and the magnitude of the computed lift and drag
compare favorably with the experimental observation, with the exception of two data points in the post stall
regime. The evolution of the turbulent intensity field and the velocity profiles are presented next for future
comparison.
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Figure 2: Lift curve and drag polar for tested geometries. Experimental data from Miklosovic et al.[1]
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Figure 3: Isosurfaces of turbulent kinetic energy for straight, channel, and tubercled wing at α = 14◦. Note
the sharp increase in turbulent energy at the separation lines.

3.4 Separation Patterns

The stall and post-stall characteristics are dominated by large regions of flow separation. Three-dimensional
separation is generally an abrupt phenomenon which is difficult to describe, let alone understand, without
a precise framework. To assimilate the computed results on the separation patterns of the configurations
considered in this study, we find a critical point analysis to be most useful. This techniques was first proposed
by Robert Legendre in the 1950’s and adopted by Lighthill in 1963 [23].

Separation is described by analogy to a dynamical analysis of autonomous systems. If one recognizes that
in a steady flow the streamlines next to the wall obey, and hence the skin-friction lines obey, on a surface
η = constant described by a local η − ξ − ζ coordinate system, the equations:

dξ

τξ(ξ, ζ)
=

dζ

τζ(ξ, ζ)
.

To study the shape of the skin friction lines in the vicinity of a singular point

τξ = τζ = 0

the solution can be expanded locally in a Taylor series, which leads to an eigenvalue problem for the Jacobian

J =

∣∣∣∣∣
∂τξ
∂ξ

∂τζ
∂ξ

∂τξ
∂ζ

∂τζ
∂ζ

∣∣∣∣∣ ,

and the behavior of the skin friction lines in the vicinity of the critical point is determined by eigenvalues of
J . From this consideration the analogy with the critical point analysis of an autonomous system becomes
self evident.

Separation and reattachment patterns are then described uniquely in term of stable and unstable nodes,
saddle points, as well as stable and unstable foci. The excellent reviews by Tobak and Peake [24] and
Delery [25] provide comprehensive historical background on the subject, here we just make use of this
formalism to describe our results.

The skin friction for the straight wing, channel wing, and tubercle wing are compared in figure 5. It
can be noticed that the effect of the channel is to create two well defined separation nodes which leads to a
break-up of the separation region in two separate zones, while the presence of the tubercle leads to a richer
separation pattern, with multiple foci representing vortices shedding from the surface.

These characteristics appears to be more pronounced and effective at a higher Reynolds number, as
illustrated in figure 7.

From this analysis, it can be concluded that both thickness variation and planform shaping should be
used in designing an effective tubercle. Also, our results indicates that the ultimate performance of tubercles
are indeed dependent on Reynolds number, at least in the range considered here. To validate our method
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(d) Velocity profile, peak.
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(e) Velocity profile, trough.
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(f) Velocity profile, trough.
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(g) Turbulence intensity, peak.
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(h) Turbulence intensity, peak.
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(i) Turbulence intensity, trough.
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(j) Turbulence intensity, trough.

Figure 4: Boundary layer profiles for tubercled (left) and channel (right) wings at α = 14◦.
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Figure 5: Surface oil flow pattern for geometries from left to right: straight wing, channel wing, and tubercle
wing, at α = 10◦, 14◦, and 18◦ from top to bottom.

on a full three-dimensional wing, we have computed the Miklosovic whale flipper model presented next.

3.5 Finite Span Wing

In order to validate the methods used for a fully three-dimensional wing, we have run calculations on the
finite-span tubercular geometry from Miklosovic et al [1]. Our computed lift coefficient results compare
well with the experimental data available for a Reynolds number of 500000 up to the stall region. The
computed drag coefficient is slightly higher than the experiment, but is consistent with the computed results
of Weber [3] for the same case, which were obtained using the commercial CFD solvers Star-CCM+ and
SolidWorks Flow Simulation, and that of Pedro et al [26], which were obtained using Fluent. Both of these
previous computations were performed using wall functions and coarser grids (approximately 2.5 million
cells). Although in error, our drag calculations appear to be closer to experiment, most likely due to the
higher resolution (6.5 million cells) used here. This suggests a more detailed grid refinement study for the
three-dimensional case is needed.

4 Conclusion

The efficiency of our solver allowed fast calculations of steady and unsteady flow on well resolved meshes
with modest computational resources. In the course of this study we found that CFD analysis using RANS
closed by a Menter SST turbulence model reproduces experimental measurements and trends with reason-
able accuracy, even at a Reynolds numbers lower than the one encountered in most envisioned practical
applications. This makes shape optimization of wings with tubercles using an adjoint method feasible.

By interpreting the skin friction lines in the separation region in terms of critical points we were able to
infer that tubercles built by chord variations and constant thickness act as vortex generators. On periodic
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Figure 6: Near-surface streamwise vorticity for channel and sinusoidal wings at α = 14◦.

(a) Re = 275, 000 (b) Re = 500, 000

Figure 7: Surface oil flow pattern for tubercle wing at α = 12◦.

wings they tend to reduce Clmax but mitigate the stall, by sustaining higher levels of lift for higher angles
of attack. Tubercles may be used successfully to energize the flow at critical span-wise locations, potentially
improving the outboard stall characteristics as in the case of Miklosovic’s whale flipper model. Our results
confirm Hensen’s observation that tubercles might be detrimental at low Reynolds numbers.

We have also shown that a variation in thickness along the span, which creates channels of sorts along the
chord, can be used to break up the separation regions and create spanwise fences, which can increase Clmax .
Our observations indicate that a fully three-dimesional shape optimization is necessary to design tubercles
with higher performance; this is the subject of our ongoing research. Also, recalling that the humpback is
known for performing tight turn maneuvering, an in depth assessment of tubercle performance in dynamic
stall conditions seems de rigueur.
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Figure 8: Lift and drag coefficients for smooth and tubercle wings. Experimental data from [3].
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