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Abstract: The present paper deals with the multi-dimensional limiting process (MLP) for ar-
bitrary higher-order discontinuous Galerkin (DG) methods to compute compressible inviscid and
viscous flows. MLP, which has been quite successful in finite volume methods (FVM), is extended
into DG methods for hyperbolic conservation laws. From the previous works, it was observed
that the MLP methods provide an accurate, robust and efficient oscillation-control mechanism in
multiple dimensions for linear reconstruction. This limiting philosophy can be extended into higher-
order reconstruction. The proposed algorithm, called the hierarchical MLP, facilitates the accurate
capturing of detailed flow structures in both continuous and discontinuous regions. Through exten-
sive numerical analyses and computations on triangular and tetrahedral grids, it is demonstrated
that the proposed limiting approach yields the desired accuracy and outstanding performances in
resolving compressible inviscid and viscous flow features.

Keywords: Higher-order Methods, Multi-dimensional Limiting Process, Arbitrary Higher-order
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1 Introduction
Up to now, second-order accurate flow solvers with a discontinuity capturing strategy are widely used to
resolve compressible viscous flows. At the same time, they also yield some limitations, particularly in
capturing unsteady vortex-dominated flow structures due to excessive numerical diffusion. By improving
the accuracy of spatial and temporal discretization, higher-order CFD methods can provide the detailed
flow structure with reasonable computational resource [1, 2]. Among them, the discontinuous Galerkin
(DG) methods have become popular as a higher-order discretization of hyperbolic conservation laws owing
to its distinctive merits, such as flexibility to handle complex geometry, compact stencil for higher-order
reconstruction, and amenability to parallelization and hp-refinement. This method has been applied to
convection problem, high order partial differential equation (PDE), such as elliptic-type PDE or the Navier-
Stokes equations. Recent studies show some encouraging results to resolve compressible turbulent flows by
the DG methods [3].

A few issues, however, have been blamed as obstacles in extending the DG methods (or higher-order
methods in general) into high speed unsteady flows. One of them is to design a robust, accurate and efficient
limiting algorithm to suppress unwanted oscillations around discontinuities without compromising the higher-
order nature of the DG discretizations. Various limiting algorithms, such as slope limiter [4], moment limiter
[5, 6, 7], hierarchical reconstruction [8, 9] and ENO/WENO type limiter [10, 11, 12] have been combined with
the DG methods. These approaches have been successful in some parts, but overall performances indicate
further elaboration is definitely necessary, particularly in controlling oscillations near shock discontinuities
in multi-dimensional flows. In addition, most of the above-mentioned approaches require characteristic
variable decomposition at the limiting stage which may degrade solution accuracy due to misidentification
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of the troubled-cells. Implementation procedure is rather complicated with a delicate tuning of several
parameters, and the required limiting stencil becomes wider for higher than DG-P3 reconstruction.

The fundamental cause of such problems essentially lies in the framework of mathematical analyses
based on the one-dimensional convection equation, which in general do not guarantee multi-dimensional
monotonicity. Recently, the multi-dimensional limiting process (MLP), with the theoretical foundation of the
maximum principle, has been successfully proposed in the finite volume framework (FVM). Compared with
traditional limiting strategies, such as the TVD or ENO-type limiting, the MLP limiting efficiently controls
unwanted oscillations particularly in multi-dimensional flow situations. By imposing the MLP condition on
both cell-centered and cell-vertex values, the MLP limiting can efficiently follow the multi-dimensional flow
physics, which leads to the global/local L∞ stability. A series of previous researches [13, 14, 15] demonstrated
that the MLP limiting possesses superior characteristics in terms of accuracy, robustness and efficiency in
inviscid and viscous computations on structured and unstructured grids within the FVM framework.

Based on its remarkable progresses in FVM, the MLP limiting philosophy is extended into the DG
framework to provide an accurate, efficient and robust limiting method for higher-order discretizations. As
a way to stabilize the higher-order DG reconstruction, the original MLP condition is extended to take into
account the behavior of local extrema produced by a cell-wise higher-order interpolation. As a result, the
augmented MLP condition and the MLP-based troubled-cell marker are obtained, which pave the way to
obtain the hierarchical MLP formulation up to arbitrary order of DG-Pn reconstruction. The hierarchical
MLP method developed for inviscid compressible flows [16, 17] is now extended for viscous compressible
flows. To handle the second-order derivative terms, such as viscous stress or heat flux, the BR2 method [18]
is applied. The present work provides the computed results up to DG-P3 reconstruction on triangular and
tetrahedral grids. Since the proposed limiting algorithm relies only on the MLP stencil regardless of the
order of reconstruction, it facilitates an easy extension to arbitrary higher-order DG reconstruction.

The present work is organized as follows. At first, the baseline discretization methods are briefly sum-
marized in Section 2. Then, the hierarchical MLP limiting procedure is described in Section 3. In Section 4,
extensive numerical experiments are carried out to verify the favorable properties of the proposed limiting
strategy for inviscid and viscous compressible flows. Finally, conclusion will be given in Section 5.

2 Discontinuous Galerkin Methods
In order to analyze the inviscid and viscous compressible flows, the Euler and Navier-Stokes equations are
considered.

∂Q

∂t
+∇ · (Fc − Fv) = 0, (1)

where Q is the conservative variable vector, Fc and Fv are the inviscid and viscous flux.
Discretization using the DG methods starts from the weak form of Eq. (1) on the cell Tj .∫

Tj

∂Q

∂t
WdV +

∫
∂Tj

(Fc − Fv) · nWdS −
∫
Tj

(Fc − Fv)∇WdV = 0, (2)

where W is a test function vector, and n is the outward unit normal vector.
Distribution within a cell is then approximated by the sum of shape functions in a suitably smooth func-

tion space V n, which usually consists of polynomials of order up to n. The test function is also approximated
in the same function space V n.

Qh
j (x, t) =

n∑
i=1

Q
(i)
j (t)b

(i)
j (x), (3)

where Qh
j is an approximated state variable vector on the cell Tj . b

(i)
j is a shape function, which is a local

orthogonal shape function in the present work.
After applying suitable numerical fluxes, the approximated solution in V n on the cell Tj can be written
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Table 1: Quadrature points for boundary and domain integration.
Triangular element Tetrahedral element

P1 P2 P3 P1 P2 P3
Boundary 2 3 4 4 7 13
Domain 3 7 12 4 11 24

as follows. ∫
Tj

∂Qh
j

∂t
BjdV +

∫
∂Tj

Hc

(
Qh

jk,Q
h
kj

)
· nBjdS −

∫
Tj

Fc

(
Qh

j

)
· ∇hBjdV

−
∫
∂Tj

Hv

(
Qh

jk,Θ
h
jk,Q

h
kj ,Θ

h
kj

)
+

∫
Tj

Fv

(
Qh

j ,Θ
h
j

)
· ∇hBjdV = 0, (4)

where Qh
jk is the cell interface state vector in the direction from Tj to its neighboring cell Tk, and Bj is the

vector of the basis functions. Hc (QL,QR) and Hv (QL,ΘL,QR,ΘR) are the tensors of a numerical inviscid
and viscous flux function.

To handle the second-order derivative terms in viscous stress and heat flux, auxiliary variable vector is
introduced as follows.

Θ−∇Q = 0 (5)

From the BR2 scheme, Eq. (5) can be discretized by introducing the lift operator.

Θh
jk = ∇hQh

jk + ηre([Q
h]), Θh

j = ∇hQh
j + r([Qh]). (6)

Plugging Eq. (6) into Eq. (4), the primal formulation of the governing equation can be obtained. The
detailed derivation to treat the diffusion flux can be founded on Ref. [18]. The boundary and domain
integration can be performed by exact formulation or numerical integration with polynomials of order of up
to 2n and 2n+1, respectively. The present computations adopt the Guass quadrature rule that is summarized
in Table. 1.

Contrary to FVM, DG methods can realize arbitrary higher-order reconstructions within compact stencil.
At the same time, however, DG formulation can be unstable especially in computing discontinuous solutions.
The present approach is based on the RKDG method to overcome the stability problem [4], which is com-
posed of two key ingredients: one is a stable time integration scheme, and the other is a robust limiting
procedure. The present study focuses on the limiting issue, which is going to be elaborated in the following
section. For the time integration, nonlinear stable methods are applied, such as the third-order accurate
TVD Runge-Kutta method or the five-stage fourth-order accurate strong stability preserving Runge-Kutta
method (SSPRK(5,4)) [19]. The time step limitation for explicit DG methods are severe, especially due to
the diffusion term [20, 21]. In the present computations, we use the following definition of time step.

∆t =
CFL

2n+ 1

h

|λmax
c |+ d|λmax

v | 2n+1
h

, (7)

where d is the number of dimension and h is the radius of inscribed circle or sphere for triangular and
tetrahedral element, respectively. λmax

c and λmax
v is the maximum wave speed of inviscid and viscous flux,

respectively. Courant number has been set to 0.9 for DG-P1 or P2 with TVD Runge-Kutta method and 1.4
for DG-P3 with SSPRK(5,4).

3 Multi-dimensional Limiting Strategy for DG Reconstruction
Limiting should be activated only on the troubled-cells to maintain higher-order accuracy across smooth
extrema. An accurate troubled-cell marker, followed by a sophisticated limiting, is thus crucial to obtain an
accurate monotone profile in the DG framework. Some troubled-cell markers, such as the TVB marker [4]
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or KXRCF marker [22], have been developed and combined with slope limiters or WENO-type limiters, but
the precise detection of the troubled-cells is not an easy task. We propose a new indicator based on the MLP
concept to detect the troubled-cells. For the troubled-cells, MLP-u slope limiters, which were successfully
developed in finite volume methods, are applied. At first, we briefly summarize MLP-u slope limiters and
describe the implementation procedure for higher-order DG reconstruction.

3.1 MLP-u Slope Limiter
In order to enforce multi-dimensional monotonicity, the MLP condition has been proposed in the finite volume
methods. This condition is an extension of the one-dimensional monotonicity condition, by considering the
case where the direction of local flow gradient is not aligned to the local grid line. The starting point of
the MLP condition is that local extrema always occur at vertex point if property distribution is linear. It
manifests that i) treatment of vertex point is essential in limiting stage, ii) all information around vertex point
should be incorporated to avoid multi-dimensional oscillations, which leads to the following MLP condition.

q̄min
vi ≤ qvi ≤ q̄

max
vi , (8)

where qvi is the value at vi, and (q̄min
vi , q̄max

vi ) are the minimum and maximum cell-averaged values among
all the cells sharing vi. Equation (8) is required to be satisfied at both cell-centered and vertex points. It is
noted that the MLP condition can be applied to any type of mesh since it does not assume a particular mesh
connectivity. At the same time, it is also observed that well-controlled vertex value at interpolation/limiting
stage makes it possible to produce monotonic distribution of cell-averaged values. Extensive numerical
experiments [13, 14, 15] strongly support that full realization of Eq. (8) is very effective to preserve accurate
monotone profiles.

This philosophy can be readily extended on unstructured grids with second-order accurate reconstruction.
Sub-cell interpolation may start from the unstructured version of the MUSCL-type linear reconstruction as
follows.

qj(r) = q̄j + φ∇q̄j · r, (9)

where q is the the state variable, ∇q̄j is the gradient within the cell Tj , and r is the position vector from
the centroid of Tj . φ is a function to be designed by limiting strategy. After applying the MLP condition to
vertex point, the MLP slope limiter is introduced to ensure multi-dimensional monotonicity by considering
all the distributions around the common vertex vi. The range of the MLP slope limiting is then obtained as
follows.

0 ≤ φ ≤ max

(
q̄min
vi − q̄
∇q̄ · rvi

,
q̄max
vi
− q̄

∇q̄ · rvi

)
. (10)

From Eq. (10), the MLP-u slope limiters can be obtained as follows.

φMLP = min
∀vi∈Tj

{
Φ(rvi,j) if ∇q̄j · rvi,j 6= 0

1 otherwise , (11)

where rvi,j = (q̄min or max
vi − q̄j)/∇q̄j · rvi,j is the ratio of the minimum or maximum allowable variation to

the estimated variation at vi of Tj . rvi,j is the position vector from the centroid of Tj to the vertex vi. By
determining Φ(r) to satisfy the maximum principle, we have the MLP-u1 and MLP-u2 limiters. Detailed
implementation in unsteady and steady flows can be found in Refs. [14, 15].

The MLP limiting is supported by the maximum principle in ensuring the monotonicity in multiple
dimensions. For multi-dimensional scalar conservation law, the MLP limiting guarantees the following local
maximum principle under a suitable CFL condition [14, 15].

If q̄min,n
j,neighbor ≤ q̄

n
j ≤ q̄

max,n
j,neighbor, then q̄min,n

j,neighbor ≤ q̄
n+1
j ≤ q̄max,n

j,neighbor. (12)

Here, q̄j is the cell-averaged value on Tj , and (q̄min,n
j,neighbor, q̄

max,n
j,neighbor) are the minimum and maximum cell-

averaged values on the MLP stencil. The MLP stencil is defined as the union of the cells sharing an edge
or vertex of the cell Tj . In conjunction with the MLP condition (Eq. (8)), Eq. (12) simply states that the
MLP limiting satisfies the MLP condition at cell-centered point at every time step.
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Figure 1: Discontinuity on the MLP stencil. (Dash-dot line is a discontinuity and spurious oscillations may
occur in the blue-shaded region.)

The MLP condition on the MLP stencil makes it realizable to capture multi-dimensional flow structure
accurately while maintaining the required order-of-accuracy. From Eqs. (8) and (12), the updated solution
by the MLP limiting satisfies the maximum principle both on cell-centered and cell-vertex points, though
the stencil involved is a bit different. In addition, from the global/local L∞ stability of computed solutions,
the MLP limiting satisfies the LED condition in a truly multi-dimensional way [15].

3.2 Augmented MLP Condition
The MLP condition in FVM is used to identify and control the maximum-principle-violating cells [14, 15].
If property distribution is linear, the edge/face midpoint (or any quadrature point) must be restricted
through controlling the vertex points where extrema occur. For higher-order reconstruction greater than P1,
however, such privilege is no longer endowed. Since the P1 -based MLP condition may omit some troubled-
cells violating the maximum principle, additional condition should be imposed on the troubled-cell marker
which can hold for arbitrary order of reconstruction.

In general, a higher-order DG reconstruction in a cell affects the higher-order distributions of the adjacent
cells through the dynamic interaction occurring at the steps of flux evaluation and solution update. If we
have a discontinuity near the vertex, as shown in Fig. 1, the higher-order DG reconstruction would trigger
unwanted oscillations in the blue-shaded region. For P1 reconstruction, any quadrature point in the cell
can be readily controlled since its physical value is always bounded by the vertex values estimated from the
linear reconstruction in the cell. For greater than P1 reconstruction, we may have the quadrature points
whose property values are no longer bounded by the vertex values. They can be outside the range imposed
by the MLP condition (Eq. (8)) and thus have the danger of violating the maximum principle (Eq. (12)).
Furthermore, it may happen even if the vertex value does satisfy the MLP condition. This suggests that
the MLP condition reflecting a single sub-cell distribution only no longer holds, and all the higher-order
DG distributions of the adjacent cells need to be checked even if we want to control quadrature points in
the single cell. For example, as a way to control distribution along the boundary including such suspicious
quadrature points, all the cells sharing the common vertex (q1 to q6 cells in Fig 1) are examined even if one
of the MLP stencil (q1 cell) is to be limited. From this perspective, we propose a more strict condition, called
the augmented MLP condition, as follows. The augmented MLP condition is then used as the MLP-based
troubled-cell marker for higher-order reconstruction.

q̄min
vi
≤ qh,min

vi
≤ qhvi , qhvi

≤ qh,max
vi ≤ q̄max

vi , (13)

where qhvi
is an interpolated value at vertex vi and (qh,min

vi , qh,max
vi ) are the minimum and maximum inter-

polated values at vi among all the cells sharing vi. If any of the estimated vertex values violates the above
condition, it is tagged as a troubled-cell. Numerical experiments strongly support that the MLP slope limiter
with the augmented MLP condition is quite successful in handling multi-dimensional oscillations.

Similar to the MLP condition, the augmented MLP condition itself does not provide any mechanism to
distinguish local extrema. In order to preserve the accuracy across smooth extrema, a simple but effective
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Figure 2: Flowchart of the MLP limiting procedure up to DG-P2 reconstruction.

extrema detector is introduced as follows.

∆q̄vi = q̄max
vi − q̄min

vi ≤ K∆x2, (14)

where K is a parameter to be determined.
The augmented MLP condition (Eq. (13)) together with the simple extrema detector (Eq. (14)) leads

to a MLP-based troubled-cell marker. By combining the troubled-cell marker and the MLP-u slope limiters
(Eq. (11), see [14, 15] for details), the MLP limiting strategy up to P2 reconstruction is obtained. If a
cell is tagged as a troubled cell, the P2 distribution is projected onto the linear function space V 1. For the
orthogonal shape function, this is accomplished by simply neglecting the P2 mode. The MLP-u slope limiter
developed in FVM is then applied to the linear distribution. Figure 2 shows the schematic summary of the
MLP limiting procedure up to DG-P2 reconstruction.

3.3 Hierarchical MLP limiting for DG-Pn reconstruction (n ≥ 2)
The MLP-based troubled-cell marker given by the augmented MLP condition and the simple extrema detector
yields quite successful performances to control multi-dimensional oscillations. In fact, the augmented MLP
condition can be extended into general DG-Pn reconstruction as an accurate troubled-cell marker. However,
the problem to determine the optimal value of K for smooth extrema still remains. More seriously, the
optimal value of K may change depending on the order of reconstruction. Thus, the simple extrema detector
is not further employed. Instead, a hierarchical extrema detector for arbitrary DG-Pn reconstruction is
deduced by examining the behavior of local extrema around vertex point.

Firstly, we decompose DG-Pn reconstruction into the sum of linear part (Pn-projected slope) and higher-
order part (P1 -filtered Pn), as follows.

qh,Pn
vi,j

= q̄j + (L− q̄j)︸ ︷︷ ︸
Pn-projected slope

+
(
qh,Pn
vi,j

− L
)

︸ ︷︷ ︸
P1 -filtered Pn

, (15)

where qh,Pn
vi,j

is the interpolated value at vi obtained by Pn reconstruction on the cell Tj . L indicates the
projection of Pn reconstruction on the P1 space. If we employ the local orthogonal shape function, L can
be obtained by simply neglecting the higher-order term, i.e., L = qh,P1

vi . The linear part simply represents
the averaged slope for Pn reconstruction. From the mean value theorem, if local extrema appear around the
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vertex vi, the gradient direction of qh,Pn
vi,j

would be substantially different from that of the linear part. If one
goes up, the other would go down. Even if they are in the same direction, the magnitude of the gradient
of qh,Pn

vi,j
would be smaller than that of the linear part. From the above observation, we can deduce the

following extrema detector for local extrema around the vertex vi.

• C1) If there is a local maximum around the vertex vi,

Pn-projected slope > 0,P1 -filtered Pn < 0, qh,Pn
vi,j

> q̄min
vi

• C2) If there is a local minimum around the vertex vi,

Pn-projected slope < 0,P1 -filtered Pn > 0, qh,Pn
vi,j

< q̄max
vi

(16)

The last inequalities (qh,Pn
vi,j

> q̄min
vi , qh,Pn

vi,j
< q̄max

vi ) are necessary to treat stiff gradients including physical
discontinuities. In addition, we add the following deactivation condition to avoid almost constant region.∣∣∣∣∣q

h,Pn
vi,j

− q̄j
q̄j

∣∣∣∣∣ ≤ 0.001 (17)

By combining the augmented MLP condition (Eq. (13)) and the extrema detector (Eq. (16)), we
formulate the hierarchical MLP limiting, which extends the simple MLP-based limiting strategy into arbitrary
DG-Pn reconstruction. The limiting procedure higher than P2 reconstruction can be written as follows.

qh,p2
j = q̄j + φMLP−u(P1j) + ϕP2 (P2j) ,

qh,P3
j = q̄j + φMLP−u(P1j) + ϕP2

(
P2j + ϕP3(P3j)

)
,

...

qh,Pn
j = q̄j + φMLP−u(P1j) + ϕP2

(
P2j + ϕP3(P3j + ϕP4(...+ ϕPnPnj)))

)
. (18)

Here, Pnj is the n − th order term that is orthogonal to V n−1 space on the cell Tj . If the orthogonal
shape function is employed, it is simply the sum of the n − th order shape modes on Tj . ϕPn is the MLP
troubled-cell marker for Pn reconstruction, which is formulated as follows.

ϕPn = min
∀vi∈Tj

(ψPn
vi,j) (19)

ψPn
vi,j

takes the value of 1 or 0 depending on the results of the augmented MLP condition (Eq. (13) and the
extrema detector (Eqs. (16), (17)). If Eq. (13) is not satisfied, the extrema detector is employed to check
local smoothness. If Eq. (16) and Eq. (17) are not satisfied, ψPn

vi,j
becomes 0. Otherwise, ψPn

vi,j
= 1. After

probing all vertex points, the final limiting function is determined as Eq. (19). The limiting procedure of
Eq. (18) can be applied in a hierarchical manner from the highest mode to the lowest P2 mode. At first,
the troubled-cell marker is applied to the highest order reconstruction. If the cell is tagged as a normal cell,
the highest order term is kept unlimited. If not, Pnj is ignored and the whole reconstruction is projected
on V n−1 space to obtain the P1j to P (n − 1)j modes. It can be done by simply moving onto P (n − 1)j
if the orthogonal shape functions are employed. This procedure is carried out recursively until the P2
reconstruction. If the P2j mode has to be limited, the linear term is computed by the MLP-u slope limiters
developed in FVM. Figure 3 shows the schematic summary of the hierarchical DG-MLP limiting procedure.

The performance of the MLP troubled-cell marker is examined by checking the activation region with
the following two-dimensional profiles. This is the multi-dimensional extension of the benchmark test for
one-dimensional troubled-cell marker [7].

q0 =


G(r1, β,−δ) +G(r1, β, 0) +G(r1, β, δ) 0.1 < x < 0.3, 0.1 < y < 0.3

max(1− 10r2, 0) −0.3 < x < −0.1, 0.1 < y < 0.3
F (r3, α,−δ) + F (r3, α, 0) + F (r3, α, δ) −0.3 < x < −0.1,−0.3 < y < −0.1

1 0.1 < x < 0.3,−0.3 < y < −0.1
0 otherwise

, (20)
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MLP-based Troubled-Cell Marker for Pn (n ≥ 2) 
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Figure 3: Flowchart of the hierarchical MLP method for DG-Pn reconstruction.

(a) Initial profiles (b) Hierarchical detector with DG-P2 (c) Hierarchical detector with DG-P3

Figure 4: Activation of limiter for various profiles. (Blue: Slope limiting, Green: Hierarchical limiting)

where r1 = |x− (0.2, 0.2)|, r2 = |x− (−0.2, 0.2)| and r3 = |x− (0.2,−0.2)|. G(x, β, xc) = exp(−β(x− xc)2)
and F (x, α, xc) =

√
max(1− α2(x− xc)2, 0) with β = log(2)/(360δ2), δ = 0.005 and α = 10. They represent

a two-dimensional Gaussian hump, spike, half ellipsoid and cube at each quadrant.
Figure 4 shows the comparison of the activation region for DG-P2 and P3 reconstruction. The MLP

troubled-cell markers accurately capture discontinuous jump along the cube boundary in fourth quadrant.
Due to finite mesh size, the limiter is activated on a few cells along the boundary of hump, spike and
ellipsoid. From the results, the MLP troubled-cell marker successfully distinguishes continuous region from
discontinuous one in multi-dimensional flows.

4 Numerical Results
Extensive numerical experiments are carried out to assess the performance of the proposed limiting methods.
Some well-known test problems for inviscid and viscous flow on 2-D triangular and 3-D tetrahedral grids
are also examined up to the DG-P3 accuracy. The accuracy, robustness and efficiency characteristics of
the hierarchical MLP methods are compared with the MLP-u slope limiters in FVM. All computations
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(a) Regular grid (b) Irregular grid

Figure 5: Regular and irregular triangular grids.

greater than DG-P1 reconstruction employ the hierarchical MLP limiting algorithm, and the simple MLP-
based troubled-cell marker with K = 100 is used for DG-P1 reconstruction. As a numerical flux, local
Lax-Friedrich scheme, RoeM [23] scheme and AUSMPW+ [24] scheme are adopted.

4.1 Convergence Studies
4.1.1 Euler Equations with an isentropic vortex advection

In order to examine numerical accuracy in multi-dimensional smooth flows without shock waves, inviscid
flow with an isentropic vortex is considered. Since the flowfield is inviscid, the exact solution is just the
passive advection of the initial vortex with a mean flow. The mean flow condition, which is considered as a
free stream, is ρ∞ = 1, p∞ = 1 and (u∞, v∞) = (1, 1). The perturbed values for the isentropic vortex are
given by

(δu, δv) =
ε

2π
e0.5(1−r2)(−ȳ,x̄), δT = − (γ − 1)ε2

8γπ2
e1−r2 , δS = 0. (21)

The vortex strength is ε = 5. (x̄, ȳ) = (x − x0, y − y0), where (x0, y0) is the location of the vortex
center, and r2 = x̄2 + ȳ2. Computational domain is [−5, 5] × [−5, 5], and periodic boundary condition is
applied. RoeM scheme [23] is applied as a numerical flux. Figure 5 shows the regular and irregular grids
used in grid refinement test. Tables 2 and 3 present the computed results, which clearly confirms the desired
grid-convergence characteristic of the proposed limiting methods.

4.1.2 Navier-Stokes Equations with a Source Term

We also examine the grid convergence behavior of the proposed limiting for viscous flow with a source term.
The reference analytic solution is a sinusoidal function and the source term can be derived by inserting it
[20].

Qt +∇ · (Fc − Fv) = S,

ρ = e = sin(k · x− ωt) + c,V = 1. (22)

Following parameters are used.

Re = 2000, P r = 0.72,k = (π, π), ω = π, c = 3.0. (23)

Computational domain is [0, 2] × [0, 2], and periodic boundary condition is applied. Tables 4 and 5 shows
that the proposed methods also maintain desired-accuracy for compressible Navier-Stokes equations.
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Table 2: Grid refinement test for evolution of isentropic vortex on regular grids at t = 10.0.
Grid L∞ Order L1 Order L2 Order

20x20x2 4.8255E-02 2.9957E-03 7.1690E-03
MLP-u1 on DG-P1 40x40x2 1.0472E-02 2.20 6.4309E-04 2.22 1.5355E-03 2.22

(K=100) 80x80x2 1.9421E-03 2.43 1.1591E-04 2.47 2.7089E-04 2.50
160x160x2 3.9996E-04 2.28 2.2460E-05 2.37 5.2333E-05 2.37
20x20x2 3.3952E-03 2.9147E-04 4.5641E-04

Hierarchical 40x40x2 3.2963E-04 3.36 2.0734E-05 3.81 3.4920E-05 3.71
DG-P2 -MLP 80x80x2 3.6873E-05 3.16 1.6946E-06 3.61 3.4730E-06 3.33

160x160x2 4.3960E-06 3.07 1.6527E-07 3.36 3.9566E-07 3.13
20x20x2 3.3145E-04 2.0910E-05 3.8876E-05

Hierarchical 40x40x2 1.7153E-05 4.27 1.0618E-06 4.30 1.7078E-06 4.51
DG-P3 -MLP 80x80x2 1.0891E-06 3.98 5.6998E-08 4.22 9.4731E-08 4.17

160x160x2 6.1056E-08 4.16 3.5888E-09 3.99 6.5341E-09 3.86

Table 3: Grid refinement test for evolution of isentropic vortex on irregular grids at t = 10.0.
Grid L∞ Order L1 Order L2 Order
h0/20 2.1201E-02 9.0050E-04 2.4341E-03

MLP-u1 on DG-P1 h0/40 3.9709E-03 2.42 1.9097E-04 2.24 5.3974E-04 2.17
(K=100) h0/80 1.1051E-03 1.85 4.1039E-05 2.22 1.2438E-04 2.12

h0/160 3.9996E-04 2.28 2.2460E-05 2.37 5.2333E-05 2.37
h0/20 1.5685E-03 1.0919E-04 2.0652E-04

Hierarchical h0/40 2.0439E-04 2.94 9.7160E-06 3.49 1.9725E-05 3.39
DG-P2 -MLP h0/80 2.4772E-05 3.04 9.0828E-07 3.42 2.0582E-06 3.26

h0/160 3.4006E-06 2.86 9.9905E-08 3.18 2.3472E-07 3.13
h0/20 1.1511E-04 9.3958E-06 1.5834E-05

Hierarchical h0/40 8.4977E-06 3.76 5.3624E-07 4.13 9.5490E-07 4.05
DG-P3 -MLP h0/80 8.9834E-07 3.24 2.5788E-08 4.38 5.0607E-08 4.24

h0/160 6.1718E-08 3.85 1.7351E-09 3.88 3.9565E-09 3.67

Table 4: Grid refinement test for 2-D Navier-Stokes equation on regular grids at t = 1.0.
Grid L∞ Order L1 Order L2 Order

20x20x2 2.0214E-02 8.7478E-03 5.3239E-03
MLP-u1 on DG-P1 40x40x2 4.3511E-03 2.22 2.1461E-03 2.03 1.3032E-03 2.03

(K=100) 80x80x2 1.0267E-03 2.08 5.1602E-04 2.06 3.1455E-04 2.05
160x160x2 2.5946E-04 1.98 1.2551E-04 2.04 7.5192E-05 2.06
20x20x2 1.4214E-03 4.0574E-04 2.6083E-04

Hierarchical 40x40x2 1.4308E-04 3.31 4.7896E-05 3.08 3.0922E-05 3.08
DG-P2 -MLP 80x80x2 1.6937E-05 3.08 6.0937E-06 2.97 3.9690E-06 2.96

160x160x2 2.0834E-06 3.02 7.8993E-07 2.95 5.1492E-07 2.95
20x20x2 1.1441E-04 2.3764E-05 1.5897E-05

Hierarchical 40x40x2 6.8429E-06 4.06 1.3973E-06 4.09 9.6450E-07 4.04
DG-P3 -MLP 80x80x2 3.7134E-07 4.20 8.7247E-08 4.00 6.0400E-08 4.00

160x160x2 1.7941E-08 4.37 5.5385E-09 3.98 3.7348E-09 4.02
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Table 5: Grid refinement test for 2-D Navier-Stokes equation on irregular grids at t = 1.0.
Grid L∞ Order L1 Order L2 Order
h0/20 2.2164E-02 4.8407E-03 3.1926E-03

MLP-u1 on DG-P1 h0/40 5.8004E-03 1.93 1.1045E-03 2.13 7.5107E-04 2.09
(K=100) h0/80 1.5192E-03 1.93 2.6095E-04 2.08 1.7732E-04 2.08

h0/160 3.4994E-04 2.13 6.3256E-05 2.05 4.2350E-05 2.07
h0/20 7.1105E-04 1.3885E-04 8.9558E-05

Hierarchical h0/40 8.8627E-05 3.00 1.5491E-05 3.16 1.0158E-05 3.14
DG-P2 -MLP h0/80 1.2532E-05 2.82 1.8569E-06 3.05 1.2175E-06 3.06

h0/160 1.3543E-06 3.22 2.3019E-07 3.02 1.4850E-07 3.05
h0/20 2.5290E-05 4.9685E-06 3.2735E-06

Hierarchical h0/40 1.6229E-06 3.96 2.5839E-07 4.26 1.7357E-07 4.24
DG-P3 -MLP h0/80 1.0403E-07 3.96 1.5684E-08 4.03 1.0753E-08 4.01

h0/160 8.4119E-09 3.64 1.0144E-09 3.96 7.1091E-10 3.93

Table 6: Grid refinement test for 3-D Navier-Stokes equation on irregular grids at t = 0.25.
Grid L∞ Order L1 Order L2 Order

16x16x16x6 6.1594E-02 1.0713E-02 1.4549E-02
MLP-u1 on DG-P1 24x24x24x6 2.2244E-02 2.51 4.6208E-03 2.07 6.2874E-03 2.07

(K=100) 32x32x32x6 1.2685E-02 1.95 2.4957E-03 2.14 3.4134E-03 2.12
48x48x48x6 5.9274E-03 1.88 1.0459E-03 2.15 1.4468E-03 2.12
16x16x16x6 4.0047E-03 8.4467E-04 1.1538E-03

Hierarchical 24x24x24x6 1.4091E-03 2.58 2.5119E-04 2.99 3.5286E-04 2.92
DG-P2 -MLP 32x32x32x6 5.9899E-04 2.97 1.0301E-04 3.10 1.5035E-04 2.97

48x48x48x6 1.7286E-04 3.07 2.9471E-05 3.09 4.3871E-05 3.04
16x16x16x6 9.9175E-04 7.6044E-05 1.1026E-04

Hierarchical 24x24x24x6 1.5784E-04 4.53 1.4438E-05 4.10 2.1022E-05 4.09
DG-P3 -MLP 32x32x32x6 4.9437E-05 4.04 4.3510E-06 4.17 6.4505E-06 4.11

48x48x48x6 1.0382E-05 3.85 8.0788E-07 4.15 1.2166E-06 4.11

The grid-convergence behavior of the hierarchical MLP schemes on 3-D tetrahedral grids is examined by
solving a 3-D Navier-Stokes problem. The spatial parameter k is (π, π, π) and other conditions are the same
as before. Computational domain is [0, 2]× [0, 2]× [0, 2] with periodic boundary condition, and tetrahedral
elements are created by dividing a cube along diagonals.

Table 6 shows the quantitative comparison of solution errors at t = 0.25. Similar to the grid-convergence
behavior observed on 2-D triangular grids, the proposed methods successfully maintains the desired accuracy,
especially around local extrema.

4.2 A Mach 3 wind tunnel with a step
As one of standard test cases to examine high-resolution schemes. we consider a uniform Mach 3 flow in wind
tunnel with a step, whose size is 3 length unit long and 1 length unit high. The step is 0.2 length unit high,
located at 0.6 length unit from the left end of the tunnel. Reflective boundary condition is applied along
the wall, and in-flow free stream and out-flow extrapolation conditions are applied at the entrance and exit.
Around the expansion corner, computational meshes are slightly clustered without any special treatment, as
in Ref. [4]. Local Lax-Friedrich scheme is applied as a numerical flux.

Figure 6 shows the density contours computed on triangular grids of h = 1/160 at t = 4.0. Similar to
the previous test case, one can check the resolving capability of the DG-MLP methods for the shear layer
instability from the shock triple point as the order of DG reconstruction increases from P1 to P3.
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Figure 6: Comparison of density contours for the Mach 3 wind tunnel with a step.

4.3 Interaction of shock wave with spherical density bubble
The unsteady flow physics of shock-bubble interaction has been extensively studied since it can provide
a numerical benchmark of vorticity and turbulence generation in compressible flows [25]. The baroclinic
torque, caused by the density gradient normal to spherical bubble surface and the pressure gradient by a
moving shock, develops a 3-D vortex structure behind the moving shock. Exploiting the flow symmetry,
computational domain is a quadrant of shock tube with the interval of [0, 13.35] in the x-direction and
[0, 4.45] × [0, 4.45] in the y-z plane. Initially, the quarter of spherical bubble with r = 2.5 is placed at
x = 3.5, and the moving shock with Ms = 3.0 is located at x = 0.5. Grid system consists of 8.90 million
tetrahedral elements. With Tachyon 2 supercomputer at KISTI, MPI parallel computation was performed
with 1024 CPUs to reach at t = 3.5, and RoeM flux is used.

Figures 7 and 8 shows the three-dimensional density contours by DG-P3 with the MLP limiting. Similar
to the two-dimensional case, the primary and secondary vortex structure, the tail vortical structure after the
primary vortex, and the 3-D monotonic shock are well captured.

4.4 Two-dimensional Richtmyer-Meshkov Instability
Richtmyer-Meshkov instability accompanies complex flow structure by interacting shock wave and interface
of different gas density. In particular, misalignment of density and pressure gradients generates a baroclinic
vortex structure. This flow structure can be analyzed for inviscid and viscous cases, and high Reyonolds
number case provide chaotic flow structure by flow instability [26]. The present computation solves com-
pressible viscous flow with Re = 105. Computational domain is [−2, 6]× [0, 1], and the initial condition of a
moving shock with Ms = 2 and density difference is imposed as follows.

(ρ1, u1, v1, p1) = (2.667, 1.479, 0.0, 4.5) if x < −0.2,

(ρ2, u2, v2, p2) = (1.0, 0.0, 0, 1.0) if x ≥ −0.2, x < y,

(ρ3, u3, v3, p3) = (3.0, 0.0, 0, 1.0) if x ≥ −0.2, x ≥ y. (24)

Grid system consists of triangular elements whose characteristic lengths are h = 1/100, 1/200. Figures
9 and 10 compare density contours at t = 3.3. Similar to the previous test cases, the hierarchical MLP
algorithm provides a sufficient resolution to capture complex vortex structure while the result obtained by
the second-order FVM-MLP is relatively smeared out by numerical dissipation.
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Figure 7: Density contours of interaction of 3-D density bubble with shock wave at t = 3.5.

Figure 8: Close-up view around vortex torus at t = 3.5.
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(a) FVM (b) DG-P1

(c) DG-P2 (d) DG-P3

Figure 9: Comparison of density contours for Richtmyer-Meshkov instability on coarse grids.

(a) FVM (b) DG-P1

(c) DG-P2 (d) DG-P3

Figure 10: Comparison of density contours for Richtmyer-Meshkov instability on fine grids.
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4.5 Oblique Shock-Mixing Layer Interaction
4.5.1 Two-dimensional Case

This test is to assess the performance of capturing small scale vortical structure interacting with shock
discontinuity [27]. A spatially developing mixing layer produces a series of vortices, and the oblique shock
originating from the upper-left corner impinges on the mixing layer. This oblique shock is deflected by
the shear layer and then reflects again from the bottom slip wall, which leads to the interaction between
downstream vortices and the reflected shock.

For the initial condition, hyperbolic tangent velocity profile and convective Mach number are imposed.

u = 2.5 + 0.5 tanh(2y), (25)

Mc =
u1 − u2

c1 − c2
= 0.6. (26)

The upper boundary condition is specified to satisfy the oblique shock with β = 12◦, and the lower boundary
condition is slip wall. Fluctuation adding to the mean in-flow is given by

v′ =

2∑
k=1

ak cos(2πkt/T + φk) exp(−y2/b), (27)

with the period T = λ/uc, wavelength λ = 30 and convective velocity uc = 2.68. Other parameters are
a1 = a2 = 0.05, φ1 = 0, φ = π/2 and b = 10. Reynolds number and Prandtl number are 500 and 0.72,
respectively. Computational domain is [0, 200] × [−20, 20]. While many filter methods solve this problem
with stretched grids in the y-direction for better resolution, the present computation applies the uniformly
distributed triangular grids of h = 0.75, 0.5.

Figures 11 and 12 show the comparison of pressure contours by the FVM-MLP and DG-MLP methods at
t = 120. While the vortex structure by the second-order FVM-MLP on coarse grid are almost smeared out,
the higher-order DG-MLP reconstructions resolve the vortical structure more clearly. The result of FVM on
fine grid is almost similar to the result of the DG-P1 -MLP on coarse grid. The DG-P3 -MLP on fine grids
provides detailed flow structure, especially downstream shock-vortex interaction.

4.5.2 Three-dimensional Case

The previous test case can be extended into three-dimensional space. Computational domain is the extrusion
of the two-dimensional surface along the z-direction, and symmetric boundary condition is imposed at both
ends. In order to examine three-dimensional effect, the inflow condition is modified as follows.

v′ =

2∑
k=1

ak cos(2πkt/T + z/Lz + φk) exp(−y2/b), (28)

where Lz, the extrusion length, is 40. Grid system consists of 7.7 million tetrahedral elements. With Tachyon
2 supercomputer at KISTI, MPI parallel computation was performed with 1024 CPUs to reach at t = 120.

Figure 13 shows the density contour and iso-surfaces at t = 120. Due to the three-dimensional pertur-
bation (Eq. (28)), phase difference is induced along the z-direction. Figure 14 shows the slice of the density
contour at various x positions. Before the oblique shock strikes the mixing layer (at x = 85), spanwise
vortical structure is regularly developed along the z-direction. At x = 150, spanwise vortical structure is no-
ticeably deformed after the oblique shock-mixing layer interaction. After the reflected shock hits the mixing
layer again, compressive waves are developed and the spanwise shock-vortex interaction is further developed.
Figure 15 shows the density and pressure contours at z = −10, 10 planes. The phase difference along the
z-direction is clearly observed.
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(a) Density, FVM-MLP (b) Pressure, FVM-MLP

(c) Density, DG-P1-MLP (d) Pressure, DG-P1-MLP

(e) Density, DG-P2-MLP (f) Pressure, DG-P2-MLP

(g) Density, DG-P3-MLP (h) Pressure, DG-P3-MLP

Figure 11: Comparison of pressure contours of shock-mixing layer interaction on coarse grids

(a) Density, FVM-MLP (b) Pressure, FVM-MLP

(c) Density, DG-P1-MLP (d) Pressure, DG-P1-MLP

(e) Density, DG-P2-MLP (f) Pressure, DG-P2-MLP

(g) Density, DG-P3-MLP (h) Pressure, DG-P3-MLP

Figure 12: Comparison of pressure contours of shock-mixing layer interaction on fine grids
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Figure 13: Density contours of three dimensional oblique shock-mixing layer interaction at t = 120.

(a) x = 85 (b) x = 150 (c) x = 190

Figure 14: Spanwise density distributions at x=85, 150, 190 positions

(a) z = −10, Density (b) z = 10, Density

(c) z = −10, Pressure (d) z = 10, Pressure

Figure 15: Streamwise density and pressure distributions at z=-10, 10 positions
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5 Conclusion
The hierarchical MLP limiting strategy for arbitrary higher-order DG reconstruction is able to capture com-
plex multi-dimensional flow structures without yielding unwanted oscillations for compressible flows. Guided
by the MLP condition and the maximum principle, the multi-dimensional limiting process is successfully ex-
tended into the DG framework. Combined the augmented MLP condition with a simple extrema detector,
an efficient and accurate troubled-cell marker is proposed up to DG-P2 reconstruction. Furthermore, by
examining the behavior of local extrema, the uncertainty of determining a parameter for slope limiting is
eliminated, which leads to the formulation of the hierarchical MLP method for Pn (n ≥ 2). By employing
the BR2 scheme to handle the diffusion term, the proposed approach can accurately resolve compressible
viscous flows. Extensive numerical experiments for inviscid and viscous flows verifies that the proposed
limiting provides detailed multi-dimensional flow structures without yielding oscillations in both continuous
and discontinuous region.
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