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Abstract: A reconstructed discontinuous Galerkin (RDG) method based on a 

Hierarchical WENO reconstruction, termed HWENO(P1P2) in this work, designed 

not only to enhance the accuracy of discontinuous Galerkin method but also to 

ensure the nonlinear stability of the RDG method, is presented for solving the 

compressible Euler equations on tetrahedral grids. In this HWENO(P1P2) method, a 

quadratic polynomial solution (P2) is first reconstructed using a Hermite WENO 

(HWENO) reconstruction from the underlying linear polynomial (P1) discontinuous 

Galerkin solution to ensure the linear stability of the RDG method and to improve 

the efficiency of the underlying DG method. By taking advantage of handily 

available and yet invaluable information, namely the derivatives in the DG 

formulation, the stencils used in the reconstruction involve only von Neumann 

neighborhood (adjacent face-neighboring cells) and thus are compact and 

consistent with the underlying DG method. The gradients (first moments) of the 

quadratic polynomial solution are then reconstructed using a WENO reconstruction 

in order to eliminate spurious oscillations in the vicinity of strong discontinuities, 

thus ensuring the nonlinear stability of the RDG method. The developed 

HWENO(P1P2) method is used to compute a variety of flow problems on 

tetrahedral meshes to demonstrate its accuracy, robustness, and non-oscillatory 

property. The numerical experiments indicate that the HWENO(P1P2) method is 

able to capture shock waves within one cell without any spurious oscillations, and 

achieve the designed third-order of accuracy: one order accuracy higher than the 

underlying DG method. 
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1     Introduction 
 
The discontinuous Galerkin methods

1-28
(DGM) have recently become popular for the solution of 

systems of conservation laws. Originally introduced for the solution of neutron transport equations
1
, 

nowadays they are widely used in computational fluid dynamics, computational acoustics, and 

computational magneto-hydrodynamics. The discontinuous Galerkin methods combine two 

advantageous features commonly associated with finite element and finite volume methods. As in 

classical finite element methods, accuracy is obtained by means of high-order polynomial 

approximation within an element rather than by wide stencils as in the case of finite volume methods. 

The physics of wave propagation is, however, accounted for by solving the Riemann problems that 
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arise from the discontinuous representation of the solution at element interfaces. In this respect, the 

DG methods are similar to finite volume methods. The discontinuous Galerkin methods have many 

attractive features:1) They have several useful mathematical properties with respect to conservation, 

stability, and convergence; 2) The methods can be easily extended to higher-order (>2
nd

) 

approximation; 3) The  methods are well suited for complex geometries since they can be applied on 

unstructured grids. In addition, the methods can also handle non-conforming elements, where the 

grids are allowed to have hanging nodes; 4) The methods are highly parallelizable, as they are 

compact and each element is independent. Since the elements are discontinuous, and the inter-element 

communications are minimal, domain decomposition can be efficiently employed. The compactness 

also allows for structured and simplified coding for the methods; 5) They can easily handle adaptive 

strategies, since refining or coarsening a grid can be achieved without considering the continuity 

restriction commonly associated with the conforming elements. The methods allow easy 

implementation of hp-refinement, for example, the order of accuracy, or shape, can vary from element 

to element; 6) They have the ability to compute low Mach number flow problems without recourse to 

the time-preconditioning techniques normally required for the finite volume methods. In contrast to 

the enormous advances in the theoretical and numerical analysis of the DGM, the development of a 

viable, attractive, competitive, and ultimately superior DG method over the more mature and well-

established second order finite volume methods is relatively an untouched area. This is mainly due to 

the fact that the DGM have a number of weaknesses that have yet to be addressed, before they can be 

robustly used for flow problems of practical interest in a complex configuration environment. In 

particular, how to effectively control spurious oscillations in the presence of strong discontinuities, 

and how to reduce the computing costs for the DGM remain the two most challenging and unresolved 

issues in the DGM. Indeed, compared to the finite element methods and finite volume methods, the 

DGM require solutions of systems of equations with more unknowns for the same grids. 

Consequently, these methods have been recognized as expensive in terms of both computational costs 

and storage requirements. 

In order to reduce high costs associated with the DGM, Dumbser et al
18-20

 have introduced a new 

family of reconstructed DGM, termed PnPm schemes and referred to as RDG(PnPm) in this paper, 

where Pn indicates that a piecewise polynomial of degree of n is used to represent a DG solution, and 

Pm represents a reconstructed polynomial solution of degree of m (m≥n) that is used to compute the 

fluxes. The RDG(PnPm) schemes are designed to enhance the accuracy of the discontinuous Galerkin 

method by increasing the order of the underlying polynomial solution. The beauty of RDG(PnPm) 

schemes is that they provide a unified formulation for both finite volume and DGM, and contain both 

classical finite volume and standard DG methods as two special cases of RDG(PnPm) schemes, and 

thus allow for a direct efficiency comparison. When n=0, i.e. a piecewise constant polynomial is used 

to represent a numerical solution, RDG(P0Pm) is nothing but classical high order finite volume 

schemes, where a polynomial solution of degree m (m ≥1) is reconstructed from a piecewise constant 

solution. When m=n, the reconstruction reduces to the identity operator, and RDG(PnPn) scheme 

yields a standard DG method.  

Obviously, the construction of an accurate and efficient reconstruction operator is crucial to the 

success of the RDG(PnPm) schemes. In Dumbser's work, a higher order polynomial solution is 

reconstructed using a L2 projection, requiring it indistinguishable from the underlying DG solutions in 

the contributing cells in the weak sense. The resultant over-determined system is then solved using a 

least-squares method that guarantees exact conservation, not only of the cell averages but also of all 

higher order moments in the reconstructed cell itself, such as slopes and curvatures. However, this 

conservative least-squares reconstruction approach is computationally expensive, as the L2 projection, 

i.e., the operation of integration, is required to obtain the resulting over-determined system. 

Furthermore, the reconstruction might be problematic for a boundary cell, where the number of the 

face-neighboring cells might be not enough to provide the necessary information to recover a 
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polynomial solution of a desired order.  Fortunately, the projection-based reconstruction is not the 

only way to obtain a polynomial solution of higher order from the underlying discontinuous Galerkin 

solutions. In a reconstructed DG method using a Taylor basis
26-28

 developed by Luo et al. for the 

solution of the compressible Euler and Navier-Stokes equations on arbitrary grids,  a higher order 

polynomial solution is reconstructed by use of a strong interpolation, requiring point values and 

derivatives to be  interpolated on the face-neighboring cells. The resulting over-determined linear 

system of equations is then solved in the least-squares sense. This reconstruction scheme only 

involves von Neumann neighborhood, and thus is compact, simple, robust, and flexible. Like the 

projection-based reconstruction, the strong reconstruction scheme guarantees exact conservation, not 

only of the cell averages but also of their slopes due to a judicious choice of the Taylor basis. More 

recently, Zhang et al.
29,30

 presented a class of hybrid DG/FV methods for the conservation laws, where 

the second derivatives in a cell are obtained  from the first derivatives in  the cell itself and its 

neighboring cells using a Green-Gauss reconstruction widely used in the finite volume methods. This 

provides a fast, simple, and robust way to obtain higher-order polynomial solutions. Lately, Luo et 

al.
31,32

 have conducted a comparative study for these three reconstructed discontinuous Galerkin 

methods RDG(P1P2) by solving 2D Euler equations on arbitrary grids. It is found that all three 

reconstructed discontinuous Galerkin methods can deliver the desired third order of accuracy and 

significantly improve the accuracy of the underlying second-order DG method, although the least-

squares reconstruction method provides the best performance in terms of both accuracy and 

robustness.  

Unfortunately, the attempt to extend our RDG method to solve 3D Euler equations on tetrahedral 

grids was not successful. Like the second order cell-centered finite volume methods RDG(P0P1), the 

resultant RDG(P1P2) method is unstable. Although RDG(P0P1) methods are in general stable in 2D 

and on Cartesian or structured grids in 3D, they suffer from the so-called linear instability on 

unstructured tetrahedral grids, when the reconstruction stencils only involve von Neumann 

neighborhood, i.e., adjacent face-neighboring cells
33

. The RDG(P1P2) method exhibits the same linear 

instability, which can be overcome by using  extended stencils. However, this is achieved at the 

expense of sacrificing the compactness of the underlying DG methods. Furthermore, these linear 

reconstruction-based DG methods will suffer from non-physical oscillations in the vicinity of strong 

discontinuities for the compressible Euler equations. Alternatively, ENO, WENO, and HWENO can 

be used to reconstruct a higher-order polynomial solution, thereby not only enhancing the order of 

accuracy of the underlying DG method but also achieving both linear and non-linear stability. This 

type of hybrid HWENO+DG schemes has been developed on 1D and 2D structured grids by Balsara 

et al.
34

, where the HWENO reconstruction is relatively simple and straightforward.  

The objective of the effort discussed in this paper is to develop a reconstructed discontinuous 

Galerkin method based on a Hierarchical WENO reconstruction, HWENO(P1P2),  using a Taylor 

basis
13

 for the solution of the compressible Euler equations on unstructured tetrahedral grids. The 

HWENO(P1P2) method is designed not only to reduce the high computing costs of the DGM, but 

also to avoid spurious oscillations in the vicinity of strong discontinuities, thus effectively addressing 

the two shortcomings of the DGM. In this HWENO(P1P2) method, a quadratic solution is first 

reconstructed to enhance the accuracy of the underlying DG method in two steps: (1) all second 

derivatives on each cell are first reconstructed using the solution variables and their first derivatives 

from adjacent face-neighboring cells via a strong interpolation; (2) the final second derivatives on 

each cell are then obtained using a WENO strategy based on the reconstructed second derivatives on 

the cell itself and its adjacent face-neighboring cells. This reconstruction scheme, by taking advantage 

of handily available and yet valuable information namely the gradients in the context of the DG 

methods, only involves von Neumann neighborhood and thus is compact, simple, robust, and flexible. 

As the underlying DG method is second-order, and the basis functions are at most linear functions, 

fewer quadrature points are then required for both domain and face integrals, and the number of 
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unknowns (the number of degrees of freedom) remains the same as for the DG(P1). Consequently, this 

RDG method is more efficient than its third order DG(P2) counterpart. The gradients of the quadratic 

polynomial solutions are then modified using a WENO reconstruction in order to eliminate non-

physical oscillations in the vicinity of strong discontinuities, thus ensuring the non-linear stability of 

the RDG method. The developed HWENO(P1P2) method is used to compute a variety of flow 

problems on tetrahedral grids to demonstrate its accuracy, robustness, and non-oscillatory 

performance. The presented numerical results indicate that this HWENO(P1P2) method is able to 

capture shock waves within once cell without any spurious oscillations, and achieve the designed 

third-order of accuracy: one order accuracy higher than the underlying DG(P1) method, and thus 

significantly increase its accuracy without significant increase in computing costs and memory 

requirements. The remainder of this paper is organized as follows. The governing equations are listed 

in Section 2. The developed reconstructed discontinuous Galerkin method is presented in Section 3. 

Extensive numerical experiments are reported in Section 4. Concluding remarks are given in Section 

5. 

 

2     Governing Equations 
 
The Euler equations governing unsteady compressible inviscid flows can be expressed as  

 

                                                                                                                                                                                   

(2.1) 

 

 

where the summation convention has been used. The conservative variable vector U, and inviscid flux 

vector F are defined by   

                                                                                                                        

 

                                                              (2.2)                                                                                                                                                                                                                                                                                                      

 

 

 

Here ρ, p, and e denote the density, pressure, and specific total energy of the fluid, respectively, and ui  

is the velocity of the flow in the coordinate direction ix . The pressure can be computed from the 

equation of state 

 

                                                                                                                                                                                   

(2.3) 

 

 which is valid for perfect gas, where γ is the ratio of the specific heats.  

 

3     Reconstructed Discontinuous Galerkin Method 

 

3.1     Discontinuous Galerkin formulation 

 
The governing equation (2.1) is discretized using a discontinuous Galerkin finite element formulation. 

To formulate the discontinuous Galerkin method, we first introduce the following weak formulation, 

which is obtained by multiplying the above conservation law by a test function W, integrating over 

the domain Ω, and then performing an integration by parts,  
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where Γ(=∂Ω) denotes the boundary of Ω, and nj the unit outward normal vector to the boundary. We 

assume that the domain Ω is subdivided into a collection of non-overlapping tetrahedral elements Ωe. 

We introduce the following broken Sobolev space Vh
p
  

 

                                                                                                                                                                            

(3.2) 

 

which consists of discontinuous vector-values polynomial functions of degree p, and where m is the 

dimension of the unknown vector and  

 

                                                                                                                                                                                   

(3.3) 

 

where α denotes a multi-index and d is the dimension of space. Then, we can obtain the following 

semi-discrete form by applying weak formulation on each element Ωe 

                        

                               Find                        such as 

                                                                                                                                                                                  

(3.4) 

 

 

where Uh and Wh represent the finite element approximations to the analytical solution U and the test 

function W respectively, and they are approximated by piecewise-polynomial functions of degrees p, 

which are discontinuous between the cell interfaces. Assume that B is the basis of polynomial 

function of degrees p, this is then equivalent to the following system of N equations,  

 

 

                                                                                                                                                                                 

(3.5) 

 

 

where N is the dimension of the polynomial space. Since the numerical solution Uh is discontinuous 

between element interfaces, the interface fluxes are not uniquely defined. The flux function Fk(Uh)nk 

appearing in the second terms of Eq. (3.5) is replaced by a numerical Riemann flux function 

Hk(U
L

h,U
R

h,nk) where Uh
L
and Uh

R
are the conservative state vector at the left and right side of the 

element boundary. This scheme is called discontinuous Galerkin method of degree p, or in short 

notation DG(P) method. Note that discontinuous Galerkin formulations are very similar to finite 

volume schemes, especially in their use of numerical fluxes. Indeed, the classical first-order cell-

centered finite volume scheme exactly corresponds to the DG(P0) method, i.e., to the discontinuous 

Galerkin method using a piecewise-constant polynomial. Consequently, the DG(Pk) methods with k>0 

can be regarded as a natural generalization of finite volume methods to higher order methods. By 

simply increasing the degree P of the polynomials, the DG methods of corresponding higher order are 

obtained. The domain and boundary integrals in Eq. (3.5) are calculated using Gauss quadrature 

formulas. The number of quadrature points used is chosen to integrate exactly polynomials of order of 

2p and 2p+1 for volume and surface inner products in the reference element. In the traditional DGM, 

termed nodal discontinuous Galerkin methods, numerical polynomial solutions Uh in each element are 

expressed using either standard Lagrange finite element or hierarchical node-based basis as following 

 

                                                                                                                                                                                  

(3.6) 
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 In the present work, the numerical polynomial solutions are represented using a Taylor series 

expansion at the center of the cell. For example, if we do a Taylor series expansion at the center of the 

cell, a quadratic polynomial solution can be expressed as follows  
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which can be further expressed as cell-averaged values and their derivatives at the center of the cell: 
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where Ũ is the mean value of U in this cell.  The unknowns to be solved for in this formulation are the 

cell-averaged variables and their derivatives at the center of the cells. The dimension of the 

polynomial space is 10 and the basis functions are  
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The discontinuous Galerkin formulation then leads to the following 10 equations  
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In the implementation of this DG method, the basis functions are actually normalized in order to 

improve the conditioning of the system matrix (3.5) as follows: 
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where ∆x=0.5(xmax-xmin), ∆y=0.5(ymax-ymin), and ∆z=0.5(zmax-zmin), and xmax, xmin, ymax, ymin zmax, and 

zmin are the maximum and minimum coordinates in the cell Ωe in x-, y-, and z-directions, respectively. 

A quadratic polynomial solution can then be rewritten as                                               
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This formulation belongs to the so-called modal discontinuous Galerkin method and has a number of 
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available in this formulation. This makes the implementation of both in-cell and inter-cell 

reconstruction schemes straightforward and simple
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. Secondly, the Taylor basis is hierarchic. 

This greatly facilitates implementation of p-multigrid methods
16,17

 and p-refinement. Thirdly, the 

same basis functions are used for any shapes of elements: tetrahedron, pyramid, prism, and 

hexahedron. This makes the implementation of DGM on arbitrary meshes straightforward.  
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solution. When m=n, the reconstruction reduces to the identity operator, and RDG(PnPm) scheme 

yields a standard DG method. Clearly, an accurate and efficient reconstruction is the key ingredient in 

extending the underlying DG method to higher order accuracy. Our discussion in this work is mainly 

focused on a third order RDG(P1P2) method, as the benefits of higher-order (>3rd) methods diminish 

dramatically for engineering applications. Nevertheless, its extension to higher order DG methods is 

straightforward. The RDG(P1P2) method is based on a hierarchical Hermite WENO reconstruction 

and designed not only to reduce the high computing costs of the DGM, but also to avoid spurious 

oscillations in the vicinity of strong discontinuities, thus ensuring the nonlinear stability of the RDG 

method. Similar to moment limiters, the hierarchical reconstruction methods
35

 reconstruct the 

derivatives in a hierarchical manner. In the case of the RDG(P1P2) method, the second derivatives 

(curvatures) are first reconstructed and the first derivatives (gradients) are then reconstructed, which 

are describes in the next two sub-sections.  

 

3.2.1     WENO Reconstruction at P2: WENO(P1P2) 

 

The reconstruction of the curvatures consists of two steps: a quadratic polynomial solution (P2) is first 

reconstructed using a least-squares method from the underlying linear polynomial (P1) discontinuous 

Galerkin solution, and the final quadratic polynomial solution is then obtained using a WENO 

reconstruction, which is necessary to ensure the linear stability of the RDG method
36

. The resulting 

RDG method is referred to as WENO(P1P2) in this paper, where the quadratic polynomial solution is 

obtained from the underlying linear DG solution via a WENO reconstruction.  

 
3.2.1.1 Least-Squares Reconstruction 

 

In the case of DG(P1) method, a linear polynomial solution Ui in any cell i is expressed as   

 

                                                                                                                                                                                 

(3.15) 

 

A quadratic polynomial solution Ui
R
  can be reconstructed using the underlying linear polynomial DG 

solution in the neighboring cells as follows: 

 

   

 

(3.16) 

 

In order to maintain the compactness of the DG methods, the reconstruction is required to involve 

only von Neumann neighborhood, i.e., the adjacent cells that share a face with  the cell i under 

consideration. There are 10 degrees of freedom, and therefore 10 unknowns must be determined. The 

first four unknowns can be trivially obtained, by requiring the consistency of the RDG with the 

underlying DG: 1) The reconstruction scheme must be conservative, and 2) The values of the 

reconstructed first derivatives are equal to the ones of the first derivatives of the underlying DG 

solution at the centroid i. Due to the judicious choice of Taylor basis in our DG formulation, these 

four degrees of freedom simply coincide with the ones from the underlying DG solution, i.e.,  

 

                                                                                                                                                                                

(3.17) 

 

As a result, only six second derivatives need to be determined. This can be accomplished by requiring 

that the point-wise values and first derivatives of the reconstructed solution are equal to these of the 

underlying DG solution at the cell centers for all the adjacent face neighboring cells. Considering an 

adjacent neighboring cell j, one obtains  
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(3.18) 

 

 

 

 

where the basis functions B are evaluated at the center of cell j, i.e., B=B(xj,yj,zj). This can be written 

in a matrix form as follows: 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                 

(3.19) 

 

where R is used to represent the right-hand-side for simplicity. Similar equations can be written for all 

cells connected to the cell i with a common face, which leads to a non-square matrix. The number of 

face-neighboring cells for a tetrahedral is four. Consequently, the size of the resulting non-square 

matrix is 16x6. In the present work, this over-determined linear system of 16 equations for 6 

unknowns is solved in the least-squares sense using both normal equation approach and the QR 

decomposition to obtain the second derivatives of the reconstructed quadratic polynomial solution. 

One can easily verify that this least-squares reconstruction satisfies the so-called  2-exactness, i.e., it 

can reconstruct a quadratic polynomial function exactly. 

 

3.2.1.2    WENO Reconstruction 

 

This least-squares reconstructed discontinuous Galerkin method: RDG(P1P2) has been successfully 

used to solve the 2D compressible Euler equations on arbitrary grids
26-28,30-31

 and is able to achieve the 

designed third order of accuracy and significantly improve the accuracy of the underlying second-

order DG method. However, when extended to solve the 3D compressible Euler equations on 

tetrahedral grids, this RDG method suffers from the so-called linear instability, that is also observed 

in the second-order cell-centered finite volume methods, i.e., RDG(P0P1)
33

. This linear instability is 

attributed to the fact that the reconstruction stencils only involve von Neumann neighborhood, i.e., 

adjacent face-neighboring cells
33

. The linear stability can be achieved using extended stencils, which 

will unfortunately sacrifice the compactness of the underlying DG methods.  Furthermore, such a 

linear reconstruction-based DG method cannot maintain the non-linear instability, leading to non-

physical oscillations in the vicinity of strong discontinuities. Alternatively, ENO/WENO can be used 

to reconstruct a higher-order polynomial solution, which can not only enhance the order of accuracy 

of the underlying DG method but also achieve both linear and non-linear stability. In our work
36

, the 

quadratic polynomial solution on cell i is obtained using a WENO reconstruction as a convex 

combination of the least-squares reconstructed second derivatives at the cell itself and its four face-

neighboring cells,  

 

 

(3.20) 
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where, the weights wk are computed as 

 

   

(3.21) 

 

 

where ε is a small positive number used to avoid division by zero, ok the oscillation indicator for the 

reconstructed second order polynomials, and γ an integer parameter to control how fast the non-linear 

weights decay for non-smooth stencils. The oscillation indicator is simply defined as   

 

(3.22) 

 

Note that the least-squares reconstructed polynomial at the cell itself serves as the central stencil and 

the least-squares reconstructed polynomials on its four face-neighboring cells act as biased stencils in 

this WENO reconstruction. This reconstructed quadratic polynomial solution is then used to compute 

the domain and boundary integrals of the underlying DG(P1) method in Eq. (3.5). As demonstrated in 

Reference 36, the resulting WENO(P1P2) method is able to achieve the designed third order of 

accuracy, maintain the linear stability, and significantly improve the accuracy of the underlying 

second-order DG method without significant increase in computing costs and storage requirements. 

 

3.2.2     WENO Reconstruction at P1: HWENO(P1P2) 

 

Although the WENO(P1P2) method does not introduce any new oscillatory behavior for the 

reconstructed curvature terms (second derivatives) due to the WENO reconstruction, it cannot remove 

inherent oscillations in the underlying DG(P1) solutions. Consequently, the WENO(P1P2) method still 

suffers from the non-linear instability for flows with strong discontinuities. In order to eliminate non-

physical oscillations in the vicinity of strong discontinuities and thus maintain the non-linear 

instability, the first derivatives need to be reconstructed using a WENO reconstruction. The resulting 

reconstructed discontinuous Galerkin method based on this Hierarchical WENO reconstruction is 

termed as HWENO(P1P2) in this paper,  where a hierarchical reconstruction (successively from high 

order to low order) strategy
35

 is adopted.   

The WENO reconstruction for the first derivatives is based on the  reconstructed quadratic polynomial 

solutions of the flow variables for each cell in the mesh. The stencils are only chosen in the von 

Neumann neighborhood in order to maintain the compactness of the underlying DG method. More 

precisely, for a cell i, the following four stencils (i,j1,j2,j3), (i,j1,j2,j4), (ie,j1,j3,j4), and (i,j2,j3,j4), 

where j1, j2, j3, and j4 designate the four adjacent face-neighboring cells of the cell i,  are chosen to 

construct a Lagrange polynomial such  that 

 

(3.23) 

 

and the following four stencils (i,j1), (i,j2), (i,j3), and (i,j4) are chosen to construct a Hermite 

polynomial such that 

 

 

 

 

(3.24) 
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These eight reconstructed polynomials serving as the biased stencils and the DG solution polynomial 

itself at cell i acting as the central stencil are used to obtain the first derivatives based on the WENO 

reconstruction as a convex combination of these nine derivatives,  

 

(3.25) 

 

where, the weights wk are computed as 

 

   

(3.26) 

 

 

where ε is a small positive number used to avoid division by zero, ok the oscillation indicator for the 

reconstructed linear polynomials, and γ an integer parameter to control how fast the non-linear 

weights decay for non-smooth stencils. The oscillation indicator is simply defined as   

 

  (3.27) 

 

The present choice of stencils is symmetric, compact, and most importantly consistent with the 

underlying DG methods, as van Neumann neighbors are only involved in the reconstruction. This 

means that no additional data structure is required and the compactness of the DG methods is intact. 

Note that this WENO reconstruction at P1 is the extension of a HWENO limiter developed for the 

DG(P1) by the authors in Reference 15. From the perspective of both computational cost and solution 

accuracy, the above WENO reconstruction on P1 should only be used in the regions where strong 

discontinuities exist. This can be accomplished using the so-called discontinuity detectors, which are 

helpful to distinguish regions where solutions are smooth and discontinuous. The beauty of this 

WENO reconstruction is that in case that the reconstruction is mistakenly applied in the smooth cells, 

the uniform high-order accuracy can still be maintained, unlike the slope limiters, which, when 

applied near smooth extrema, will have a profoundly adverse impact on solution in the smooth region, 

leading to the loss of the original high-order accuracy. This remarkable feature of the WENO 

reconstruction in turn alleviates the burden on the discontinuity detectors, as no discontinuity 

detectors can really either in theory or in practice make a distinction between a stagnation point and a 

shock wave, as flow gradients near the stagnation point are even larger than the ones near the shock 

wave in some cases. All numerical experiments presented in the next section are performed by 

applying the P1 reconstruction everywhere in an effort to ensure that the computational results are not 

affected by a shock detector, and to demonstrate the superior properties of the designed 

HWENO(P1P2) method. 

 

4     Numerical Examples 
 
The Hierarchical WENO reconstruction method has been implemented in a well-tested DG code

13-17  

to solve a variety of  the compressible flow problems on tetrahedral grids. A few examples are 

presented in this section to demonstrate that the developed HWENO(P1P2) method is able to maintain 

the non-linear stability and achieve the designed third order of accuracy. A fast p-multigrid 

method
16,17

 is used to obtain steady state solutions. The first two test cases are chosen to test the 

ability of the HWENO(P1P2) method to achieve the designed third-order rate of convergence for 

smooth flows. The next two test cases are used to assess the non-oscillatory property of the 

HWENO(P1P2) method for flows with strong discontinuities. The final test case is presented to 

illustrate the applicability of the HWENO(P1P2) method to solve problems of scientific and industrial 

interests for complex configurations. In the grid convergence study of the first two test cases, a 

sequence of the three successively refined tetrahedral grids is used, where the cell size is halved 

between consecutive meshes. The number of elements on a successively refined mesh is not exactly 

eight times the coarse mesh's elements due to the nature of unstructured grid generation. The length 

scale, characterizing the cell size of an unstructured grid, is defined as 3/1 nDOFs , where nDOFs is 
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the total number of degrees of freedom. Since the analytical solutions are unknown, the following L
2
-

norm of the entropy production is used as the error measurement 

 

where the entropy production ε defined as 

 

 

Note that the entropy production, where the entropy is defined as S=p/ρ
γ
, is a very good criterion to 

measure accuracy of the numerical solutions, since the flow under consideration is smooth and 

therefore isentropic.  

 

4.1     Subsonic Flow through a Channel with a Smooth Bump 
 
The problem under consideration is a subsonic internal flow inside a 3D channel with a smooth bump 

on the lower surface. The height, width, and length of the channel are 0.8, 0.8, and 3, respectively. 

The shape of the lower wall is defined by the function 0.0625exp(-25x
2
) from x=-1.5 to x=1.5. The 

inflow condition is prescribed at a Mach number of 0.5, and an angle of attack of 0
o
.  Figure 1 shows 

the three successively refined tetrahedral grids used in this the grid convergence study. The numbers 

of elements, points, and boundary points for the coarse, medium, and fine grids are (889,254,171), 

(6986,1555,691), and (55703,10822,2711), respectively. Numerical solutions to this problem are 

computed using the RDG(P1P1), WENO(P1P2), and HWENO(P1P2) methods on these three grids to 

obtain a quantitative measurement of the order of accuracy and discretization errors. Figure 2 

illustrates the computed velocity contours in the flow field obtained by the HWENO(P1P2) methods 

on these three grids. The errors and the convergence rates for the three methods are reported in Table 

1. It shows the mesh size, the L
2
-error of the error function, and the order of convergence. 

Considering that this is a 3D simulation of a 2D problem,  and unstructured tetrahedral grids are not 

symmetric by nature, thus causing error in the z-direction, the second order  RDG(P1P1) method can 

be viewed to offer the designed second order of  accuracy. Both WENO(P1P2) and HWENO(P1P2) 

methods are able to deliver the designed third order of convergence, adding one order of accuracy to 

the underlying DG(P1) method. As expected, the WENO reconstruction on P1 increases slightly the 

absolute error. However, it does not destroy the order of accuracy. This example demonstrates that the 

HWENO(P1P2) method can indeed achieve  a  third-order rate of convergence for this smooth internal 

flow. 

 

 

Figure 1: A sequence of three successively globally refined unstructured meshes used for computing a 

subsonic flow in a channel with a smooth bump. 
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Figure 2. Computed velocity contours in the flow field obtained by the HWENO(P1P2) on a sequence 

of three successively globally refined unstructured grids for a subsonic flow through a channel with a 

bump on the lower surface at M∞=0.5. 

Table 1: L
2
-error and order of convergence for the RDG(P1P1), WENO(P1P2), and HWENO(P1P2) 

methods 

 

4.2     Subsonic Flow past a Sphere 
 
A subsonic flow past a sphere at a Mach number of M∞=0.5 is considered in this test case. A sequence 

of the three successively refined tetrahedral grids used in this grid convergence study is shown in Fig. 

3. The numbers of elements, points, and boundary points for the coarse, medium, and fine grids are 

(535,167,124),  (2426,598,322), and  (16467,3425,1188), respectively. Like the previous test case, the 

computations are performed on these three grids using the RDG(P1P1), WENO(P1P2), and 

HWENO(P1P2) methods. Figure 4 illustrates the computed velocity contours in the flow field obtained 

by the HWENO(P1P2) method on these three grids. The errors and the orders of accuracy for the three 

methods are reported in Table 2. All three methods achieve higher than the expected rates of 

convergence, being 2.36, 3.55, and 3.50 respectively. One can observe again that the HWENO(P1P2) 

keeps the designed order of accuracy, although the WENO reconstruction on P1  increases slightly the 

absolute errors of the WENO(P1P2) method. This example demonstrates that the HWENO(P1P2) 

method is able to deliver  a  third-order rate of convergence for smooth external flows. 

 

Figure 3: A series of four successively globally refined tetrahedral meshes for computing a subsonic 

flow past a sphere at M∞=0.5. 

 RDG(P1P1) WENO(P1P2) HWENO(P1P2) 

Length 

Scale 

L
2
-error Order L2-error Order L

2
-error Order 

6.552E-2 2.438E-3  2.183E-3  2.220E-3  

3.295E-2 7.356E-4 1.744 2.794E-4 2.992 2.851E-4 2.987 

1.650E-2 1.807e-4 2.032 4.539E-05 2.626 4.565E-5 2.647 
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Figure 4. Computed velocity contours in the flow field obtained by the HWENO(P1P2) on a sequence 

of three successively globally refined unstructured grids for a subsonic flow past a sphere at M∞=0.5. 

Table 2: L
2
-error and order of convergence for the RDG(P1P1), WENO(P1P2), and HWENO(P1P2) 

methods  

 

4.3     Transonic Flow past an ONERA M6 Wing 
 
A transonic flow over the ONERA M6 wing at a Mach number of M∞=0.84 and an attack of angle of 

α=3.06° is considered in this example. This standard test case is chosen to demonstrate that the 

developed HWENO(P1P2) method can effectively suppress spurious oscillations in the vicinity of 

strong discontinuities and provide high accuracy solution in comparison with the second-order finite 

volume method, WENO(P0P1)
37

. The flow solutions are presented using the WENO(P0P1) method on 

a fine mesh and the HWENO(P1P2) method on a coarse mesh, respectively. The coarse mesh contains 

95,266 elements, 18,806 points, and 5,287 boundary points, and the fine one 593,169 elements, 

110,282 points, and 19,887 boundary points. Figure 5 shows the computed pressure contours on the 

upper wing surface obtained by these two solutions, respectively. The computed pressure coefficients 

obtained by these two solutions are compared with experimental data
38

 at six span-wise stations in 

Fig. 6. The computed pressure coefficients for the HWENO(P1P2) solution are plotted by a straight 

line connecting the two nodes of each triangle that intersect with the desired cut plane, thus truly 

reflecting the discontinuous nature of a DG solution. The results obtained by both RDG methods 

compare closely with the experimental data, except at the root stations, due to the lack of viscous 

effects. The leading edge suction peak is extremely well captured by both solutions in spite of the 

coarseness of the grids used in both solutions. However, one can observe that the third-order 

HWENO(P1P2) solution on the coarse mesh is more accurate than the second-order WENO(P0P1) 

solution on a globally refined grid,  which is especially evident by judging the entropy production on 

the surface of the wing at these six span-wise stations as shown in Fig. 7. Note that the entropy 

production corresponds directly to the error of the numerical methods, as it should be zero everywhere 

with exception of shock waves where it should increase. The shocks are virtually captured within one 

cell without any oscillations in the HWENO(P1P2) solution, clearly demonstrating the high accuracy 

and non-oscillatory property of our HWENO(P1P2) method.  

 RDG(P1P1) WENO(P1P2) HWENO(P1P2) 

Length scale L
2
-error Order L

2
-error Order L

2
-error Order 

7.760E-2 1.783E-2  1.052E-2  1.117E-2  

4.688E-2 5.010E-3 2.519 1.317E-3 4.124 1.503E-3 3.980 

2.476E-2 1.232E-3 2.198 1.978E-4 2.964 2.201E-4 3.009 
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Figure 5. Computed pressure contours on the unstructured surface mesh obtained by the WENO(P0P1) 

solution on the fine mesh (left, nelem = 593,169 , npoin = 110,282, nboun = 19,887), and the 

HWENO(P1P2) solution on the coarse mesh (right, nelem=95,266, npoin=18,806, nboun=5,287) for a 

transonic flow past a M6 wing at M∞=0.84,  α=3.06°. 
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                                (a) η=0.20                                                                       (b) η=0.44 

 

          

                                  (c) η=0.65                                                                        (d) η=0.80 

 

 

                                        (e) η=0.90                                                                        (f) η=0.95 

 

Figure 6. Comparison of the computed pressure coefficient distributions with experimental data at six 

span-wise locations for a transonic flow past the ONERA M6 wing at M∞=0.84, and α=3.06°. 
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                                  (a) η=0.20                                                                   (b) η=0.44 

 

   

                                  (c) η=0.65                                                                        (d) η=0.80 

 

   

                                    (e) η=0.90                                                                        (f) η=0.95 

 

Figure 7. Comparison of the computed entropy production distributions at six span-wise locations for 

a transonic flow past the ONERA M6 wing at M∞=0.84, and α=3.06°. 
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4.4     Transonic Flow past a Wing/Pylon/Finned-Store Configuration 
 
A transonic flow past  a wing/pylon/finned-store configuration reported in Ref. 39 is computed in this 

test case using HWENO(P1P2) method. The configuration consists of a clipped delta wing with a 45° 

sweep comprised from a constant NACA 64010 symmetric airfoil section. The wing has a root chord 

of 15 in., a semi-span of 13 in., and a taper ratio of 0.134. The pylon is located at the mid-span station 

and has a cross-section characterized by a flat plate closed at the leading and trailing edges by a 

symmetrical ogive shape. The width of the pylon is 0.294 in. The four fins on the store are defined by 

a constant NACA 0008 airfoil section with a leading-edge sweep of 45 deg and a truncated tip. The 

mesh used in the computation contains 319,134 elements, 61,075 grid points, and 14,375 boundary 

points. The flow solution is presented at a Mach number of 0.95 and an angle of attack of 0 deg. 

Figure 8 shows the computed pressure contours on the upper and lower wing surface, respectively. 

The computed pressure coefficient distributions are compared with experimental data at two span-

wise stations in Figure 9. The comparison with experimental data is excellent on both upper and lower 

surface up to 70% chord. As expected from the Euler solution, the computation predicts a shock 

location that is downstream of that measured by the experiment due to the lack of viscous effect. 

Again, our third-order HWENO(P1P2) method captures the shock waves very sharply within one cell 

without any visible under- and over-shoots.  

   

Figure 8. Computed pressure contours on the unstructured surface mesh obtained by the 

HWENO(P1P2) solution (nelem=319,134, npoin=61,075, nboun=14,373) for a transonic flow past a 

Wing/Pylon/Finned-Store Configuration at M∞=0.95,  and α=0°. 

   

                                (a) η=0.4077                                                                (b) η=0.51 

Figure 9. Comparison of the computed pressure coefficient distributions with experimental data at two 

span-wise locations for a transonic flow past a Wing/Pylon/Finned-Store Configuration at M∞=0.95, 

and α=0°. 
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4.5     Transonic Flows past a Boeing 747 Aircraft 
 
Finally, a transonic flow past a complete Boeing 747 aircraft is presented in this test case. The 747 

configuration includes the fuselage, wing, horizontal and vertical tails, under-wing pylons, and flow-

through engine nacelle. The mesh used in the computation contains 48,851 grid points, 253,577 

elements, and 11,802 boundary points for the half-span airplane. The solution is computed  at a free 

stream of Mach number of 0.85 and an angle of attack of 2°. The computed Mach number contours on 

the surface of the airplane, along with the surface mesh, are shown in Fig. 10.  One can see that the 

shock waves on the upper surface of the wing are captured well within one cell, confirming the 

accuracy and robustness of the HWENO(P1P2) method for computing complicated flows of practical 

importance. 

 

Figure 10. Computed Mach number contours and unstructured surface mesh for transonic flow past a 

complete B747 aircraft (nelem = 253,577, npoin = 48,851, nboun = 11,802) at M∞=0.85, and α=2°. 

 

5.     Conclusions 
 
A reconstructed discontinuous Galerkin method based on a hierarchical Hermite WENO 

reconstruction, HWENO(P1P2), has been presented for solving the compressible Euler equations on 

tetrahedral grids. The HWENO(P1P2) method is designed not only to enhance the accuracy of  the 

discontinuous Galerkin method, but also to avoid non-physical oscillations in the vicinity of 

discontinuities. A number of numerical experiments for a variety of flow conditions have been 

conducted to demonstrate the accuracy, robustness, and non-oscillatory performance of the 

HWENO(P1P2) method. The numerical results obtained indicate that the developed HWENO(P1P2) 

method is able to provide sharp resolution of shock waves without over- and under-shoots for flows 

with strong discontinuities and achieve the designed third-order of accuracy for smooth flows: one 

order accuracy higher than the underlying DG method, thus significantly increasing the accuracy of  

the underlying DG method without significant increase in computing costs and memory requirements. 
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