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Abstract: In this work a robust discontinuous Galerkin (DG) solver for turbulent high-lift
aerodynamic flows using the turbulence model of Spalart and Allmaras (SA) is developed.
The application of DG discretizations to turbulent RANS flows is one of the most pressing
issues facing high-order methods on unstructured grids. The issue is the result of non-smooth
behavior of the turbulence model equation, which often causes solver failure for high-order
discretizations. Herein a modification to the turbulence model of Spalart and Allmaras is im-
plemented within a DG-based unstructured CFD solver for the RANS equations and utilized
to compute high-lift aerodynamic flows. Additionally, the convective discretization of the SA
turbulence model equation as it relates to solver robustness is discussed at length.
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1 Introduction
High-order discontinuous Galerkin (DG) methods are now an abundant topic in the Computational Fluid Dynamics
(CFD) literature. These methods have been successfully applied to the Euler and laminar Navier-Stokes equations
[1, 2, 3, 4, 5, 6] with excellent accuracy properties. Initially high-order discontinuous Galerkin (DG) methods were
applied to smooth problems due to the inherent difficulties with computing discontinuous solutions via high-order
DG methods. However, recent work has demonstrated that high-order DG methods can be use to compute flows
with shockwaves[7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. While the ability to robustly and accurately resolve flows with
discontinuities is a significant leap towards the general adoption of DG methods for use in CFD solvers, one major
stumbling block remains: turbulence modeling.

Recent research[17, 18, 19, 20, 21] into the robust application of DG methods to the Reynolds Averaged Navier-
Stokes (RANS) equations has proven difficult, due to non-smooth solution behavior of the turbulence modeling equa-
tions. In particular, this work considers the solution of the Spalart Allmaras (SA) turbulence model[22]. Recent
work[19] has shown that the non-smooth behavior of the SA turbulence model often causes solver failure. In the
authors’ experience the this is especially true for high-lift applications. Solver failure is the result of negative values
of the SA working variable. These negative values are generated by Gibbs phenomena that result from employing
high-order approximations across a discontinuity. Over the last few years several researchers[17, 23, 18, 21] have
proposed a variety of techniques to alleviate the solver difficulties that arise from non-smooth behavior of the SA
turbulence model. However, it was not until recently that Moro et al[20] presented a modification to the SA turbulence
model that significantly improved the robustness of high-order discretizations. This modification does not remove
the non-smooth behavior, rather the modification seeks to make the effects of non-smooth behavior benign. It is also
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worth mentioning that modifications to the turbulence model are not the only requirement for a robust and accurate
high-order DG solver. Recent work [24, 21] has demonstrated that the effects of convective flux treatment and implicit
solver formulation are significant.

Although the use of high-order accurate discretizations for RANS problems is not commonplace, there are several
examples of successful high-order DG RANS solutions using standard turbulence models in the literature [25, 17, 23,
19, 26]. The current solver using a DG discretization of the standard Spalart-Allmaras (SA) turbulence model [22] has
been able to replicate almost all the results of these references, however not as robustly as is required for production
use. Additionally, high-lift flows consisting of both single and multiple airfoils, have proven to be the most difficult
cases to solve. Therefore, in order to develop a high-order DG solver that is capable of solving such flows, one must
consider all aspects of defining and discretizing the SA turbulence model equation.

A robust high-order DG solver for turbulent flows requires some key ingredients related to the form and discretiza-
tion of the turbulence model equation. This work describes the turbulence model: definition, discretization and implicit
solution techniques that make the present high-order DG solver robust enough to compute high-lift turbulent flows.
The robustness of the proposed approach is demonstrated by considering challenging high-lift flows.

2 Governing Equations
The conservative form of the compressible Reynolds Averaged Navier-Stokes (RANS) equations describing the con-
servation of mass, momentum and total energy in two dimensions are given as:

∂u
∂t

+∇ ·
(
~Fc(u)−~Fv(u,∇u)

)
= S(u,∇u) (1)

subject to the appropriate boundary and initial conditions within a domain Ω. In this work the RANS equations are
coupled to the one equation turbulence model of Spalart and Allmaras (SA model)[22] with the modifications given in
references [23, 20]. The equation for this model is given by:

∂ρν̃

∂t
+∇ · (ρν̃~v) = cb1 S̃ρνψ+

1
σ
[∇ · ((µ+µψ)∇ν̃)+ cb2 ρ∇ν̃ ·∇ν̃]− cw1ρ fw

(
νψ

d

)2
(2)

where S̃ is given according to

S̃ =


S+ S̄ S̄≥−cv2 S

S+
S
(

c2
v2

S+cv3 S̄
)

(cv3−2cv2)S−S̄
S̄≤−cv2S

(3)

S =
√
~ω ·~ω

S̄ =
(νψ)2 fv2

κ2d2

(4)

where ~ω is the vorticity vector. The fv2 function is given as:

fv2 = 1− ψ

1+ψ fv1

(5)

and the destruction term coefficients are given by:

r =
νψ

S̃κ2d2

g = r+ cw2

(
r6− r

)
fw = g

[
1+ c6

w3

g6 + c6
w3

]1/6
(6)
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The constants cb1 , cv1 , κ, etc. are the same as those in reference [22]. The additional constant cv3 is given as cv3 = .9.
The variable ψ is designed to remain positive regardless of the value of ν̃ and is given by:

ψ =

{
.05log

(
1.0+ e(20.0χ)

)
χ≤ 10.0

χ χ > 10.0

χ =
ν̃

ν

(7)

The use of the variable ψ proposed in reference [20] is simple to implement within an existing CFD solver and is also
easy to differentiate for implicit solution techniques. The effect of the modification is to deactivate the production,
destruction and diffusion terms of the turbulence model equation when ν̃ becomes negative, effectively rendering it
as a simple advection equation, which is unaffected by negative values of ν̃. While employing the variable ψ in the
model source terms comes directly from reference[20], this reference does not use the modified form of S̃, which in
the authors’ experience provides addition robustness to the turbulence model equation in the positive ν̃ regime.

The state vector and flux vectors including those of the SA model equation for two-dimensional flow are explicitly
given as:

u =


ρ

ρu
ρv
Et
ρν̃

 , Fc
x =


ρu

ρu2 +P
ρuv

u(Et +P)
ρuν̃

 , Fc
y =


ρv
ρuv

ρv2 +P
v(Et +P)

ρvν̃

 ,

Fv
x =



0
τxx
τxy

uτxx + vτxy + cp

(
µ

Pr +
µT
PrT

)
∂T
∂x

1
σ
(µ+µψ) ∂ν̃

∂x


, Fv

y =



0
τyx
τyy

uτyx + vτyy + cp

(
µ

Pr +
µT
PrT

)
∂T
∂y

1
σ
(µ+µψ) ∂ν̃

∂y


,

S =


0
0
0
0

cb1 S̃ρνψ+ 1
σ
[cb2ρ∇ν̃ ·∇ν̃]− cw1ρ fw

(
νψ

d

)2



(8)

where ρ is fluid density, ~u = (u,v) are the Cartesian velocity components, P is the fluid pressure, Et is the total
energy, cp is the specific heat at constant pressure, T is the fluid temperature, Pr and PrT are the Prandtl and turbulent
Prandtl numbers respectively and τi j is the total viscous stress tensor including the Boussinesq approximated Reynolds
stresses. Assuming a Newtonian fluid and using the Boussinesq approximation for the Reynolds stresses, the viscous
stress tensor takes the form (with xi = x,y; i = 1,2):

τi j = 2(µ+µT )Si j

Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
− 1

3
∂uk

∂xk
δi j

for i = 1,2, j = 1,2

(9)
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where µ is the fluid viscosity obtained via Sutherland’s law and µT is a turbulent eddy viscosity, which is given by:

µT =

{
ρν̃ fv1 ν̃≥ 0

0 ν̃ < 0

fv1 =

(
ρν̃

µ

)3

(
ρν̃

µ

)3
+ c3

v1

cv1 = 7.1

(10)

The components of the viscous stress tensor for two dimensional flow are given explicitly as:

τxx = (µ+µT )

(
4
3

∂u
∂x
− 2

3
∂v
∂y

)
, τxy = (µ+µT )

(
∂u
∂y

+
∂v
∂x

)
τyx = (µ+µT )

(
∂u
∂y

+
∂v
∂x

)
, τyy = (µ+µT )

(
4
3

∂v
∂y
− 2

3
∂u
∂x

) (11)

It should be understood that all quantities in the above equations are the Reynolds Averaged quantities (the usual (̄)
notation is omitted for simplicity). The pressure is obtained from the ideal gas equation of state given as:

P = (γ−1)
[

Et −
1
2

ρ
(
u2 + v2)] (12)

where γ = 1.4 is the ratio of specific heats.
The DG discretization used in this work is detailed in reference[21] and will not be repeated herein. The interested

reader is encouraged to examine reference[21] for a highly detailed description of the DG discretization employed in
this work.

3 Roe’s Riemann Solver for RANS-SA System
Solving the Reynolds Averaged Navier-Stokes (RANS) equations requires the discretization of one or more turbulence
model equations. In this work, the one-equation turbulence model of Spalart and Allmaras (SA)[22] is used to close the
RANS equations. Many production level solvers[27, 28, 29, 30] view the discretization of the turbulence model in a
decoupled fashion, which results in treating the convection term as though it were a scalar transport equation evolving
with a prescribed velocity field. However, this treatment neglects the fact that the velocity field, which convects
the turbulence model quantities, is heavily influenced by the turbulence model solution. Therefore, in this work the
turbulence model used to close the RANS equations is fully coupled to the mean flow equations and the RANS-
SA system is considered as a complete system of equations. This treatment necessitates re-deriving the convective
numerical flux function to include the turbulence model equation.

The RANS equations closed with the SA turbulence model results in a total of five equations in two spatial di-
mensions. In order to produce a stable and accurate convective discretization, the numerical flux function must be
derived for the convective terms of the five coupled equations. Consider the convective flux vectors, originally given
in equation (8), labeled as Fc. Considering these flux vectors, the method of Roe and Pike[31] is used to derive a
numerical flux function for the coupled RANS-SA system. The method of Roe and Pike requires the eigenvalues and
eigenvectors of the Jacobian of the convective flux normal to an interface. The normal flux Fc

n is given by:

Fc
n =


ρunx +ρvny(

ρu2 +P
)

nx +ρuvny
ρuvnx +

(
ρv2 +P

)
ny

u(Et +P)nx + v(Et +P)ny
ρuν̃nx +ρvν̃ny

 (13)
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The eigenvalues λ and eigenvectors K of the fully coupled RANS-SA convective flux Jacobian are:

λ1 =~u ·~n−a λ2 =~u ·~n λ3 =~u ·~n λ4 =~u ·~n λ5 =~u ·~n+a

K1 =


1

u−anx
v−any

H−~u ·~na
s

 ,K2 =


1
u
v

1
2

(
u2 + v2

)
0

 ,K3 =


0
−ny
nx

−uny + vnx
0

 ,

K4 =


0
0
0
0
1

 ,K5 =


1

u+anx
v+any

H +~u ·~na
s

 ,

(14)

where~u = (u,v) are the Cartesian velocity components,~n = (nx,ny) is the surface normal vector, a is the sound speed,
H is the total enthalpy, and s is the scalar, which would be ν̃ for the SA turbulence model equation.

Following reference[31] the numerical flux at the interface, given by the Roe and Pike method, Hc is written as:

Hc
(
u+,u−

)
=

1
2

(
Fc

n (u+
)
+Fc

n (u−)+∑
i

α̃i

∣∣∣λ̃i

∣∣∣ K̃i
(
u+−u−

))
(15)

This expression requires the determination of the wave strength coefficients α̃i and the Roe state (̃), which are deter-
mined using the following formulas:

∆u =
(
u+−u−

)
= ∑

i
α̃iK̃i

∆Fc
n = Fc

n (u+
)
−Fc

n (u−)= ∑
i

α̃iλ̃iK̃i
(16)

evaluated to O
(
∆2
)
. For example, it is easy to see that

∆(ρu) = ũ∆ρ+ ρ̃∆u+O
(
∆

2) (17)

To O
(
∆2
)
, the wave strength coefficients are determined by solving the following system of equations:

α̃1 + α̃2 + α̃5 = ∆ρ

α̃1 (ũ− ãnx)+ α̃2u− α̃3ny + α̃5 (ũ+ ãnx) = ũ∆ρ+ ρ̃∆u
α̃1 (ṽ− ãny)+ α̃2v− α̃3nx + α̃5 (ṽ+ ãny) = ṽ∆ρ+ ρ̃∆v

α̃1 (H− (ũnx + ṽny) ã)+ 1
2 α̃2

(
ũ2 + ṽ2

)
+ α̃3 (−ũny + ṽnx)+

α̃5 (H +(ũnx + ṽny) ã) = Ẽ∆ρ+ ρ̃∆E
α̃1s̃+ α̃4 + α̃5s̃ = s̃∆ρ+ ρ̃∆s̃


(18)

The second of equation (16), which is the jump in fluxes, is evaluated using a similar approach, which results in a
lengthy set of equations to solve for the (̃) state. The result of solving these equations is a fully specified Roe state, as
well as a definition of the numerical flux function for the fully coupled RANS-SA system.
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The Roe state for the RANS-SA system is:

ρ̃ =
√

ρ+ρ−

ũ =

√
ρ+u++

√
ρ−u−√

ρ++
√

ρ−

ṽ =

√
ρ+v++

√
ρ−v−√

ρ++
√

ρ−

H̃ =

√
ρ+H++

√
ρ−H−√

ρ++
√

ρ−

s̃ =

√
ρ+s++

√
ρ−s−√

ρ++
√

ρ−

ã =

√
(γ−1)

(
H̃− 1

2
(ũ2 + ṽ2)

)

(19)

The numerical flux on the boundary can be written as:

Hc
(
u+,u−

)
=

1
2
(
Fc

n (u+
)
+Fc

n (u−)+D
)

(20)

where D is the dissipative component of the numerical flux, which is given as:

D =



∣∣∣λ̃2

∣∣∣(ρ+−ρ−)+δ1∣∣∣λ̃2

∣∣∣(ρu+−ρu−)+δ1ũ+δ2nx∣∣∣λ̃2

∣∣∣(ρv+−ρv−)+δ1ṽ+δ2ny∣∣∣λ̃2

∣∣∣(E+
t −E−t

)
+δ1H̃ +δ2 (ũnx + ṽny)∣∣∣λ̃2

∣∣∣(ρs+−ρs−)+δ1s̃


δ1 =

− ∣∣∣λ̃2

∣∣∣+
∣∣∣λ̃5

∣∣∣+ ∣∣∣λ̃1

∣∣∣
2

 ∆P
ã2 +

∣∣∣λ̃5

∣∣∣− ∣∣∣λ̃1

∣∣∣
2

ρ̃

ã
(nx∆u+ny∆v)

δ2 =

− ∣∣∣λ̃2

∣∣∣+
∣∣∣λ̃5

∣∣∣+ ∣∣∣λ̃1

∣∣∣
2

 ρ̃(nx∆u+ny∆v)+

∣∣∣λ̃5

∣∣∣− ∣∣∣λ̃1

∣∣∣
2

∆P
ã

(21)

where the term ∆() is given by:
∆() = ()+− ()− (22)

Comparison of the dissipation terms in equation (21) with the standard formulas given in reference[31], shows that
coupling the SA turbulence model equation to the RANS system does not change the numerical flux expressions for
the mean flow equations. However, if the derivation for convective flux of the SA turbulence model equation were
carried out in a decoupled fashion (which is the standard approach[30, 29, 28, 21] then the dissipation term of the
numerical flux for the turbulence model equation involves only the velocity normal to the surface. In essence the last
component of D would be missing the δ1s̃ in the standard decoupled approach. However, the present approach while
not standard practice is mathematically rigorous.

While the authors do note that the omission of the δ1s̃ has not proven problematic (in fact it is necessary to
omit this term under certain circumstance[24]) for first-order finite-volume discretizations of the turbulence model,
this term is deemed beneficial to solver robustness for high-order DG discretizations of the SA turbulence model
equation. Furthermore, numerical experiments with various combinations of numerical fluxes for the RANS and
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SA turbulence model equations, demonstrated that using the same numerical flux for both the RANS and turbulence
model equations results in a significantly more robust solver. It is generally recommended that when turbulence models
are discretized using DG methods the numerical flux formulation be treated similarly. A detailed discussion of the
numerical experiments that lead to the construction and use of this formulation can be found in references[21].

4 Implicit Solution Method
In addition to stable discretizations, efficient and robust solution techniques are required for the development of a
robust production level aerodynamic DG solver. In this work, the RANS-SA system is solved using a damped Newton
solver that treats the mean flow and turbulence model equations in a fully coupled fashion [19, 21]. The linear solver
used at each Newton step is based on a line-implicit colored Gauss-Seidel (CGS) preconditioned GMRES solver[21].
The line-implicit colored Gauss-Seidel preconditioner is employed to alleviate the stiffness associated with highly
anisotropic grids and requires the construction of lines through an unstructured grid. The lines are constructed using a
weighted graph approach[19]. A fully parallel Gauss-Seidel method requires coloring the lines which is accomplished
via a greedy algorithm that loops over all the lines formed for the line-implicit solver, assigning color integers to the
lines. Once the lines have been colored, a block-tridiagonal solver is employed in a Gauss-Seidel fashion over the
colors.

Constructing implicit solution techniques requires the determination of the flow Jacobian matrix. The flow Ja-
cobian requires the differentiation of the residual Rh with respect to the discrete solution uh, a process known as
linearization. Turbulence models are often linearized in a decoupled fashion i.e. turbulence models are linearized only
with respect to the variables that the model equation controls. This results in a loosely coupled implicit solver formula-
tion, that may not be able to fully converge the discrete equations. However, if the linearization is performed in a fully
coupled fashion, it is far more likely that full convergence of the discrete equations can be achieved, at least with the
presented DG solver. Full convergence of the discrete equations is especially important for high-order discretizations,
since the magnitude of high-order modal coefficients can be very small. A full analysis of coupled versus de-coupled
linearizations was conducted in reference[24].

5 Aerodynamic Applications

5.1 NACA0012 Airfoil at α = 10o

The first test case is the turbulent flow over a NACA0012 airfoil at a high angle of attack. This flow is particularly
challenging due to the reliance of the steady-state and attached nature of flow on the turbulence model. Furthermore,
the high angle of attack makes it difficult for the grid generator to cluster the grid in the correct wake location. Grid
clustering has been known to alleviate some of the difficulties encountered with negative values of ν̃[21]. The flow
conditions are M∞ = .15, α = 10.0o and Re = 5,000,000. For this test case discretization orders p = 1 to p = 4 are
employed using the fixed mesh in Figure 1, which contains N = 7,373 elements.

Figure 2(a) and Figure 2(b) show the Mach number and eddy viscosity contours respectively. Despite the relatively
short chord-wise extend of the anisotropic wake grid, the wake is well resolved by the p= 4 polynomials. Additionally,
the eddy viscosity contours in Figure 2(b) show that the peak eddy viscosity occurs over 1 chord length downstream
from the airfoil trailing edge. For airfoil flows solved using the classical approach to turbulence model discretization,
the peak value of the eddy viscosity is usually just down-stream form the airfoil trailing edge[24].

Figure 3 shows the convergence histories of the RANS and SA turbulence model equations for both p= 1 and p= 2
discretizations. For this test case all higher-order solutions where initialized using low-order solutions and therefore
the p = 1 solution is the most difficult solution to obtain, since it is initialized with free stream values. However, the
solution achieves steady state as demonstrated by Figure 3. Additionally, the p = 3 and p = 4 convergence histories
are similar to the p = 2 result.
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Figure 1: Computational mesh used for computing the flow around aNACA0012 airfoil at M∞ = .15, α = 10.0o, and
Re = 5,000,000.

(a) Mach number contours at p = 4

(b) muT
µ∞

at p = 4

Figure 2: Computed Mach number and eddy viscosity contours using the Spalart-Allmaras turbulence model for flow
over the NACA0012 airfoil at M∞ = .15, α = 10.0o, and Re = 5,000,000 using p = 4.
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Figure 3: Convergence history of the flow around a NACA0012 airfoil at M∞ = .15, α = 10.0o, and Re = 5,000,000.

(a) Surface pressure coefficient at p = 4 (b) Surface pressure coefficient at p = 4

Figure 4: Computed surface pressure and skin friction coefficients using the Spalart-Allmaras turbulence model for
flow over a NACA0012 airfoil discretization orders p = 1 to p = 4, M∞ = .15, α = 10.0o, and Re = 5,000,000.
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Figure 4(a) shows the computed surface pressure coefficient profiles obtained using discretization orders p = 1
to p = 4. For this test case experimental data was available for comparison and is plotted alongside the computation
results in Figure 4(a). The computational and experimental results are in excellent agreement. Figure 4(b) shows the
computed surface skin friction coefficient along with results from the CFL3D[30] solver, since no experimental data
was available for the skin friction coefficient. The agreement between the two solvers is excellent.

Close examination of the modified turbulence model shows that for small values of ν̃ the model is not exactly the
same as the original model, which could adversely impact the solution near the wall. However, the agreement between
the results generated by CFL3D and the DG solver show that this modification does not impact the computed skin
friction coefficient, which is the output that is most sensitive to slight shape perturbations in the near wall velocity
profile.

Table 1: Computed lift and drag coefficients for the NACA0012 airfoil at M∞ = .15, α = 10.0o, and Re = 5,000,000
using p = 1 to p = 4

p NDoF CL CD
1 27,846 1.054429 0.014977
2 61,419 1.087564 0.014925
3 108,092 1.097283 0.014630
4 167,865 1.090325 0.012745

Table 1 shows the computed drag and lift coefficients for this case. Unfortunately there isn’t an extractable trend
shown by this data, a sign that the asymptotic range has not been reached despite the high polynomial degree employed.

5.2 High-lift Multi-element Airfoil Configuration L1T2
The second test case consists of the turbulent flow over the AGARD L1T2 high-lift multi-element airfoil configuration.
The geometry consists of a three-element airfoil configuration and the flow conditions are M = .197, α = 20.18o, and
Re = 3,520,000. The mesh employed for this test case is a mixed-element unstructured mesh with N = 80,742
elements as shown Figure 5. In this case, discretization orders ranging from p = 1 to p = 4 are employed.

Figure 5: Computational mesh used for computing the flow around the AGARD L1T2 high-lift multi-element airfoil
configuration at M∞ = .197, α = 20.18o, and Re = 3,520,000.
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Figure 6: Convergence history of the flow around the AGARD L1T2 high-lift multi-element airfoil configuration at
M∞ = .197, α = 20.18o, and Re = 3,520,000.

(a) Mach number contours at p = 4

(b) µT
µ∞

at p = 4

Figure 7: Computed Mach number and eddy viscosity contours using the Spalart-Allmaras turbulence model for
flow over the AGARD L1T2 high-lift multi-element airfoil configuration with p = 4 at M∞ = .197, α = 20.18o, and
Re = 3,520,000.
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(a) Surface pressure coefficient at p = 4 (b) Surface pressure coefficient at p = 4

Figure 8: Computed surface pressure and skin friction coefficients using the Spalart-Allmaras turbulence model for
flow over the AGARD L1T2 high-lift multi-element airfoil configuration with a discretization order of p = 4, M∞ =
.197, α = 20.18o, and Re = 3,520,000.

Table 2: Computed lift and drag coefficients for the AGARD L1T2 multi-element airfoil configuration at M∞ = .197,
α = 20.18o, and Re = 3,520,000 using p = 1 to p = 4

p NDoF CL CD
1 265,311 4.055891 0.067782
2 553,707 4.049804 0.066554
3 945,930 4.048049 0.066471
4 1,441,980 4.047551 0.066402
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Figure 6 depicts the iterative convergence of the p = 4 discretization, illustrating that it is far from trivial to
converge this flow to steady-state. The oscillations in the residual indicate that minor unsteady flow features may
exist in this solution. However, the residual is converged over 10 orders of magnitude, which is sufficient to report
approximate lift and drag values, even at p= 4. Figure 7(a) and Figure 7(b) depict the Mach number and eddy viscosity
contours for a p = 4 solution respectively. From the computed Mach number contours the flow is seen to approach
sonic conditions on the slat leading-edge upper surface. The DG solver is robust enough to compute this flow without
any form of artificial diffusion or limitation. Figure 8(a) shows a comparison between computed surface pressure
coefficients and experimental values. The computed surface pressure coefficient results agree well with experimental
values throughout the airfoil sections. Figure 8(b) depicts the computed skin friction coefficient using a p = 4 DG
discretization and a smooth skin friction profile is obtained with the exception of the geometry slope discontinuities.
Table 2 provides the numerical values of the computed lift and drag coefficients for each discretization order p. Table
2 shows that the computed drag coefficient is resolved to within less than 1 count and the computed lift coefficient is
resolved to within 5 counts. Figure 9(a) depicts the streamlines around the L1T2 multi-element airfoil configuration,
showing the high flow incidence angle and high overall streamline curvature over the configuration. Figure 9(b)
shows the streamlines near the slat for this case, illustrating the high streamline curvature in this region as the flow is
accelerated around the leading edge of the slat and in the gap between the slat and main airfoil. Figure 9(c) shows the
streamlines near the flap and flap cove on the main element showing a strong re-circulation region in the flap-cove.
The DG solver exhibits no adverse robustness implications as a result of these smooth high gradient phenomena.

(a) Streamlines

(b) Slat streamlines (c) Flap streamlines

Figure 9: Streamlines near the slat and flap using the Spalart-Allmaras turbulence model for flow over an L1T2 high
lift multi-element airfoil with a discretization order of p = 4, M∞ = .197, α = 20.18o, and Re = 3,520,000.

5.3 High Lift Multi-element Airfoil: 30P30N
The third test case consists of the turbulent flow over a high-lift multi-element airfoil configuration denoted as the
30P30N configuration. The flow conditions for this test case are M∞ = .2, α = 16o, and Re = 9,000,000. The
geometry for this test case consists of: a leading edge slat, a center or main element and a trailing edge flap, which are
configured for a so-called landing configuration. The computational mesh employed for this case is a mixed-element
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unstructured mesh consisting of N = 55,964 elements shown in Figure 10. The discretization order will be varied
from p = 1 to p = 4.

Figure 10: Mixed-element unstructured mesh used for computing flow around the 30P30N high-lift multi-element
airfoil configuration at M∞ = .2, α = 16o, and Re = 9,000,000.

Figure 11: Convergence history for flow over the 30P30N multi-element airfoil configuration using the Spalart-
Allmaras turbulence model at M∞ = .2, α = 16o, and Re = 9,000,000 for discretization orders p = 1 through p = 3.

The Mach number and normalized eddy viscosity contours for the p = 4 solution are depicted in Figure 12(a) and
Figure 12(b) respectively. The computed surface pressure and skin friction coefficients using the present DG solver are
depicted along with experimental data[32] in Figure 13(a) and Figure 13(b) respectively. Figure 13(a) and Figure 13(b)
show good agreement between the DG solutions and experiment for both the computed surface pressure coefficient
and skin friction coefficient. While there is very limited skin friction experimental data available, one should note that
the single point of skin friction data on the main element upper surface shows that the DG solver is slightly under
predicting the skin friction at this point.

The convergence history for this test case is shown in Figure 11, demonstrating that a fully converged solution
is obtained for both the mean flow and SA turbulence model equations up to a discretization order of p = 3. The
p = 4 results are converged approximately 7 orders of magnitude. We hypothesize that at p = 4 minor unsteady
flow features are developing in the solution, due to the high resolution and low dissipation of the high-order solution,
although further investigation is required validate this assumption.

Table 3 gives the discretization order p, NDoF , computed lift and computed drag coefficients for this case. Both
the computed lift and drag coefficients vary non-monotonically as the discretization order p is increased. From these
results it is difficult to judge the grid convergence of the computed lift and drag coefficients. However, the difference
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(a) Mach number contours, p = 4

(b) µT /µ∞, p = 4

Figure 12: Computed Mach number and eddy viscosity contours using the Spalart-Allmaras turbulence model for
flow over the 30P30N multi-element airfoil configuration with, M∞ = .2, α = 16o, and Re = 9,000,000 using a
discretization order of p = 4.

(a) Surface pressure coefficient p = 1 to p = 4 (b) Skin friction coefficient p = 1 to p = 4

Figure 13: Computed surface pressure and skin friction coefficients using the Spalart-Allmaras turbulence model for
flow over the 30P30N multi-element airfoil configuration with discretization orders p= 1 to p= 4 at M∞ = .2, α= 16o,
and Re = 9,000,000.
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Table 3: Computed lift and drag coefficients for the 30P30N multi-element airfoil configuration using discretization
orders p = 1 to p = 4.

p NDoF CL CD
1 195,899 4.163636 .050205
2 419,805 4.154856 .051397
3 727,682 4.154760 .050700
4 1,119,530 4.157237 .052103

between the p = 3 and p = 4 results is 24 counts of lift and 14 counts of drag. The fact that there is more variation
in the force coefficients between the p = 3 and p = 4 solutions compared to the p = 2 and p = 3 solutions leads to
speculation that additional error may have been incurred due to the incomplete convergence of the p = 4 solution.

6 Concluding Remarks
The present DG solver has demonstrated the ability to solve high-lift flows robustly by using a modified SA turbulence
model definition. The modified SA model is very effective at alleviating the issues encountered with negative values of
ν̃ because when ν̃ becomes negative the model reverts to an advection only equation which is insensitive the negative
values. While the modifications presented in reference[20] increased the robustness of DG discretizations of the SA
turbulence model equation, this work has demonstrated that the additional modification to the S̃ term, a fully coupled
convective numerical flux function for the RANS-SA system, and making use of a fully coupled Newton solver are
additional key components of a robust high-order DG solver for turbulent flows. This work has clearly demonstrated
that high-lift flows at high Reynolds numbers can be solved using DG methods. Based on the difficulty of the flow
problems considered in this work, DG methods can now be considered robust methods for high-lift flows provided
that the appropriate treatment of the turbulence model is employed.

In spite of these successes, significant work remains in the area of high-order accurate RANS simulations. Al-
though the employed turbulence model modifications result in significantly improved robustness, non-smooth and
negative turbulence working variable solutions remain. As pointed out in reference[21], this non-smooth solution be-
havior can adversely impact error estimation and the grid convergence of functional outputs, and complicates the use
of hp refinement strategies. Therefore, further turbulence model formulation development will be required to address
these issues in a high-order methods framework. Although high-order methods are well suited for large-eddy simula-
tions, most practical problems will require the use of hybrid RANS-LES models and the issues discussed herein will
remain important for the near-wall RANS portion of these models.
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