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Abstract: A dynamic unstructured grid based high-order spédlifference (SD)
method is developed to solve the three dimensiooaipressible Navier-Stokes
(N-S) equations. The capability of the developet’esoin handling complex
vortex-dominated flow is demonstrated via the satiahs of the three dimensional
flapping-wing problems at low Reynolds and Mach bers. The flow fields
around flapping wings of different planforms, naynéhe rectangular and bio-
inspired types, with different kinematics are imigated. The formation of a two-
jet-like wake pattern after the flapping wing ispkined by analyzing the
interaction between wake and wing tip vortex suites. Moreover, based on the
aerodynamic force results, it is found that the lbmed plunging and pitching
motion can significantly enhance the flapping wiprgpulsive performance.
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1 Introduction

High-order computational fluid dynamics (CFD) metko(order of accuracy 3) have attracted a
surge of research activities in recent years dubdip efficiency and accuracy for problems invalyi
complex physics and geometry, such as aero-acouatie propagation and vortex dominated flow. A
review of the recent developments of unstructuned lgased high-order methods for the Euler and
Navier-Stokes (N-S) equations can be found in J4. reported by many researchers, algorithm
robustness and efficiency, and the effectivenesssolving discontinuous solutions are major issues
that must be resolved before the high order methoelsvidely adopted in the CFD community.

The spectral difference (SD) method [2] is an wwttired grid based high-order method for
solving hyperbolic conservation laws. Its precursoithe conservative staggered-grid Chebyshev
multi-domain method [3]. The general formulationtteé SD method was first described in [2] for the
simplex element. It is then extended to two dimemsi (2D) Euler [4] and N-S equations [5, 6]. After
that, the SD method was implemented for three dame@l (3D) N-S equations on unstructured
hexahedral grids [7]. Later, a weak instabilitytive original SD method was found independently by
Van den Adeelet al. [8] and Huynh [9]. Huynh [9] further found thdiet use of Legendre-Gauss
guadrature points as flux points resulted in alst&® method. This was later proved by Jameson [10]
for the one dimensional linear advection equatioden an energy stable framework. In Ref. [11], the
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SD method was extended to handle the deformablandigngrid and its ability to cope with complex
vortex dominated bio-inspired flow was demonstratedvell. A parallel development of the dynamic
unstructured grid based SD method was reportetinl3, 14].

As aforementioned, high-order CFD methods are raoceirate and efficient for vortex-dominated
flow simulations than the traditional second ord@thods, which are too dissipative to resolve the
complex vortex structures. Therefore there is adrim the CFD community to develop high-order
viscous flow solvers to resolve vortex dominateatibispired flow recently. Visbad al. [15, 16] have
successfully utilized a high-order compact mettmditmulate the flow field around a SD7003 airfoil.
Perssoret al. [17] have developed a dynamic unstructured gased discontinuous Galerkin (DG)
method for a finite-span wing simulation and coneglathe results with other numerical methods.
Lianget al. [12] have successfully used a 2D SD method faduaging NACA0012 airfoil simulation.
Several applications for 2D and 3D SD method inltieeinspired flow have been reported by éfial.
[11, 18, 19] . Their results demonstrated the éffeness of the dynamic unstructured grid based SD
method for some challenging bio-inspired flow siatigns. Ouet al. [20] recently developed a 3D
SD solver for the finite-span flapping wing simidats. Results from the paper confirmed the
potential of using high order methods as an efficiecool for the full scale flapping wing
aerodynamics studies. The present paper will suimmathe development of the dynamic
unstructured grid based SD method and its appicdir high-fidelity simulations of 3D flapping
wings.

The remainder of the paper is organized as folldmvghe next section, the dynamic SD method on
unstructured hexahedral mesh is introduced. Thangw@ conservation law during the time-
dependent coordinate transformation is then sgec#dind the grid deformation strategy is given as
well. The 3D flapping wing cases simulated areestah Section 3. In Section 4, 2D steady flow test
results at low Mach number are firstly presentdterTcomparisons between the numerical results for
the 3D flapping wing and the experimental resulessbhown. After these verification cases, numerical
results of rectangular and bio-inspired flappinghgs with different kinematics are displayed and
discussed. Section 5 briefly concludes the paper.

2 Numerical Methods

2.1 Governing Equations
We consider the unsteady compressible N-S equatimosnservation form in the physical domain
t,x,y,2)

0Q OF 0G OH
Herein,Q = (p, pu, pv, pw, E)T are the conservative variables, wheiis the fluid densityy, v and
w are the Cartesian velocity components, Ensl the total initial energy, G, H are the total fluxes
including both the inviscid and viscous flux vestore.,F =F! — F¥, G=G' — G¥ andH =H! — H",
which take the following forms,
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In Eq. (2),p is the pressurgy is dynamic viscosity(, is the specific heat at constant pressBre,
is the Prandtl number, anfl is the temperature. The viscous stress tensoldatonian fluids are
expressed as follows.

u, +v, +w u, +v, +w

Uy T Uy + W 3
t= m(w TR ), = = (), )
Taz = Tzx = Wy +uy), Tyz = Tzy = #(Wy + 172)

On assuming that the perfect gas law is obetyedpressure is related to the total initial eperg

byE = % + %p(uz + v?2) with the constant heat capacity ratiovhich closes the solution system.

To achieve an efficient implementation, a tinependent coordinate transformation from the
physical domairft, x, v, z) to the computational domafm, ¢,7, ), as shown in Fig. 1(a), is applied
to Eqg. (1). And we obtain

0 aF oG o0H
2 e =0 @
65 a¢

where

( Q=1le

4 = J1(Q¢: + Féx + G§y + HE,)

| G = 1(Qnc + Fny + Gy, + Hn,)'

LA = 1/1(QCc + Féx + G4y + HE,)
Herein,r = t, and(&,7n,¢) € [—1,1]3, are the local coordinates in the computationahaia. In the
transformation shown above, the Jacobian matrtakes the following form

(5)
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Note that all the information concerning grid velp@, = (x, y:, z,) is related with(¢;, n,, {;) by
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2.2 Geometric Conservation Law
In deriving the strong-conservation form of the Ne§uations in the computational domain, the
following metrics identities are implicitly invoked

0
e Wi +5, (|1|nx) = 7

a

a_f(ljlfy) + _(Ulny) + a_z(ljlzy) =0

3 3 . (8)
_(Ulfz) + (|]|le) + (Ul(z) =0
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An important criterion in the development of thendmic grid based algorithm is that the physical
flow field should not be contaminated by the metmat the time-dependent transformation. In other
words, the developed numerical algorithm must puesthe free stream solutions. It turns out that th
first three identities in Eq. (8) can be preserwell if the high-order space discretization is used
However, the last identity in Eq. (8) invokes timae evolution of Jacobialjf| with the grid velocity
v,, and careful attentions are needed to ensureahgistency between the Jacobian change and the
grid velocity. The last identity is referred tothe geometric conservation law (GCL) by Thomas and
Lombard [21]. Two types of methods have been deezloto enforce the GCL for high-order
schemes. The first approach is to directly corteetGCL errors by balancing the time derivative of
Jacobianj| and the divergence of the grid velocity relataak fl|J|¢,, |/1n. [J1¢z) [22, 11]. More
details on the GCL error corrections for the explRunge-Kutta scheme and the implicit backward
Euler type scheme can be found in [11]. Anotherr@aggh is to numerically solve Jacobian from the
last identity in Eq. (8) by using the same timeegration scheme as the flow solver, and then
substitute the Jacobian ghwith the newly calculated value [23]. The firsipagach is adopted in the
present study.

2.3 Space Discretization

The SD method is used for the space discretizaliothe SD method, two sets of points are given,
namely the solution and flux points, as shown ig. Hib) for a 2D quadrilateral element. Unknown

solutions or degrees of freedom (DOFs) are defiaethe solution points (SPs), and fluxes are
calculated on flux points (FPs). In the presentlitthe solution points are chosen as the Chebyshev
Gauss quadrature points. FolP¥~! reconstruction)N solution points are needed in 1D and are
specified as

-n),s= 1,2,--,N 9

It has been proved in Ref. [10] that the adoptibthe Legendre-Gauss quadrature points as the flux
points can ensure the stability of the SD methdukeré&fore, the flux points are selected to be the
Legendre-Gauss points with end points as -1 afithése points are denotedgsf = 0,1,---,N

Two sets of Lagrange polynomials based on theisolytoints and flux points respectively can be
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specified as follows.
SPs based Lagrange polynomial:

§—3%s
Lsi(§) = ; _;,z =12,,N (10)
s=1,s#i t S
FPs based Lagrange polynomial:
1 B-B
Lei(B) = z _Bf,i =0,1,~,N (11)
Fofzit b T

The reconstruction of the SD method is stated lgreef follows. First of all, the inviscid fluxesear
reconstructed. Note that the fluxes related toghé movement are incorporated into the inviscid
fluxes, e.g.F" = |J|(Q¢, + F'&, + G'€, + H'E,). The conservative variabl€ on the flux points
are interpolated from the conservative varial@esn the solution points via a tensor production of

the 1D Lagrange polynomial Eq. (10), which takesftilowing form
N N N

QD =D Y > Qs )i (L D Li (O (12)
k=1j=1i=1

Then the fluxes can be reconstructed at the ghints using)r. Note that this reconstruction is
continuous within a standard element, but discoors on the cell interfaces. Therefore, a Riemann
flux or common flux needs to be specified on thieriace to ensure conservation. Since the flow
regime for flapping flight is almost incompressibénd the present governing equations are
compressible N-S equations, the Riemann solver Idhmtain good performance at low Mach
numbers. The AUSMup Riemann solver [24] for all speed is implemdrfta the present simulation
and is proved to behave well at low Mach numbehg procedures to reconstruct the common fluxes
from the AUSM-up Riemann solver are stated as follows.

Denote the face normal of arbitrary interfaceibyhen the interface mass flow ratg /, reads

pr if My >0

Pr  Otherwise’ (13)

My/p = a1/2M1/2{

where the subscript ‘1/2’ stands for the interfacendM are speed of sound and Mach number
respectively. Note that the grid velocity has bésiuded in the interface Mach numkér The
numerical normal fluxeg?, Gt andH® can then be specified as
[~ . Y, if gy, >0 R

Y= (el e+ Piyz) UIIVEIsignGi- v6)

~i . Y ifmy, >0 ) R
i — .
16" = (ml/Z {lpR otherwise + P1/2 |]||V71|5lgn(n vn)' (14)

=i Yy ifmy, >0
= m1/2 ,
Yr otherwise

+ Pay2 ) 11V8sign(i - 7¢)

wherey = (1,u,v,w, (E +p)/p)", P = (0, pn,, pny, pn,, O)T, withn,, n,, andn, specifying the

face normal components i y andz direction respectively.
After this, the derivatives of the inviscid fluxese calculated on the solution points using the
following formulas,

~: N N
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Since the viscous fluxes are functions of bothcineservative variabla® and their derivativegQ,
slightly more involved reconstruction procedures aeeded. In the present study, the approach
proposed in [25], also known as ‘BR1’, is adoptéte implementation of this approach in SD is
briefly introduced as follows.

LetR = VQ, and on transforming this formula from the phykidamain to the computational
domain, we obtain the three component§drﬁ the conservation form as

Rx=ﬁ<5|]|Qé’x+3|]|an 6|]|05x>

+

o€ T T
oU1t, . a/1gn, _ al/10g,
RY = |]|< 9% + an + 9 > (16)

pt — _<6|]|Qs‘z L o1Qn, amoe)
I\ 9§ an a¢
Then using the conservative variabfgson the flux points, the derivatives in Eq. (16)tba solution
points can be calculated following the procedureshswn in Eqg. (15). Note that the common
conservative variable@“°™ on element interfaces are used in the derivataleutation. In BR1,
Q¢°™ is the average of the left and right solutionghaninterface,
Q" +0F
geom =% "< (17)
2
After this, the gradient @ is then interpolated back to flux points followitige procedure as shown
in Eg. (12) and the viscous fluxes can then beutatled on flux points. Again, the gradient@from
the aforementioned reconstruction is generallyatisouous on the element interface, and BR1 is
used to provide a common gradi&gt°™ on the element interface,
vQt + vQF
—
Thus the viscous fluxes’, G¥,andH” on flux points are uniquely specified in a locallcand the
flux derivatives on solution points can then becgkdted via the approach as shown in Eq. (15).
Once all flux derivatives are available, the B3Ccan be updated with either explicit or implicit
time integrations.

voom = (18)

2.4 Dynamic Grids Strategy

In order to solve problems with moving grids, itnecessary to design a grid moving algorithm. In
this study, a blending function approach proposedréf. [23] is used to reconstruct the whole
physical domain. The fifth-order polynomial blenglifunction reads

r5(s) = 10s3 — 155* + 65°,5 € [0,1] (19)

It is obvious that:(0) = 0, r<(1) = 0, which can generate a smooth variation at both poidts
during the mesh reconstruction. Herein, ‘s’ is amalized arc length, which reflects the ‘distance’
between the present node and the moving boundari@sneans that the present node will move with
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the moving boundary, while s=1 means that the ptesade will not move. Therefore, for any motion
(transition, rotation), the change of the posil\mmorﬁ is

Aﬁpresent =(1- rS)AP)rigid (20)

After these manipulations, a new set of mesh nodasbe calculated based bA. It is clear that
for systems with complex relative motions, the blgé algorithm for the grid motion will be hard to
design. However, for many cases this method enjsysmarkable simplicity and efficiency.

3 Problem Statements

Rectangular and bio-inspired flapping wings, asashn Fig. 2 are studied here. Wing surface grids
and streamwise grids on the symmetric plane are dilsplayed in Fig. 2. The grid deformation
strategy is specified as follows. Suppose thatLatirangian control points on the flapping wing
oscillate only on the plane perpendicular to thensyse axis. The maximum position of the profile in
the plane perpendicular to the chordwise axistitsbe a parabola = hyr? wherer € [0,1] is the
distance from the wing root to the Lagrangian aaminint normalized by the wing span agis the
flapping amplitude of the wingtip. The rigid-bodyupging function for one particular position
(x5, ys, Z5) On the flapping wing is given as follows,

X =X5,Z =2,y =Ys + hgsin(wt) (21)

whereh, is determined from the aforementioned parabolanTihe blending function Eq. (19) and
the motion control function Eg. (20) are used ttedwine the movement of other grid points. Herein,

Aﬁrigid is specified ady on the surface of the flapping wing.

For the combined pitching and plunging motithre, pitching part is controlled as below

(xpresent - xc) _ (COS(AOC) —Sil’l(Aa)) (xformer - xc) (22)

Ypresent — Yc) — sin(Aa) — cos(Aa)/) \Yformer — Ve

with y. = h.sin(wt) and a = agcos(wt + ¢o) . According to the optimal thrust generation
conditions suggested by Andersaral. [26], ¢, is set as 75 Herein,Aﬁﬁgm is specified agAx, Ay)

on the surface of the flapping wing.

The studied finite-span flapping wings have Hagne wing span, aspect ratio of the planform
(defined as the ratio of the square of the wingnsfmthe planform arealépan/Area) and the
kinematic parameters of the flapping motion. la gresent study, the Strouhal numisnr) of the
finite-span flapping wings was selected to be wethin the optimal range usually used by flying
insects and birds and swimming fishes (i.e., 0.2t1<< 0.4). For all the simulations during the
present study, the Mach number of the free streaget to be 0.05, under which the flow is almost
incompressible. The aspect ratios for all wingssateas 2.6772. The Reynolds numldsa) (based on
the free stream velocity and the averaged chorgtte(the planform area divided the wing span,
Area/Lgpqy) is 1,200. The reduced frequendy) (f the flapping motion is 3.5, and the Strouhal
number §tr) of the wingtip, based on the definition in Re27], is 0.38. All these parameters are
from the experimental setup stated in Ref. [28 $pace discretization accuracy for the simulagon
of third order, and the time integration is perfednwith the explicit three stage TVD Runge-Kutta
method [29].



4 Resultsand Discussions

The performance of the developed solver for low Maamber flow is tested at first for a steady
inviscid flow over a NACAO0012 airfoil a¥a,, = 0.05 and zero angle of attack (AOA) with a 3rd
order accurate scheme and an implicit LU-SGS timbegration [30] on a coarse mesh. The residual
convergence history, pressure coefficieanf € (p — Do)/ (0.5pU2)) contour, and the Mach number
contour are displayed in Fig. 3 for the AUSMP Riemann solver (Fig. 3 (a)-(c)) and the stagdar
Roe [31] Riemann solver (Fig. 3 (d)-(f)). Althougte residual from the Roe solver can converge to
machine zero aMa., = 0.05, the pressure field near the wall surface showstdhtions. The
pressure field from the AUSMUP Riemann solver displays no fluctuations. Thestemdy viscous
flow over a NACAO0012 airfoil aRe = 5,000, Ma,, = 0.05 and zero AOA is simulated with the
same scheme on the same mesh. The residual congergstory, pressure coefficierdl,j contour,
and the Mach number contour are displayed in Figr 4he AUSM-UP Riemann solver (Fig. 4 (a)-
(c)) and the standard Roe Riemann solver (Fig.)4f)d As displayed in the figure, the residuat fo
the standard Roe Riemann solver does not convedjéha pressure field shows marked fluctuations.
Again, AUSM'-UP Riemann solver works well for the low Mach n@nbiscous flow.

Then the solver is tested using the 3D flappiuirgg problem as aforementioned. Here in order to
compare the numerical results with available expental results [28], only the plunging motion is
adopted as the wing kinematics. The comparisotiseoinstantaneous vorticity distributions from the
numerical simulations and those from experimentahsarements in the chordwise cross plane at
50%, 75% and 100% wingspan (i.e., wingtip) anddhieesponding time-averaged velocity fields are
displayed in Fig. 5. It is observed from the vatyidields that the wake structures at 50% wingspan
from the numerical simulations bear a good visugbeement with the experimental results at the
same position. However, at 75% wingspan and thgtipinnumerical results exhibit more elaborate
small vortices structures than the experimentalltes From the corresponding time-averaged
velocity fields at all three positions, it is foutithat the numerical simulations capture the featofe
the wakes indicated by experimental measuremeas®onably well. Note that all contour levels in the
numerical simulations are kept the same as thoeiexperiments.

4.1 Two-Jet-Like Wake Patterns

The wake vortex structures of the plunging rectéargwings from perspective and side views are
shown in Fig. 6 (a) and (b) respectively. In thigares, the vortex structures are indicated byQ@he
criterion colored with the streamwise velocity. TQecriterion is a Galilean-invariant vortex critami
which is defined as follows

1 Loy au]
Q= E(Rinij —5ijSij) = 29x, 0%, (23)
1 6uL au] 1 6uL ] .
wherer;; =G~ —) is the angular rotation tensor, afgd= - (-— + —) is the rate-of-strain
]

tensor. Different vortices have been marked ouh wéctangular wmdows or solid arrows which
indicate the rotation directions. It is clear froine figures that the complex vortex system aroined t
flapping wing can be decomposed into four partsyelg trailing edge vortices (TEVS), leading edge
vortices (LEVS) and tip vortices (TVs), and the agled vortices (EVs) due to the interactions
among TEVs, TVs and LEVs. Similar wake phenomenaelzeen reported by Dorgjal. [31] for
free-end finite-span wings except the complex ENfe two-jet-like wake patterns discovered at 75%
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wingspan in the present study are also report®ein[31]. In that paper it is found that the fotioa

of the two-jet-like wake patterns behind the flaygpiwing is closely related to the existence of tip
vortices. But the reasons for the formation procdgke bifurcated jet were not thoroughly analyzed
Herein, a detailed observation of the bifurcatddeféects is shown in Fig. 6 (c) for the fixed-root
flapping rectangular wing. The figure shows the Biticity fields indicated by the Q-criterion and
the spanwise vorticity field at the 75% wingspaheTtrajectories of both clockwise (-) and anti-
clockwise (+) vortices are also schematically gldtin the figure. Furthermore, the jet bifurcation
position is determined by examining the startinmpof the two-jet-like wake patterns from the time
averaged velocity fields in Fig. 5(b). It is obssivfrom the figure that the jet bifurcation occutsen
TVs intensively interact with the TEVs and manybeleate small vortices appear in this region.

In order to further examine the physics behiid, a combined flapping and pitching motion with
pitching leading plunging cycle B5° is used to reduce the separation from the leaglilyg and the
wingtip. The combined plunging and pitching motimraintains a two-jet-like wake pattern at 75%
wingspan as shown in Fig. 7 for the time-averagetboity fields and makes the wake vortex
structures much clearer as shown in Fig. 8(a). Hragn 8(b), it is obvious that the upper branch of
the bifurcated jet is formed by an anti-clockwisartex row consisting of TEVs and a clockwise
vortex row consisting of TVs, while the lower branof the bifurcated jet is formed by an anti-
clockwise vortex row consisting of TVs and a clogevortex row consisting of TEVs. The reasons
that TVs can contribute to the spanwise vorticéyn be explained as follows. As shown in Fig. 8(b),
because of the existence of TVs2, the end paheTEVs near the wingtip will be dragged gradually
from the ‘z’ direction to the 'y’ direction durinthe flapping stroke, which indicates that certain
amount of vorticity in the vertical (y) directios penerated. The induced rotational velocity fisld
schematically denoted with the blue dashed arrcav tiee wingtip part of TEVs3 as displayed in Fig.
8(a). This velocity field will bend the bottom enfi TVs3 towards TEVs2, and finally TVs3 have a
vorticity component in the spanwise (z) directitiris not hard to examine that this induced votyici
component is negative as denoted with the blueathahrow near the bottom part of TVs3 as shown
in Fig. 8(a). This explains the formation of th@aswise vorticity contribution from the TVs and
further elucidates the formation of the two-jeteliwake patterns. Note that the above explanatin wi
also work for the plunging case aforementionedhoaitjh the existence of small vortices in that case
makes the two-jet-like wake formation process hirddistinguish. Similar explanations can be
applied to the formation of the wake pattern atwimgtip.

4.2 Aerodynamic Performance of Flapping Wings

In this section two sets of factors on the aerodyngerformance are investigated, namely the wing
planform and the wing kinematics. First of all, thiang kinematics is fixed as the plunging motion.
The flow fields for both the rectangular and bispited wings at four different phases, namely
0°,90°,180° and270°, are displayed in Fig. 9. Herein, the vortex dtites are indicated by the Q-
criterion colored by the streamwise velocity. Itf@mind that a large amount of elaborate vortex
structures are generated around the flapping wésgecially in the wingtip region. It can be infetre
from this phenomenon that much flapping energyliees wasted if the pure plunging motion is used
as the generated small vortices are hard to beesftly collected to generate thrust. The compariso
of thrust coefficient histories for the rectangudad bio-inspired wings with the pure plunging rooti

is displayed in Fig. 10(a). The contributions freme pressure force and viscous force for the thrust
are shown in Figs. 10(b) and 10(c). From Fig. 10ifas found that during one flapping cycle the
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rectangular wing experiences both larger thrust dnag) than the bio-inspired wing. On comparing
Figs. 10(b) and 10(c) it is clear that the thruffecences mainly come from the contributions from
the pressure force. It is also observed that thénsipired wing experience less drag from the uisco
force. All these aerodynamic performances of tlapgding wings are closely related to the flow
structures. As can be found from Fig. 9 that atspk@° and 180° large LEVs appear near the
wingtip regions of both wings and at these phaledlapping wings will experience thrust peaks as
shown in Figs. 10(a) and (b). Careful examinatiohghe flow fields indicates that the pressure
change on the leading and trailing edges of thgpftay wings mainly occurs in the regions near the
wingtip, indicating that the thrust generation mvdnated by the outer 50% regions of the flapping
wings. It is obvious that at these regions flappiviggs have larger flapping amplitudes and speeds
and can add more energy to the fluid. Moreover, absociated LEVs can be stabilized by the
downwash effects of the TVs and can induce a llmvalpressure region near the leading edge of the
flapping wing. This is beneficial for the thrustoguction at these phases. It is also found that the
LEVs around the rectangular wing at pha@&and 180° are stronger than those around the bio-
inspired wing. As stronger LEVs can induce a lowegssure region near the leading edge of the
flapping wing, it is reasonable that the rectangwing generates more thrust than the bio-inspired
wing does at the present simulation parameters.tifiteaveraged thrust coefficients for these two
wings as presented in Table 1. From the tables d@ear that the rectangular wing generates larger
thrust than the bio-inspired wing, and for both ggnthe pressure force dominates the thrust
production. Note that thrust coefficient historfes the two wings in Fig. 10(a) both display small-
scale unsteady fluctuations. This is due to thhk viortex structures around the flapping wings as
shown in Fig. 9.

Note that according to Table 1 the time-avedateust coefficients for the pure plunging winge a
very small when compared with the wings under thaliined plunging and pitching motion. This
can be explained as follows. Based on the knowld¢ldgethe pressure force dominates the thrust
generation, two parameters, namely the effectivegweirea projection in the streamwise direction and
the pressure difference, will determine the outgfuthe thrust during the flapping flight. Sincerthi
wings are adopted in the present study, if the pluireging motion is used, the wing area projection
the streamwise direction is very small. This isawafable to the thrust production. Therefore, it
becomes necessary to add certain pitching moticdheglunging motion to enlarge the wing area
projection in the streamwise direction. Howeveg fihase lag between the plunging motion and the
pitching motion should be carefully designed as thihase lag will affect the adjustment of the
effective AOA. If this parameter is not assignedparly, the performance of the wing can even
degrade. As aforementioned, the phase lag betwegnunging motion and the pitching motion is set
to be75° as suggested by Andersenal. [26]. The time histories of the total thrust daént and
the component contributed by the pressure forcettier rectangular wing under the combined
plunging and pitching motion are displayed in Hifj. The corresponding vortex structures indicated
by the Q-criterion colored by the streamwise vajoaround the flapping wing are shown in Fig. 12
at four phases, namely,90°,180° and270°. It is concluded that under the combined motibe, t
flapping wing can generate much larger (aboutythirnes) thrust than the pure plunging case as
shown in Table 1. Moreover, by comparing the flaglds in Figs. 9 and 12, it is clear that because o
the effective AOA adjustment due to the pitchingtiom, the breakdown of vortices under the
combined plunging and pitching motion becomes $es®re. This indicated that less kinetic energy is
dissipated under the combined motion than undeptine plunging motion.

10



5 Conclusions

A dynamic unstructured grid based high-order SD massible N-S solver is developed to perform
high-fidelity simulations for 3D vortex-dominatetbds. The solver works efficiently for the bio-
inspired flows at low Reynolds and Mach numbers eawd well capture complex vortex structures
around the flapping wing. The flow fields aroune tlectangular and bio-inspired flapping wings with
different kinematics are investigated. The formatid a two-jet-like wake pattern after the flapping
wing is explained by analyzing the interaction kextw wake and wingtip vortex structures. It is found
that the bent wingtip vortices play a vital roletlire two-jet-like wake pattern formation. Furthermo
based on the aerodynamic force results, it is fabatthe pure plunging motion is not conducive to
the propulsive performance. A combined plunging pitdhing motion can drastically increase the
thrust production.
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CTT CT_P CT_v
Rectangular 1.36 X 1072 472 x 1072 —3.36 x 1072
Bio-inspired 0.17 x 1072 3.07 x 1072 —2.90 x 1072
Rectangular(Com.) 0.366 0.466 —0.1000

Table 1. Time-averaged thrust coefficient histories foffatiént wing planforms with the flapping motion dveetcombined
motion indicated by ‘Com.’.C; stands for the time-averaged total thrd@st, stands for the contribution from the pressure
force; Cr,, stands for the contribution from the viscous force
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