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Abstract: Large-eddy simulation (LES) of turbulent flow over a pitching airfoil at realistic
Reynolds and Mach numbers is being performed. Numerical stability at high Reynolds num-
ber simulation is maintained using an unstructured-grid LES technology, which obeys high-order
conservation principles and employs a global-coefficient subgrid-scale turbulence model. A hybrid
implicit-explicit time-integration scheme is employed to provide a highly efficient way to treat
time-step size restriction in the separated flow region which is locally refined with dense mesh.
The present simulations confirm the stability and effectiveness of the presented numerical schemes
for dynamic stall simulations at realistic operating Reynolds and Mach numbers and show the
characteristics of flow separation and reattachment processes which are qualitatively congruent
with experimental observation.
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1 Introduction
Dynamic stall is a nonlinear and unsteady aerodynamic phenomenon resulting in stall delay during a time-
dependent motion of an airfoil at angles of attack higher than its static stall angle. Dynamic stall occurs
on the retreating blade of a helicopter rotor experiencing a pitching motion which leads to unsteady flow
separation followed by load and pitching-moment overshoots. The unsteady flow separation can, in turn,
lead to unacceptably large vibratory loads and acoustic noise, and limit forward flight speeds, load, and
maneuverability [1]. The unsteady separation is reported to be influenced by the Reynolds and Mach
numbers, blade geometry, pitch rate, and freestream turbulence level [2].

Numerous investigations of unsteady separation associated with dynamic stall have been conducted at
chord-based Reynolds numbers in the range of 103 − 107, at Mach numbers for incompressible to transonic
flow, and for a wide variety of blade geometries. Most experimental studies have concentrated on mea-
surements of aerodynamic forces such as the surface pressure and overall loads [3, 4], or on the flow field
visualization [5]. Quantitative measurements of the separated flow field and wake around a pitching airfoil
have been difficult using experimental techniques, and therefore, have rarely been reported in the literature.

Computational fluid dynamics has become increasingly useful in studying dynamic stall (see Ref. [6]
for a review). Computational works have often been performed, especially at practical Reynolds numbers,
using the Reynolds-averaged Navier-Stokes (RANS) equations or its unsteady counterpart (URANS) (e.g.,
Refs. [7, 8]). However, it is known to be challenging for (U)RANS to accurately predict highly unsteady flow
involving incipient flow separation, formation and evolution of stall vortices, and reattachment.

The intrinsic capability of large-eddy simulation (LES) for predicting sufficient details of unsteady sepa-
rating flows has recently been explored by a certain number of researchers. Nagarajan et al. [9] and Ghias
et al. [10] performed LES of dynamic stall over a pitching airfoil and tip-flow of a rotor in hover using
structured-grid finite-difference methods on curvilinear coordinates. The Reynolds numbers considered in
these simulations were around 105, which are substantially below that of a typical helicopter rotor during
low-speed maneuvers (O(106)). However, LES at higher Reynolds numbers has been difficult mainly due to
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Figure 1: Flow configuration for LES of flow over a pitching airfoil.

the numerical instability issue and high computational costs associated with the spatial and temporal reso-
lution requirements. Simulations and experiments performed at ReC < 5× 105 indicate that stall frequently
occurs when laminar flow separates near the leading edge. This process leads to large steady-state stall
hysteresis. However, turbulent separation is more common at high Reynolds number and this makes the
unsteady stall characteristics quite dissimilar from the features observed at low Reynolds number. Further-
more, most CFD works including past LES studies so far have focused on the validation of CFD codes and
qualitative features of dynamic stall rather than the understanding of the flow physics under realistic flight
conditions. Detailed quantitative characterization of velocity and pressure are needed in the separating flow
region for the fundamental understanding of the unsteady separation process.

In this work, wall-resolved LES of unsteady separation over a pitching airfoil at realistic Mach and
Reynolds numbers is performed. For this purpose, an unstructured-grid LES technology, which maintains
numerical stability by obeying high-order conservation principles, is employed. The unstructured grid topol-
ogy as well as a hybrid implicit/explicit time-integration method provides highly enhanced efficiency in
treating spatial and temporal resolution requirements in the dynamically important separated flow region.
The research is ongoing with an aim of gaining a quantitative understanding of the unsteady separation
process rather than validation and qualitative characterization of the flow field.

2 Flow Configuration
The flow configuration corresponds to an experimental setup in Ref. [3], which was developed to study
dynamic stall penetration at constant pitch rate and realistic combinations of Reynolds (2 − 4 × 106) and
Mach (0.2 − 0.4) numbers. The flow configuration models conditions occurring during aircraft post-stall
maneuvers and during helicopter high speed forward flight. The blade cross section corresponds to the
Sikorsky SSC-A09 airfoil with a chord length of 43.9 cm was installed in the UTRC Wind Tunnel. The
surface pressure was measured using miniature transducers, and the locations of transition and separation
were determined using surface hot film gages.

Large-eddy simulations of a sinusoidal pitching motion of the airfoil at a reduced frequency, k = ωc/2U∞ =
0.100, where ω, c, and U∞ are the angular frequency, chord length, and freestream velocity at Mach numbers
of 0.2 and 0.3 and at Reynolds number of 2 × 106, respectively, are being conducted. The computational
domain sizes in the radial and spanwise directions are 10c and 0.04c, respectively. Results from ongoing
LES will be analyzed in detail with comparisons against experimental data such as aerodynamic forces and
moment, surface pressure distributions, and transition and separation locations.
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Computational configuration

• Mach number = 0.2, 0.3, 0.4

• Reynolds number = 2 x 106

• Sinusoidal pitching motions with two different frequencies

• Spanwise domain size = 4% chord 

• Far-field distance = 11 chords

Figure 2: Flow configuration for LES of flow over a pitching airfoil.

3 Numerical Methods
An unstructured-grid LES solver which was developed at the Center for Turbulence Research [11, 12] and
which has recently been further developed by You & Moin [13] to include a new subgrid-scale LES model,
is employed for the present study. The numerical method is based on unstructured-grid finite-volume dis-
cretization of the Favre-filtered compressible Navier-Stokes equations with subgrid-scale stress and heat flux
models. The present numerical method overcomes two major difficulties encountered in the previous rotor
applications using structured-curvilinear-grid LES approaches [9, 10].

Firstly, it is known that non- or low-dissipative finite-difference schemes on curvilinear coordinates are
not strictly conservative [14], and therefore, are more prone to be numerically unstable. Due to the numerical
instability, the Reynolds numbers in the previous LES [9, 10] were lower by an order of magnitude (O(105))
than the practical Reynolds number in rotor applications (> O(106)). The present Cartesian-coordinate-
based finite-volume method maintains the numerical stability as well as the numerical accuracy at high
Reynolds number by employing an unstructured-grid spatial-discretization algorithm which is explained as
follows:.

The Favre-filtered compressible Navier-Stokes equations can be written as

∂U

∂t
+
∂Fj

∂xj
=
∂Gj

∂xj
, (1)

where

U =


ρ
ρũ1

ρũ2

ρũ3

E

 , Fj =


ρũj

ρũ1ũj + pδ1j
ρũ2ũj + pδ2j
ρũ3ũj + pδ3j

(E + p)ũj + qj

 , Gj =


0

σ1j − τsgs1j

σ2j − τsgs2j

σ3j − τsgs3j

ũkσjk − qsgsj

 .

U is the vector of the Favre-filtered conserved variables and Fj and Gj are the flux vectors in the j-
direction. ρ, p, ui, and E denote density, pressure, velocity component, and energy, respectively. σij and qj
are the filtered stress tensor and heat flux, respectively. τsgsij and qsgsj are the subgrid-scale stress tensor and
heat flux, respectively.
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Finite-volume discretization of the governing equation (1) leads to

∂Uk

∂t
+

1

VΩk

∑
f

3∑
j=1

(
F f
j −Gf

j

)
nfj = 0, (2)

where VΩk
is the volume measure of a volume-element Ωk, and Uk is the state variable vector at grid point k.

F f
j and Gf

j are the flux vectors at the element-boundary faces ∂Ωf
k . n

f
j denotes the face-normal unit vector.

In the present study, the convective and diffusive fluxes are obtained using the Summation-By-Parts
operators (e.g., skew-symmetric averaging for the convective flux; see also [15]) which guarantee non-growing
positive norms of primary variables, thereby maintaining numerical stability. The present method is proven
to be particularly well suited for predicting subtle separation effects in turbulent boundary layers at high
Reynolds number where boundary layer energetics play a crucial role [11].

In addition, the present LES employes a dynamic global-coefficient subgrid-scale (SGS) model which has
recently been developed by You & Moin [13]. In the dynamic Smagorinsky model [16, 17], which has widely
been used in LES, the model coefficient is dynamically determined as a function of space and time using
the scale-invariance concept and the local-equilibrium hypothesis (i.e., an equilibrium between the subgrid-
scale dissipation and the viscous dissipation at the same physical location). Although the dynamic model
coefficient vanishes where the flow is laminar or fully resolved, it can cause numerical instability since its
value often becomes negative and/or highly fluctuates in space and time.

To overcome the deficiency of the dynamic Smagorinsky model, You & Moin developed a dynamic proce-
dure for determining the model coefficient utilizing a global equilibrium between the subgrid-scale dissipation
and the viscous dissipation [13], of which concept was originally proposed by Park et al. [18]. In this ap-
proach, the model coefficient is globally constant in space but varies in time, and it still guarantees zero
eddy viscosity in the laminar-flow regions. The model does not require any ad hoc numerical stabilization
or clipping operation which is usually necessary in the local-equilibrium based dynamic models.

Secondly, it has been difficult to selectively resolve dynamically important separated flow regions using
H- and O-type curvilinear mesh topologies, which are most commonly used in rotor applications. Previous
experience with wall-resolved LES of turbulent flows indicates that streamwise and spanwise spacings of about
50–100 and 30–50 wall-units, respectively, are required in the separated flow region and wake. Although local-
refinement or overset type grids may be used, it is known that numerical errors associated with the spatial
interpolation adversely affect the simulation results. In the present method, the issue is overcome by an
unstructured-grid topology, which provides higher flexibility and efficiency in distributing mesh resolution
(Fig 3).

Furthermore, the high CFL number restriction in the local dense mesh region is alleviated with the use
of a hybrid implicit/explict time-advancement scheme. The discretized governing equation (1) is recast as

∂U

∂t
= H(U), (3)

where U = (UT
1 , U

T
1 , U

T
1 , · · · , UT

N )T is the solution vector and N is the number of grid points. Similarly, the
right-hand side H = (HT

1 , H
T
1 , H

T
1 , · · · , HT

N )T is the flux vector defined as

Hk = − 1

VΩk

∑
f

3∑
j=1

(
F f
j −Gf

j

)
nfj . (4)

The right-hand side of equation (3) is decomposed as H = He +Hi, where He and Hi are the explicit and
implicit parts of H. The stiffness of H is estimated from eigenvalues of the flux Jacobian matrix J as follows

J =
∂H

∂U
=
[
J ij
]
, J ij =

∂Hi

∂Uj
, i = 1, 2, 3, · · · , N, j = 1, 2, 3, · · · , N.

Since the computation of eigenvalues is very costly for large-scale simulations, we utilize the Gerschgorin
theorem which gives a radius of a disc including all the eigenvalues of the Jacobian matrix, thereby providing
maximum allowable time step size for stable zone of an explicit scheme. The decomposed equation is advanced
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Figure 3: Schematic illustration of the grid resolution topology.

in time using a semi-implicit Runge-Kutta method proposed by Le [19].
This feature allows to adaptively divide the mesh into explicit and implicit zones as shown in Fig. 4 and

leads to significantly reduced memory requirements while maintaining the advantage of an implicit integra-
tion scheme. This method is especially advantageous for long-time integration of low-pitch-rate unsteady
separating flow.

3.1 Results and Discussion
3.1.1 Effects of Mesh Resolution

A series of computational grids were employed to investigate the effects of mesh resolution on the prediction
of flow over a steady and pitching airfoils. As discussed in section 2, the present method utilizes advantages
of using unstructured grid and adaptive implicit-explicit time-integration scheme. Each grid consists of
multiple zones with different grid resolution. Grid lines are clustered around the suction surface of the airfoil
and in the wake region so that the separated shear layer, recirculating flow, and turbulent wake are well
resolved.

Most of the computational domain is discretized using hexahedral-shape elements. Especially near the
airfoil surface, an elliptic-type mesh generator is employed to align grid lines to be parallel and orthogonal
to the airfoil surface in the streamwise and wall-normal directions, respectively. As illustrated in Fig. 3,
there are numbers of interfaces where mesh resolution is transitioned from fine to coarse. These interfaces
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Figure 4: Schematic illustration of the adaptive implicit-explicit time-integration method.

are patched with prism-shape elements to maintain the quality of arrangement of primitive variables.
A mesh with about 6 million cells was designed first and employed for a coarse-resolution LES of flow

over a steady airfoil at a fixed angle of attack in order to assess the resolution requirement. Subsequently, a
24 million cell mesh is designed.

Figure 5 shows pressure distributions on the surface of the Sikorsky SSC-A09 airfoil at a fixed angle
of attack of 14 degrees. The Reynolds number and Mach number are 2 × 106 and 0.2, respectively. The
pressure distribution predicted by the present LES on a 24 million-cell mesh is found to agree well with the
experimental measurement in [3]. The near wall resolution in wall units on the 24 million-cell mesh is found
to be ∆x+ = 50− 450, ∆y+ = 1− 2, and ∆z+ = 60− 130.

LES of flow over a steady airfoil

• Mach = 0.2

• Reynolds number = 2x106

• Angle of attack = 14o

• Mesh sizes = 6 million (used to 
measure resolution requirement), 
24 million nodes

• Near wall resolution

-  

• Pressure distribution is favorably 
predicted even with relatively 
coarse resolution.
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Figure 5: Pressure distribution on the airfoil surface at the angle of attack 14 degrees. Solid line, the present
LES solution on a 24 million-cell mesh; symbol, experimental data in [3].

3.1.2 Flow over a Pitching Airfoil

The 24 million cell mesh, which was demonstrated to be reasonably capable of predicting flow over the
Sikorsky SSC-A09 airfoil at the operating Reynolds and Mach numbers, is also employed for large-eddy
simulations of flow during a pitching motion of the airfoil. To avoid mesh rotation or re-meshing during
the pitching motion, the Favre-filtered compressible Navier-Stokes equations are recast into forms in a non-
inertial reference frame. Therefore, large-eddy simulations are performed for variables in a non-intertial
reference frame along with the effects of the Coriolis, centrifugal, and rotational acceleration forces.

Simulations are ongoing for two different cases. The first case corresponding to an experimental case
conducted at Mach number of 0.2 and a sinusoidal pitching motion of which angle of attack varies in time

6



as follows:
α(t) = 20◦ − 10◦ cos(ωt),

where α is the angle of attack as defined in Fig. 1 and ω is the reduced frequency and is 0.10× 2U∞/c. The
second case also corresponds to an experimental case conducted at Mach number of 0.3 and a sinusoidal
pitching motion as follows:

α(t) = 12◦ − 8◦ cos(ωt),

where the reduced frequency is identical to the first case.
These two simulations are ongoing while the present simulations confirm the stability and effectiveness

of the presented numerical schemes for dynamic stall simulations at realistic operating Reynolds and Mach
numbers.

Large-eddy simulations are being conducted with the acoustic Courant-Friedrichs-Lewy (CFL) numbers
of 25 and 20 for Mach number of 0.2 and 0.3 cases, respectively. The acoustic CFL numbers correspond to
the time-step sizes of 0.27 × 10−3 and 0.23 × 10−3 normalized by the airfoil chord length and the speed of
sound for Mach 0.2 and 0.3 cases, respectively. Using 512 cores of SGI Altix ICE 8200LX computer, about
12 - 16 days are required for large-eddy simulation over a pitching period when a 24 million-cell mesh is
employed.

The simulations are in progress and Figs. 6 and 7 show gross features of flow over pitching airfoils at
two different conditions. The characteristics of flow separation and reattachment processes are qualitatively
congruent with experimental observation by Lorber [3].

4 Summary and Future Work
To gain a quantitative understanding of the unsteady separation process over a pitching airfoil, large-eddy
simulations (LES) of turbulent flow over a pitching airfoil at realistic Reynolds and Mach numbers are being
conducted. A novel combination of discretization schemes and time-integration schemes is employed to
achieve numerical stability at high Reynolds number simulations through higher-order conservation and to
be equipped with a highly efficient way to treat time-step size restriction in the separated flow region locally
refined with dense mesh. The present simulations confirm the stability and effectiveness of the presented
numerical schemes for dynamic stall simulations at realistic operating Reynolds and Mach numbers and
show the characteristics of flow separation and reattachment processes which are qualitatively congruent
with experimental observation.

In the future, systematic analyses of turbulent kinetic energy and vorticity budgets, velocity and pressure
fluctuations, spatiotemporal correlations of primitive variables, and the effects of operation parameters, will
be performed to gain an understanding of quantitative aspects of dynamic stall. Utilization of the flow-
field databases for improving subgrid-scale turbulence models and for developing strategies for dynamic stall
control also will be explored.
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