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Abstrat: In the present paper, preliminary omputations for the vortex-airfoil interation prob-

lem are shown. The Arbitrary Lagrangian-Eulerian formulation of the Euler equations is used to

desribe the �uid behaviour. An unsteady adaptive grid strategy is adopted to better apture the

�ow features, e.g. shok waves, and to redue the numerial dissipation of the vortex.
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The omputation of the dynami loads over an airfoil aused by the interation with external vorties

is a hallenging task. Numerial simulations of this kind of �ow �eld are of interest sine in rotorrafts the

blade-vortex interation (BVI) ould be a relevant soure of noise and vibration [1℄. The BVI phenomenon

ours when a rotor blade passes within a lose proximity of the shed tip vorties from a previous blade.

This auses a rapid, impulsive hange in the pressure distribution along the blade resulting in the generation

of highly diretional impulsive loading noise. It has been shown that the main parameters governing the

strength of a BVI are the distane between the blade and the vortex, termed miss-distane, the vortex

strength at the time of the interation, and how parallel or oblique the interation is [2, 3℄. The parallel

BVI is the most ritial on�guration and ours when the axis of the �lament-like vortex is aligned with

the axis of the blade.

Due to the high aspet-ratio of onventional blades a parallel BVI problem an generally be redued to

a two-dimensional airfoil-vortex interation (AVI). This approah is ideal to study the underlying physial

mehanisms involved in the interation as it removes many of the ompliations of a three-dimensional BVI

simulation and is omputationally less expensive. One of the major hallenges faed when simulating an

AVI is to preserve the vortex struture aurately as it onvets through the solution and minimize the

numerial dissipation that is inherent in CFD simulations. Suitable tehniques must be adopted to avoid

the destrution of the vorties by the numerial dissipation [4, 5℄. This is a well-known issue that arises

when shok-apturing shemes are used to desribe phenomena that have a linearly degenerate nature [6℄.

The work of Oh et al. [5℄ addressed this problem by the use of adaptive unstrutured meshes to simulate a

two-dimensional AVI. This method dynamially onentrates mesh points in region of large �ow gradients,

providing high resolution in the region of any vorties and other important �ow features. Exellent results

were ahieved in this study and a similar approah has been adopted here.

In the present work the arbitrary Lagrangian-Eulerian (ALE) formulation of the Euler equations, in

whih the ontrol volumes are allowed to hange in shape and position as time evolves, is used to desribe

the behavior of the �uid. The governing equations are disretized resorting to a node entered �nite-volume

sheme in whih the grid veloities are orreted to take into aount the grid modi�ations performed by the

adaptation sheme. [7, 8℄ The overall sheme allows to ompute the solution at the urrent time level simply

integrating the governing equations, without expliit interpolation of the solution, i.e. in a onservative

manner. Moreover high order time integration shemes, e.g. standard BDF tehniques, an be implemented

very easily. [7, 8℄

The ALE solver is brie�y desribed in setion 1 and the grid alteration strategy is introdued in setion 2.
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Figure 1: Left: edge assoiated with the �nite volume interfae ∂Cik = ∂Ci ∩ ∂Ck and metri vetor ηik in

two spatial dimensions. The two shaded regions are the �nite volumes Ci and Ck; dashed lines indiate the

underlying triangulation. Right: area swept by portion of the interfae ∂Cik,e pertaining to element e, made

of nodes i, j and k, during the time interval [tn, tn+1].

To better study the apabilities of the adaptive �ow solver the simulation vorties transport within the �ow

�eld, the free-vortex advetion problem is �rst takled in setion 3 on both �xed and adaptive grids. The

airfoil-vortex interation problem is presented in setion 4.

1 Edge-Based Solver for Adaptive Grids

The Euler equations in an Arbitrary Lagrangian Eulerian (ALE) framework [9, 10℄ for ompressible two-

dimensional �ows read

d

dt

∫

C(t)

u+

∮

∂C(t)

[

f(u)− u v
]

·n = 0, ∀C(t) ⊆ Ω(t), (1)

where C(t) is a losed subset of the domain Ω(t), ∂C(t) is the ontrol volume boundary and n is the outward

unit vetor. System (1) is made omplete by speifying suitable initial and boundary onditions [11℄. The

�ux funtion is is de�ned as f(u) =
(

m, m ⊗ m/ρ + P (u) I
2,

[

Et + P (u)
]

ρ/m
)

T

and the term u v =
(ρv,m ⊗ v, Etv)T aounts for the �ux ontribution due to the movement of the ontrol volume. ρ is the

density of mass, m is the linear momentum vetor, Et

is the total energy per unit volume, P is the loal

pressure, v is the interfae veloity and I
2
is the 2× 2 identity matrix.

The �nite volume disrete ounterpart of the Euler equation (1) is obtained by seleting a �nite number

of non overlapping volumes Ci(t) ⊂ Ω(t). In the node-entered approah onsidered here, eah ell surrounds

a single node i of the triangulation of Ω, as shown in �g. 1. Over eah �nite volume, equation(1) reads

d[Vi ui]

dt
= −

∑

k∈Ki,6=

∫

∂Cik

[

f(u)− u v
]

·n−

∫

∂Ci∩∂Ω

[

f(u)− u v
]

·n, (2)

where ui = ui(t) is the ell average of the unknown vetor, Vi is the ell size. In equation (2) the sum is

performed over the �nite volumes Ck that share a portion of their boundary with Ci, i.e. ∂Cik = ∂Ci∩∂Ck 6= ∅,
thus the set orresponding set of indexes is Ki, 6= = {k ∈ K : k 6= i|∂Ci ∩ ∂Ck 6= ∅}, see �g. 1. The seond

term of the right hand side of equation (2), i.e. ∂Ci ∩ ∂Ω, is given by the boundary ontribution, if any.

Eah ontribution of equation (2) has to be approximated with a suitable integrated normal numerial �ux,

representing the exhange aross the ell interfae [6℄. E.g. a entered approximation of the domain �uxes

gives

Φ(ui, uk, νik,ηik) = −
f(ui) + f(uk)

2
·ηik +

ui + uk

2
νik, (3)
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Figure 2: Interpretation of the edge swapping as ontinuous �nite volume deformation. Left: evaluation of

the normal interfae veloity (area of the shaded region) for edge i-k that is deleted due to edge-swapping

from edge i-k at time tn into edge j-k at time tn+1
. Right: evaluation of the normal interfae veloity for

edge j-k that is reated due to edge-swapping.

where the integrated normal vetor and the integrated normal interfae veloity are de�ned as

ηik(t) =

∫

∂Cik

n and νik(t) =

∫

∂Cik

v ·n. (4)

Equations (4)(left) and (4)(right) are onsisteny onditions that have to be exatly satis�ed.

Moreover, by assuming a onstant interfae �ux along the interfae, the boundary integral in equation

(2) simpli�es to

Φ
∂(ui, νi, ξi) = −f(u∂(ui)) · ξi + u∂(ui) νi, (5)

where the onsisteny onditions are

ξi(t) =

∫

∂Ci∩∂Ω

n and νi(t) =

∫

∂Ci∩∂Ω

v ·n, (6)

and u∂ is the value of the solution whih satis�es the boundary onditions [12℄.

In the presented omputations the numerial �ux funtion of equation (3) is replaed by a Total Variation

Diminishing (TVD) numerial �ux [13, 6℄. To this purpose, a �ux limiter approah has been followed and

the seond order entered approximation is replaed by the �rst order Roe �ux near �ow disontinuities [14℄.

The swith is ontrolled by the limiter proposed by van Leer [13℄. The above high-resolution version of the

sheme requires the de�nition of an extended edge data struture that inludes also the extension nodes i⋆

and k⋆, that are needed in the evaluation of the limiter funtion. As done by Ref. [15℄, the extension nodes

belong to the two edges best aligned with i-k.
When dealing with moving/deforming meshes in the ALE framework an additional onstrain is usually

enfored to prevent spurious osillations to appear in the solution. Suh onstrain is expressed as a onser-

vation equation for the ell volumes termed Geometri Conservation Law (GCL) that an be automatially

satis�ed if the integrated veloities are omputed as the derivatives of the volumes swept by the orresponding

interfaes, i.e.

νik(t) =
dVik

dt
and νi(t) =

dVi,∂

dt
. (7)

where Vik is the volume swept by the interfae ∂Cik and where Vi,∂ is the volume swept by the interfae

∂Ci ∩ ∂Ω.
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Figure 3: Top: re�nement pattern by node insertion in the enter of mass of an existing element for a domain

(top-left) element and boundary (top-right) element. Bottom: Dere�nement pattern by node deletion for a

domain (bottom-left) element and boundary (bottom-right) element.

A more general version of equation (2) for adaptive grids is given by



































d

dt
[Vi ui] =

∑

k∈Ki,6=(t)

Φ(ui, uk, νik,ηik) + Φ
∂(ui, νi, ξi),

dVi,ik

dt
= νik ,

dVi,∂

dt
= νi ,

∀i ∈ K(t)

∀k ∈ Ki, 6=(t)
(8)

where both the number of nodes, K, and the onnetivity, Ki, 6=, may vary during the the omputations. The

ODE system above is solved using a Bakward Di�erenes Formulæ (BDF) sheme of order either one or

two, as reported in the numerial results setion. At eah time level, a dual time-stepping tehnique is used

to solve the non linear system of equations for the vetor unknown at time n+ 1 [16℄.

The numerial sheme outline above is used together with mesh adaptation tehniques. The loal hanges

in grid topology, e.g. edge-swapping and node insertion/deletion, are interpreted as a ontinuous deformation

of the �nite volumes assoiated to the grid. As an example, in �g. 2 the geometrial interpretation of

edge-swapping in a ontinuous framework is skethed. The interfae veloities given of equation (7) are

thus omputed taking into aount the distortion of the �nite volumes aused by suh modi�ations. The

solution onto the new, adapted, grid an therefore be omputed simply integrating Eq. (8) without any

expliit interpolation step. Additional �ux ontributions must be taken into aount for every removed

edge [8, 17℄ and additional onservation equations must be integrated for every removed node [7℄ in order

to ensure the onservativity of the resulting sheme. Suh additional �uxes and equations an be dropped

after a given number of time steps depending on the time-integration sheme adopted, e.g. two for a BDF2

and three a BDF3, sine their ontribution is identially equal to zero. The reader is referred to [8, 18, 7℄

for a detailed desription of the ALE interpretation of grid adaptation.

2 Grid Alteration Strategy

In the present work, mesh adaptation strategies are used to loally modify the grid spaing so that the

numerial error is evenly distributed within the elements of the omputational domain and so that the size

of the element is not greater than a given size distribution whih is proportional to the distane from the
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boundaries. Mesh adaptation is performed by applying a suitable mixture of global and loal tehniques:

nodes displaement via elasti analogy, edge swapping, node insertion and removal, as shown in �gure 3.

Based on the geometry of the grid, an element i is be re�ned if hi > A(xi), where hi is the size of

the element and A(x) is a known funtion that presribed the maximum size of the elements inside the

domain. Sine in most ases of aerodynami interest it is desirable to generate highly re�ned zones lose to

solid bodies, in the present work it has been hosen to impose the dimension of the grid with a linear law,

proportional to the distane from boundaries.

Aording to the priniple of error equidistribution, nodes will be inserted in the regions where the error

is greater than the domain average, or deleted where it is smaller. A triangular element is marked for

re�nement if the error is larger than a given threshold, e.g.

1

3

∑

i

µ(Ei(M)) + 0.1σ(Ei(M)),

where the sum is performed amongst the element nodes, Ei is the elemental error,µ is the domain average

of the error and σ is the standard deviation. Conversely, the grid-oarsening threshold is set equal to

0.98µ(E(s)), to fore grid adaptation towards a greater uniformity in error distribution. The adopted

elements re�nement and nodes removal tehniques are shown in �g. 3.

Sine the exat value of the error is obviously unknown, the numerial error E has to be loally estimated.

In most appliations, error estimators are either funtions of gradient or undivided di�erenes [19, 20, 21, 22℄,

or funtions of the Hessian matrixH [23, 24, 22, 25, 26℄ of a onvenient sensor variable whih is representative

of the �ow features and whose hoie depends on the physial problem. In the present study, to ope with

the presene of shok waves and smooth-�ow regions, the following Mah based nodal estimator is used

Ei = h2
i

√

E2
i (mτ ,M) + E2

i (mn,M),

with

Ei(m,M) =
mTH(M)m

hi mT∇M + 0.12µ(M)
+

mT

∇M

h3
i m

T∇M + 0.12µ(M)hi

, (9)

where hi is longest edge of the i − th element M is the Mah number and mτ and mn are the tangential

and normal omponents of the linear momentum vetor respetively. The disrete Hessian matrix and

the gradient vetor are omputed using a �nite-element approximation within the node-pair representation

[27, 28℄. Equation (9) is a modi�ation of the error estimator proposed by Webster [26℄.

In order to improve the grid quality, standard edge-swapping and grid smoothing tehniques are also

adopted [29℄.

In order to perform unsteady omputations with adaptive grids the following preditor-orretor method

is used. At a given time level tn a predition of the solution is omputed from the known values of the

solution. The grid adaptation proedure is then arried out, based on the error estimated with omputed

predition. A higher-order solution is then alulated at the time tn+1 over the new adapted grid.

3 Free vortex advetion

The ase of the advetion of a vortex in an horizontal �ow is presented. A two dimensional vortex is

represented by the Bagai-Lieshman ompressible vortex [30℄. The so alled n = 1 Sully [31℄ model is used

for the veloity �eld, namely

mθ(r̂)

ρ(r̂)
=

2 r̂

(1 + r̂2)
Mc c∞, (10)

where r̂ = |x|/rc, rc is the vortex ore radius, Mc is a referene value for the vortex ore Mah number

and c∞ is the value the speed of sound for r̂ that goes to in�nity. As it is ommonly done in the literature

the vortex ore Mah number an be expressed in terms of the vortex intensity Γc and radius rc, namely

Mc = Γc/(4π rc c∞).
Following Bagai and Lieshman [30℄, the density and pressure �eld are omputed from the radial mo-

mentum omponent of the ompressible Navier-Stokes equations for an isoentropi �ow and an ideal gas,

5



namely

ρ(r̂) = ρ∞

(

1− 2
γ − 1

1 + r̂2
M2

c

)
1

γ−1

and P (r̂) =
c2∞ρ∞

γ

(

ρ(r̂)

ρ∞

)γ

(11)

where ρ∞ is the density value far away from the vortex.

The ompressible vortex de�ned above is then inserted in a uniform horizontal �ow whih is ompletely

de�ned by the Mah number M∞, the density ρ∞ and the momentum modulus m∞. Indeed, the non-

dimensional speed of sound of Eq. (10) is therefore given by c∞ = m∞

M∞ρ∞
. In the present work a unit value

has been hosen for both the free-�ow density and momentum, thus only the free-�ow and vortex Mah

number are used to ompletely de�ne the �ow �eld.

3.1 Fixed grid omputations

The �nite-volume sheme is �rst tested over the ompressible vortex advetion ase. The free �ow Mah

number is 0.8, the vortex Mah number is 0.2 and rc = 0.1 grid units. The lower half of the �xed omputa-

tional grid is shown in �g. 4 together with the upper half of the density ontour lines. The grid dimensions

are 240 rc×120 rc and it is made of 61015 nodes and 121722 elements. Non re�etion boundary onditions are

imposed on every side of the retangular domain, where the far �eld state u∞ is taken as the exat solution

to the problem, i.e. the rigid displaement of the vortex along the horizontal axis with veloity M∞c∞.

To test the time-onvergene properties of the sheme unsteady omputations have been arried out for

di�erent values of the Courant number and with di�erent time shemes, i.e. BDF sheme of order 1, 2 and 3.

The global Courant number is omputed as Co = m∞

ρ∞

∆t
hmin

, where hmin = 0.005 is the smallest edge of the

grid, and ranges between 0.1 and 20. The omputations are interrupted when the vortex has been displaed

of 100 ore radius, i.e. t = 10.
In �g. 5 the �nal solution obtained adopting di�erent shemes and time-steps is plotted in terms of

tangential omponent of the veloity omputed along the symmetry plane, i.e. y = 0. For values of the

Courant number lower than 1 the numerial error introdued by the time sheme is very small, indeed the

urves obtained with the three shemes are overlapped and di�erene with respet to the exat solution is

given by the error in spae. Inreasing the Courant number to 1 highlights the di�erenes between the �rst

order sheme and the more aurate ones. In the Co = 20 ase, shown in �g. 5(), the di�erene between the

exat solution and the numerial one is inreased and the behavior of the three shemes di�ers. The urve

obtained with the �rst order BDF is strongly smeared but still monotone. The solution obtained with the

seond order sheme is less dissipated but shows an error in phase that is not present in the other ases. The

urve omputed with the third-order sheme shows a similar delay in phase but, di�erently form the BDF2

sheme, does not show a monotone behavior. This result is in agreement with the fat that the high-order (in

time) extension of �rst order TVD sheme does not neessarily share the total variation diminishing property.

Indeed Fernanez [32℄ showed that in the 1D Sod problem the impliit BDF2-Roe sheme is not monotone for

Co = 5, while Ruuth at al. [33, 34℄ set a maximum Courant to ensure monotoniity of a BDF2 sheme in the

one-dimensional ase at 0.5 times the maximum Courant of the orresponding �rst-order expliit sheme.

In �g. 6 the iso-vortiity lines at t = 10 are shown for the exat solution, while the one obtained with the

tested numerial shemes are presented in �g. 7. The number of ontour lines and the spaing is the same

adopted in �g. 6.

For Co = 0.1 the numerial solutions are almost distinguishable amongst eah other, while for Co = 1
only the vortiity omputed with the �rst order BDF appear to be smeared and the e�ets of the entropy

�x are visible, i.e. the di�erent amount of introdued numerial dissipation between the upper and the lower

side of the vortex also auses an error in phase. For Co = 20 the solution obtained with the �rst order sheme

is almost ompletely dissipated, while the one obtained with the high-order shemes features an error in both

phase and amplitude. The non-monotone behavior of the sheme that has been shown in �g. 5() is here not

visible due to the lose-up view, but it is nonetheless present in the vortiity as well.

Therefore to ensure the monotoniity of the solution the �rst-order Forward Euler sheme is adopted,

indeed the bound in terms of Courant number is suh that the error introdued by the �rst order and the

high-order shemes is omparable, as shown in �g. 5(a) and 7(a).
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Test Rigid Baeder Baeder

Case Adapted Rigid Adapted 8

th

order 5

th

order Kwon

∆vv(T )
∆vv(0)

− 1 -0.58 -0.051 -0.05 +0.032 -0.15 -0.02

Table 1: Variation of the veloity on the edge of the vortex ore with respet to the initial value for the

vortex advetion problem.

3.2 Adaptive grid omputations

As shown in the previous setion the arti�ial dissipation introdued by the sheme is responsible of the

destrution of the vortex ore. This an be avoided reduing the time step and the loal grid spaing. To

this hand the grid adaptation tools desribed in setion 2 are here applied to the vortex transport problem.

The free-�ow Mah number is 0.8, vortex ore Mah number is 0.255 and vortex radius is 0.05. The

initial grid and the vortiity �eld are shown in �g. 8. The grid is 480 rv × 80 rv and is made of 33017 nodes

and 65368 elements. Away from the vortex the grid spaing is 0.08, i.e. hmax = 5.5× 10−2
, and around the

vortex ore a re�ned region is reated with elements of area 3×10−3
, i.e. hmin = 0.002. The geometry-driven

adaptation outlined in setion 2 is used to generate a onstant area region inside a irumferene of radius

2rv entered on the vortex ore. Moreover the element size dereases linearly and at r ≃ 4rv the maximum

area is reovered, as shown in �g. 8(d).

The ontour lines for the magnitude of the vortiity vetor are shown in �g. 8(). Although the presribed

solution of Eq. (10) is smooth, the vortiity is slightly non monotone possibly due to the e�et of the variable

grid spaing.

Following [5℄, in the unsteady omputations the position of the vortex ore xn+1
v

is taken as the grid

vertex featuring the minimum/maximum of ω within the irle of radius 0.5 rv entered in xn
v
. Following [35℄

to measure how well the initial solution is preserved the variation of the veloity along the vortex radius is

introdued, i.e.

∆vv(t) = max
i∈K(t)

∣

∣

∣

∣

mi(t)

ρi(t)
−

m∞

ρ∞

∣

∣

∣

∣

− min
i∈K(t)

∣

∣

∣

∣

mi(t)

ρi(t)
−

m∞

ρ∞

∣

∣

∣

∣

.

At a given time the error indiator is thus taken as ∆vv(t)/∆vv(0)− 1.
The adaptation proedure is arried out to adapt the solution over a sensor made by the sum of the

magnitude of vortiity and the magnitude of the gradient of ρ and to satisfy the geometri onstraints

skethed above, i.e. the element size dereases linearly with the distane from the vortex ore but the

extrema are bounded by the smallest and the largest elements present in the the initial mesh, i.e.

A(xi, t) = (hmax − hmin)Av(xi, t) + hmin, (12)

where

Av(x, t) =
1

3
min

(

max

(

|x− xv(t)|

rv
, 3

)

, 0

)

is the normalized distane from the ore and hmin and hmax are the minimum and maximum element size

of the domain, respetively.

The omputations are arried out with a non-dimensional time step of 5 × 10−4
, whih orrespond to a

Courant number of 0.1, and are interrupted at t = 4, i.e. when the total distane traveled by the vortex

ore is 80rv. The �nal solution and grid are plotted in �g. 9. The overall gird-quality is unsatisfatory and

this is indeed re�eted over the iso-vortiity lines of �g. 9, whih appear to be exessively irregular. Overall

the solution obtained adapting over ω and ∇ρ is severely smeared resulting in a 58% error, as shown in

tab. 1. This result is unsatisfatory if ompared to other adaptive mesh approahes to the vortex advetion

problem [5, 35℄.

As shown in �g. 9 the applied adaptive sheme is strongly dissipative. The numerial dissipation intro-

dued by the TVD Roe sheme is proportional to the eigenvalues of the Jaobian matrix, i.e. m/ρ, c and ν,
and to the ell size, i.e. η.

The grid veloity terms is both proportional to the �xed-topology grid displaement, i.e. the displaement

9
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Figure 8: Initial grid and solution vortiity magnitude for the vortex advetion problem with adaptive the

sheme. Grid made of 33017 nodes and 65368 elements, hmax = 0.08 and hmin = 0.002, with hmax =
5.5× 10−2

and hmin = 1.36× 10−3
.
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Figure 9: Final grid and solution vortiity magnitude for the vortex advetion problem with adaptive the

sheme and no mesh deformation, 40687 nodes and 80623 elements.

of the re�ned area around the vortex, and to the orretion term to aount for the insertion/deletion of

nodes. The latter term depends inversely on the time step [36℄. From the governing equations point of view

this means that the more the time step is redued, and the more frequently the grid is hanged, the more

numerial dissipation will be introdued by the sheme.

In the adaptation ase of �g. 9 the grid around ore is ontinuously hanging due to the e�et of the

vortex displaement and of the solution smearing as well. To overome suh issue a di�erent approah has

been studied that limits the amount of topology modi�ations performed to move the vortex ore. The mesh

deformation algorithm is modi�ed to displae in rigid-like fashion the elements around the vortex ore, xv,

and a preditor/orretor-like sheme is set up as follows

1. First the position of the vertex representing the vortex enter point at the new time step is predited

as

x̂
n+1
v

= xn
v
+

∆t

2

(

mn
v

ρn
v

+
xn
v
− xn−1

v

∆t

)

,

where mv and ρv are the values of momentum and density on the ore node, respetively.

2. The position of the rest of the grid nodes xn+1
i is omputed with the mesh deformation sheme based on

the ontinuum analogy. The elements loated in side the vortex ore are displaed rigidly of x̂
n+1
v

−xn
v
,

the elements loated outside the mesh are deformed with the elasti analogy algorith.

3. Following the FIAP proedure, the solution at the new time step is predited and then the position

xn+1
v

is updated loating the minimum/maximum of the vortiity, as skethed above. In the present

ase the appliation of the mesh regularization tehnique is not applied inside the vortex ore, sine it

would a negative impat on the grid spaing, thus on the solution.

4. The de/re�nement sheme outlined in setion 2 is arried out based on the orreted position for the

vortex ore and the predited solution the grid. This allows to impose simultaneously the onstraints

based on the error equidistribution theory and the geometri ones.

5. The solution u
n+1

is updated with the ALE sheme over the adapted grid.

The solution omputed with the sheme outlined above are shown in �g. 10(a). The initial grid quality and

spaing are very well preserved, and the vortiity �eld is very lose to the exat one, indeed, as shown in

11



PSfrag replaements

BDF1

BDF2

BDF3

Exat

PSfrag replaements

BDF1

BDF2

BDF3

Exat

(a) Adaptive, 36999 nodes and 73198 elements

PSfrag replaements

BDF1

BDF2

BDF3

Exat

PSfrag replaements

BDF1

BDF2

BDF3

Exat
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Figure 10: Final grid and solution vortiity magnitude for the vortex advetion problem with the adaptive

sheme. (a) Mesh deformation and FIAP adaptation with geometri onstraints on the element dimension.

(b) Mesh deformation and swapping only.

tab. 1 a 5% loss is ahieved that is omparable with the 8-th order sheme from [35℄. A similar result an be

obtained if no nodes are inserted or deleted and the movement is arried out only with mesh deformation and

swapping, as shown in �g. 10(b). Indeed, sine the grid inside the vortex ore is translated almost rigidly,

no hanges in topology ours inside this region and the vortex is thus translating �together� with a high

quality/resolutions mesh.
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(a) Grid (b) Mah

Figure 11: Initial adapted grid and solution for a M∞ = 0.8 �ow past a NACA 0012 at zero angle of attak.

Initial grid is made of 50867 nodes and 100595 elements, i.e. hmin = 6.4× 10−4
and hmax = 1.

xv/c -0.6 -0.2 0.2 0.6 1.0 1.4

∆vv(t)
∆vv(0)

− 1 0.1333 -0.1084 -0.3791 -0.3857 -0.4621 -0.5097

Table 2: Redution in vortex intensity measured in terms of tangential veloity aross the vortex ore.

4 Interation with a NACA 0012 airfoil

The interation between a NACA 0012 airfoil and a vortex is here presented. The �ow �eld Mah number is

0.8 and the vortex referene Mah number is 0.259154, whih orrespond to Γ = −0.2, i.e. rotating lokwise.
The airfoil has a unit hord value, i.e. c = 1, and the vortex ore has a 0.05c radius and the initial position

is xv(0) = −5c and yv(0) = −0.26c.
As shown by [37, 38, 5℄, when the distane between the vortex and the lower side of airfoil is su�iently

small an inrease in the value of the loal veloity on the wall is observed, while the �ow �eld on the upper side

is only slightly a�eted. This auses a pressure wave to be released by the nose of the airfoil, that propagates

upstream, and a aft movement of the shok wave on the lower side due to the inrease in streamwise veloity.

When the vortex reahes the trailing edge the shok wave on the lower side moves fore, due to the redution

of the jump of veloity/pressure, and as the time proeeds the original, steady, state is reovered.

First steady omputations are arried out with adopting the FIAP adaptive sheme for the NACA 0012

airfoil test ase at zero angle of attak without vortex. The solution features two strong shoks on the upper

and lower side of the airfoil with equal intensity, indeed no shear surfae is present.

The FIAP sheme for steady appliations is adopted, i.e. without looping over s, to adapt the solution

to the mixed Gradient/Hessian of the Mah number until a 5% onvergene is obtained for the relative

variation of µw. The distane-based adaptation of setion 2 is also arried out imposing that the size of the

elements dereases with the distane from the airfoil and with the distane from the vortex loated in xv(0),
i.e. evaluating Eq. (12) with hmax = 1 and hmin = 6.4 × 10−4

. Therefore the area of the elements loated

inside the ore is one order of magnitude smaller than the elements loated on the boundary of the airfoil.

The obtained grid is shown in �g. 11(a) whih is made of 50867 nodes and 100595 elements. The

simultaneous use of the solution-based and the geometry-based adaptation strategies allows to obtain a grid

that is very well re�ned near lose to the shoks and, on the other hand, is not under re�ned where the error

13
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Figure 12: Comparison between the pressure oe�ient omputed with the adaptive sheme for the Parallel

BVI problem and the Euler [37℄ and Navier-Stokes [38℄ referene solutions.

sensor is small. Indeed the grid obtained with the solution-driven sheme only feature very large elements

in the region between the nose of the airfoil and the shok wave, the use of the geometry-driven sheme

avoid suh behavior. This �onservative� approah, whih limits the grid dere�nement, is onsidered a better

hoie when performing unsteady omputations during whih the mesh undergoes signi�ant modi�ations.

In �g. 11(b) the ontour lines for the Mah number are shown: the solution is overall symmetri, the shok

wave are very well resolved and no shear wake is present.

To perform unsteady omputations where the vortex travels very lose to the airfoil, i.e. with very a

small miss-distane, a vortex is �inserted� in the �ow �eld. To this purpose the initial solution is alulated

superimposing the solution obtained with the adaptive steady omputations, i.e. the one of �g. 11, and the

solution omputed evaluating Eq. (10) and (11) for the vortex with desribed above. The FIAP sheme is

then arried out without looping over s, i.e. performing one adaptation proedure per time instant, using

a Forward Euler sheme with a non dimensional time-step of 0.08, orresponding to a maximum Courant

number of 80.
The omputational grid is shown in �g. 13 and 14 together with the pressure ontour lines. The grid

around the ore follows losely the vortex, that is onveted inside the domain and passes at small distane

from the airfoil. The vortex, highlighted as a minimum in the pressure �eld, looses most of its intensity after

the interation with the airfoil with a 52% loss in terms of ∆vv when the ore is loated at 1.4c, i.e. �g. 14().
Fig. 13(b) and 13() shows that no pressure wave detahes from the leading edge as reported by [5℄, this

ould be aused by a redution of the vortex intensity, as shown in tab. 2. The fore movement of the shok

wave is also only mildly aptured, to this end the redution of almost 50% of the vortex intensity is a key

fator together with the derease of mesh quality that is aused by the lose interation of the vortex and

the shok wave shown in �g. 14(a).

Fig. 12 shows the omparison between the distribution of the pressure oe�ient along the airfoil om-

puted with the adaptive sheme and the referene solutions obtained with an Euler solver [37℄ and a Navier-

Stokes solver [38℄. For xv = 0 the urves on the upper side of the airfoil overlap fairly well, while the value of

Cp on the lower side is higher than expeted. This is in agreement with the fat that no ompression wave

is detahed from the nose and ould be aused by the redution of the vortex intensity, as disussed above.

The position of the lower-side shok and its intensity agree with the referenes. For xv = 0.5c the solution
shows a better agreement in terms of pressure oe�ient lose to the nose, but the predited aft movement

of the upper shok is signi�antly underpredited together with the inrease in intensity. As before this is

deemed to be aused by the strong redution in the vortex intensity shown in tab. 2.
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(a) xv/c = −0.6, 48928 nodes and 96500 elements

(b) xv/c = −0.2, 48937 nodes and 96516 elements

() xv/c = 0.2, 48375 nodes and 95388 elements

Figure 13: Computational grid and pressure ontour for the parallel BVI NACA 0012 for M∞ = 0.8,
Mv = 0.259154 and Co = 80.

15



(a) xv/c = 0.6, 48254 nodes and 95145 elements

(b) xv/c = 1, 50565 nodes and 99761 elements

() xv/c = 1.4, 50178 nodes and 98987 elements

Figure 14: Computational grid and pressure ontour for the parallel BVI NACA 0012 for M∞ = 0.8,
Mv = 0.259154 and Co = 80.
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