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Abstract: We present an output-based adaptation strategy for high-order simulations
of the compressible Navier-Stokes equations on deformable domains. The equations are
solved on a mapped reference domain using an arbitrary Lagrangian-Eulerian approach.
The discretization is a discontinuous Galerkin finite-element method in space and time.
Discrete unsteady adjoint solutions, derived for both the state and the geometric con-
servation law, provide scalar output error estimates and drive adaptive refinement of the
space-time mesh. Spatial adaptation is performed using dynamic order refinement on a
fixed tessellation of the domain, while in the temporal domain a combination of coarsening
and refinement is used to determine the most efficient time slab distribution. Results from
compressible Navier-Stokes simulations demonstrate the accuracy of the error estimates
and efficiency of the proposed output-based adaptation approach.
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1 Introduction
As fluid dynamics simulations become more complex, estimates of discretization error are of

increasing interest for improving robustness and accuracy of the computations. Adjoint-based
methods are especially suited for this task as they provide reliable estimates for errors in outputs
of interest. Furthermore, these estimates can be localized for adapting the mesh to improve output
accuracy and computational efficiency.

The development of output-based methods has focused primarily on steady-state problems [1–7],
although unsteady problems have recently begun to receive increased attention. Topics addressed
thus far include temporal error estimation and adaptation [8,9], static spatial mesh adaptation [10],
combined temporal and static spatial adaptation [11], and combined temporal and spatial adapta-
tion with dynamic h and p refinement [12–14].

This work considers combined temporal refinement and dynamic spatial order adaptation for
aerodynamics simulations on deformable domains. Such simulations have far-reaching applica-
tions, from bio-inspired flight to aircraft maneuver and flutter analysis. The runs are generally
computationally intensive and the resulting solutions are often rich in features. We show that for
these problems, output error estimation and adaptation can have a significant impact on solution
accuracy and robustness.

One of the main differences between static and deformable domains is the requirement that a
geometric conservation law (GCL) be satisfied in the latter cases in order to preserve a free-stream
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solution. Satisfying the GCL in our case involves solving for an auxiliary variable that is co-evolved
with the state. In the current work, we use the discontinuous Galerkin method for both spatial
and temporal discretizations of the state and GCL.

In addition to its effect on the primal solution, the GCL also has an impact on error estimation.
Since outputs in general depend on both the state and GCL variable, a separate adjoint equation
must be solved for the GCL as well. In this work, discrete adjoint equations are derived for both
the state and the GCL, and an adjoint-weighted residual is presented for estimating the output
error.

The present research is a continuation of previous work in unsteady output-based adaptation on
static meshes [11,14,15]. The discretization and error estimation extend naturally to the geometric
conservation law, and the required modifications are discussed here. The outline for this paper is
as follows: in Section 2 we introduce the mapping for deformable domains and discuss the GCL;
in Section 3 we give the primal discretization for the state and GCL; in Section 4 we present the
adjoint discretization; Section 5 contains the output error estimation; and Section 6 concerns mesh
adaptation. Finally, results for the compressible Navier-Stokes equations are presented in Section 7.

2 Arbitrary Lagrangian-Eulerian Mapping
Our system of conservation laws on the physical domain is

∂u
∂t

+∇ · ~F(u,∇u) = 0, ~F = ~Fi(u)− ~Fv(u,∇u), (1)

where u(~x, t) ∈ Rs is the state vector, ~x ∈ Rd is the spatial coordinate, and t ∈ R is time. ~Fi and
~Fv are the inviscid and viscous fluxes, respectively. Rather than solving this system on the physical
domain, we instead map it to a static reference domain using an arbitrary Lagrangian-Eulerian
(ALE) approach. Specifically we use the approach presented by Persson et al [16].

2.1 ALE mapping
The mapping between reference and physical domains is summarized graphically in Figure 1,

and definitions of relevant variables are given in Table 1.

Reference domain: ~X,uX , ~FX

~NdA

∂uX

∂t

∣∣∣
~X
+∇X · ~FX(uX ,∇XuX) = 0

Mapping

⇒

~X, t ⇒ ~x( ~X, t)

G = ∂~x
∂ ~X

g = det(G)
uX = gu

~vG = ∂~x
∂t

~FX = gG−1~F− uXG−1~vG

~nda = gG−T ~NdA

~NdA = g−1GT~nda

⇒

Physical domain: ~x,u, ~F

~nda

∂u
∂t

∣∣∣
~x
+∇ · ~F(u,∇u) = 0

Figure 1: Summary of the mapping between reference and physical spaces.

The expression for the transformation of the normals is obtained using dv = gdV for infinitesimal
volumes and d~l = Gd~L for infinitesimal vectors, as derived in [16]. We break up the transformed
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Table 1: Definitions of variables used in the ALE mapping. Boldface indicates a state vector and
an arrow indicates a spatial vector.
~X = reference-domain coordinates
~x = physical-domain coordinates
G = mapping Jacobian matrix
g = determinant of Jacobian matrix
~n = normal vector on physical domain
~N = normal vector on reference domain
v(t) = physical domain (dynamic)
V = reference domain (static)

da = differential area on physical domain
dA = differential area on reference domain
~vG = grid velocity, ∂~x/∂t
u = physical state
uX = state on reference domain
~F = flux vector on physical domain
~FX = flux vector on reference domain

flux, ~FX , into inviscid and viscous fluxes and lump the grid-velocity term into the inviscid flux:

~FX = ~Fi
X − ~Fv

X ,
~Fi

X = gG−1
(
~Fi(u)− u~vG

)
, ~Fv

X = gG−1~Fv(u,∇u).

The gradient of the state required for the viscous flux transforms via the chain and product rules.
Using implied summation,

∇u = ∂u
∂xj

= ∂(g−1uX)
∂Xd

∂Xd

∂xj
=

(
g−1∂uX

∂Xd
− g−2 ∂g

∂Xd
uX

)
G−1

dj

= g−1
(
∂uX

∂Xd
− g−1 ∂g

∂Xd
uX

)
G−1

dj , (2)

where d and j index the reference and physical coordinates, respectively. We also have

G = Gjd = ∂xj

∂Xd
, δji = ∂xj

∂xi
= ∂xj

∂Xd

∂Xd

∂xi
= GjdG−1

di , ⇒ G−1 = G−1
di = ∂Xd

∂xi
.

Once the fluxes and states have been transformed in the above manner, the new equations to be
satisfied on the reference domain are simply

∂uX

∂t

∣∣∣
X

+∇X · ~FX(uX ,∇XuX) = 0, (3)

and the solution procedure is the same as if the mesh were not deforming at all.

2.2 The Geometric Conservation Law
A desirable property of numerical schemes is the ability to preserve a free-stream state. However,

for arbitrary mappings in the method described above, a constant state in the physical domain
(u = ū = constant) will not be an exact solution to Eqn. 3 in the reference domain. This means
that in the presence of mesh motion, a free-stream will not be preserved.

The first thing to note is that for general mappings, the quantity gū will be non-polynomial,
which means it cannot be represented exactly with the reference-domain bases. This will introduce
spatial errors into an initially free-stream state. In addition, conservation errors in time can also
arise if the change in element size is not exactly integrated by the numerical scheme.

Persson et al [16] describe one technique, a geometric conservation law, for addressing these
issues. This technique relies on using uX̄ = ḡu = ḡg−1uX as the reference-domain state instead of

3



uX , where ḡ is a separate variable satisfying the following equation:

∂ḡ

∂t
−∇X · (gG−1~vG) = 0. (4)

This equation comes from inserting a constant state ū into Eqn. 3 and observing what remains on
the left-hand side. If ḡ is approximated using the same spatial basis as the state and is marched
according to Eqn. 4 using the same unsteady solver, the reference state uX̄ = ḡū is then a repre-
sentable solution in the discrete approximation space.

Implementation of the GCL requires evolving this additional scalar ḡ, which is now used to
convert the stored reference state to the physical state. The final form of the reference-domain
equation is then

∂uX̄

∂t

∣∣∣
X

+∇X · ~FX̄(uX̄ ,∇XuX̄) = 0, (5)

where ~FX̄ is just ~FX but with uX̄ as input rather than uX . Note that the expression for the
physical gradient in Eqn. 2 changes when the stored reference state is uX̄ instead of uX :

∇u = ∂u
∂xj

= ∂(ḡ−1uX̄)
∂Xd

∂Xd

∂xj
= ḡ−1

(
∂uX̄

∂Xd
− ḡ−1 ∂ḡ

∂Xd
uX̄

)
G−1

dj . (6)

Figure 2 shows the effect of the GCL on a free-stream preservation test. In this case, which is
similar to the one in [16], the Navier-Stokes equations are solved on a rectangular domain with an
analytical sinusoidal mapping defined in the domain interior. The temporal and spatial discretiza-
tion are both discontinuous Galerkin, with order r = 1 and p, respectively.
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Figure 2: Free-stream errors with and without the GCL. A large number of time steps is used so
that the spatial error dominates the temporal error in each case.

Without the GCL, the free-stream solution is not preserved, though the error (shown in an
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L2 state norm) converges with both h and p refinement of the spatial mesh. With the GCL,
however, the free-stream is preserved to residual tolerance, which was approximately ten orders
of magnitude for all runs. We note that to achieve this level of accuracy with the GCL, very
high-order quadrature rules are required. To demonstrate that the GCL is working properly, we
used rules of order 6p for this case. In practical cases we use more modest rules, namely 2p + 5
for the Navier-Stokes equations, since in such cases discretization errors tend to dominate, making
extremely high quadrature rules unnecessary.

2.3 Analytical Mesh Motion
To simulate problems of physical interest, we employ analytical mesh motions obtained by

blending superimposed rigid-body motions in circular disks around the objects of interest [16]. For
example, an airfoil situated inside of a rigid-body disk can be made to pitch and plunge in an
analytically-prescribed manner (see Figure 3).

Figure 3: Airfoil undergoing a blended rigid-body pitch/plunge.

A polynomial blending function is used to transition smoothly from the rigid body motion into
the static mesh further out. For the cases in this work, we use quintic polynomials.

Since the entire motion is described analytically, g, G, and ~vG can be evaluated at any point in
space, ~x, and time, t. This greatly simplifies the calculation of the GCL residual (Eqn. 4), since
the GCL flux is an analytical function that is independent of ḡ.

3 Primal Discretization
We use a discontinuous Galerkin finite element method in both space and time to discretize

Eqn. 5 and, when using the GCL, Eqn. 4. The temporal discretization is restricted to slabs on which
the temporal variation is approximated with polynomials of order r. This means that all elements
advance at the same time step, ∆t, which can vary in time. However, the spatial approximation
order need not be the same for all spatial elements in a given time slab, nor for all time slabs
corresponding to a given spatial element.

3.1 Approximation
Each space-time element is identified by two indices, (e, k), where e is the spatial element index

and k is the time slab index. pe,k denotes the order of approximation on space-time element (e, k).
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On each space-time element, the state and GCL variable are approximated as

uX̄,H( ~X, t)
∣∣∣
e,k

= uk,n

X̄,H,e,j︸ ︷︷ ︸
∈Rs

φk
H,e,j( ~X)︸ ︷︷ ︸
order pe,k

ϕn
H(t)︸ ︷︷ ︸

order r

, (7)

ḡH( ~X, t)
∣∣∣
e,k

= ḡk,n
H,e,j︸ ︷︷ ︸
∈R1

φk
H,e,j( ~X)︸ ︷︷ ︸
order pe,k

ϕn
H(t)︸ ︷︷ ︸

order r

, (8)

where 1 ≤ j ≤ dof(pe,k) is the spatial degree-of-freedom index on space-time element (e, k) and
1 ≤ n ≤ r+1 is the temporal degree of freedom index on time slab k. The number of spatial degrees
of freedom depends on the approximation basis and the dimension; e.g. for full-order approximation
in two dimensions, dof(pe,k) = (pe,k +1)(pe,k +2)/2. Note that the spatial basis functions, φk

H,e,j( ~X),
are specific to an element and time slab, while the temporal basis functions, ϕn

H(t), are the same
for each time slab. In this work, we use Lagrange bases in both space and time.

For compactness of notation, we lump all spatial degrees of freedom associated with time node
n on slab k into one vector, for both the state and the GCL variable,

Uk,n
H =

{
uk,n

X̄,H,e,j

}
∀e,j
∈ RsNk

H , (9)

Gk,n
H =

{
ḡk,n

H,e,j

}
∀e,j
∈ RNk

H , (10)

where Nk
H =

∑
e dof(pe,k) is the total number of spatial degrees of freedom on time slab k. As a

shorthand, we will denote by Uk
H and Gk

H the sets of unknowns over an entire time slab, k.

3.2 Residuals
A nonlinear system of equations on each time slab is obtained by substituting the approxima-

tions from Eqns. 7 and 8 into Eqns. 5 and 4, respectively, multiplying by test functions in the same
space as the approximation functions, and integrating by parts to incorporate discontinuities at
time slab and spatial element interfaces. These equations are expressed in terms of r + 1 residual
vectors on time slab k,

State residual:

Rk,m
U,H ≡ am,nMk,k

H Uk,n
H − ϕm

H(tk−1)Mk,k−1
H Uk−1,r+1

H +
∫ tk

tk−1
ϕm

H(t)RU,H(Uk
H(t),Gk

H(t)) dt = 0,

GCL residual:

Rk,m
G,H ≡ am,nMk,k

H Gk,n
H − ϕm

H(tk−1)Mk,k−1
H Gk−1,r+1

H +
∫ tk

tk−1
ϕm

H(t)RG,H(t) dt = 0,

(11)
where 1 ≤ m ≤ r+1, and am,n are time-slab-independent coefficients that are defined by

am,n = −
∫ tk

tk−1
ϕn

H

dϕm
H

dt
dt+ ϕn

H(tk)ϕm
H(tk). (12)

The temporal approximations of the state and GCL variable on time slab k are given by Uk
H(t) =∑

n Uk,n
H ϕn

H(t) and Gk
H(t) =

∑
n Gk,n

H ϕn
H(t), respectively, and the spatial state and GCL residuals

are given by RU,H ∈ RsNH and RG,H ∈ RNH . We do not focus on the details of the spatial
discretization and only mention that it is a discontinuous Galerkin method employing the Roe
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inviscid flux [17] and the second form of Bassi and Rebay for the viscous flux [18]. Note that
the spatial state residual depends on both the state and the GCL, while the spatial GCL residual
depends only on time and analytical terms.

Given two time slabs k and l, Mk,l
H is the mass matrix formed from the spatial basis functions

on each slab, which need not be the same due to the possibility of dynamic order refinement. We
slightly abuse matrix-vector product notation in Eqn. 11 since Uk,n

H and Gk,n
H are of different size

– for discretized systems the mass matrix is understood to act on each equation separately.

3.3 Implementation
Since the state residual depends on the GCL variable, the GCL is advanced in time before

advancing the state. This adds minimal cost due to the simplicity of the GCL residual and the
fact that ḡH is a scalar field. Because of the non-linear nature of the ALE mapping, an increment
∆Q is added to the default numerical quadrature order used to evaluate spatial integrals. For the
Navier-Stokes results in this paper, we augment the original 2p+ 1 quadrature order by an amount
∆Q = 4, unless otherwise noted.

4 Discrete Adjoint
Typically, outputs of interest such as lift or drag are functions of the physical state, u. However,

from the transformations defined in Section 2, the physical state is a function of both the reference
state uX̄ and the GCL variable ḡ. Therefore, outputs will be sensitive to perturbations in both of
these variables, and to correctly account for this sensitivity, adjoint equations must be derived for
the GCL variable in addition to the state.

The coupling between the state and GCL residuals in Eqn. 11 will be reflected in the adjoint
system. To derive the discrete adjoint for the state and GCL, we linearize the discrete residuals
in Eqn. 11. The sparsity patterns of the complete Jacobian matrix and its transpose are shown in
Figure 4.

Jacobian matrix
U1 G1 U2 G2 U3 G3

R1
U • •

R1
G •

R2
U • • •

R2
G • •

R3
U • • •

R3
G • •

Jacobian matrix transpose
R1

U R1
G R2

U R2
G R3

U R3
G

U1 • •
G1 • • •
U2 • •
G2 • • •
U3 •
G3 • •

Figure 4: Sparsity patterns for the coupled state/GCL system in a DG-in-time discretization, shown
for the first three time slabs. We drop subscripts H for clarity.

We denote by Ψl,m
U,H and Ψl,m

G,H the discrete adjoint vectors corresponding to the state and GCL,
respectively. These adjoints represent sensitivities of a chosen output JH(Uk,n

H ,Gk,n
H ) to residual

source perturbations added to Eqn. 11. As mentioned, outputs of engineering interest are generally
functions of the physical state, which means that dependence on both Uk,n

H and Gk,n
H must be taken

into account when linearizing JH .

4.1 Adjoint Residuals
The coupled discrete adjoint system is obtained by multiplying the transposed Jacobian matrix

by the adjoint state and adding the output linearization. Considering the sparsity pattern in
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Figure 4, the result for our DG-in-time discretization is∂Rk
U,H

∂Uk
H

T

Ψk
U,H +

∂Rk+1
U,H

∂Uk
H

T

Ψk+1
U,H +

(
∂JH

∂Uk,n
H

)T

= 0, (13)

∂Rk
U,H

∂Gk
H

T

Ψk
U,H +

∂Rk
G,H

∂Gk
H

T

Ψk
G,H +

∂Rk+1
G,H

∂Gk
H

T

Ψk+1
G,H +

(
∂JH

∂Gk,n
H

)T

= 0. (14)

We see that the state adjoint governed by Eqn. 13 is oblivious to the GCL. On the other hand, the
GCL adjoint governed by Eqn. 14 depends on the state adjoint. The result is that the state adjoint
on a given time slab must be solved first for use in the GCL adjoint equation.

4.2 Implementation
In solving the GCL adjoint equation, Eqn. 14, the derivatives of the unsteady GCL residual

with respect to the GCL variable are straightforward to obtain, as the result is just a mass matrix –
see Eqn. 11. Obtaining the derivative of the output with respect to Gk,n

H is done by simply applying
the chain rule on derivatives with respect to the physical state, which are already used in the state
adjoint equation. The only new term is then the derivative of the state residual with respect to the
GCL variable, ∂Rk

U,H

∂Gk
H

. In the present work, as a preliminary measure, we use finite differences to

evaluate this term. Finally, for adjoint consistency, we replace ∂ḡ
∂Xd

in the state gradient (Eqn. 6)
with the analytical ∂g

∂Xd
.

5 Output Error Estimation
Since the approximation space for the forward solution is finite-dimensional, the calculated

output JH(UH ,GH) will generally include discretization error. We estimate this error by comparing
the output to one computed on a finer space, denoted by the subscript h, which consists of order
enrichment in both space and time: i.e. using a spatial order of pe,k + 1 and a temporal order of
r + 1 for each space-time element e, k.

5.1 The Adjoint-Weighted Residual
We use the adjoint-weighted residual [7] to approximate the output error, which is the difference

between the output computed with the coarse solution and that computed with the fine solution,

δJ ≈ JH(UH ,GH)− Jh(Uh,Gh)

= ∂Jh

∂Uh
δUh + ∂Jh

∂Gh
δGh +R2

= ∂Jh

∂Uh

[
∂RU,h

∂Uh

]−1
−δRU,h +

[
∂RU,h

∂Gh

][
∂RG,h

∂Gh

]−1

δRG,h


︸ ︷︷ ︸

δUh

+ ∂Jh

∂Gh

[
−∂RG,h

∂Gh

]−1

δRG,h︸ ︷︷ ︸
δGh

+R2

=
(
−Ψk,m

U,h

)T
Rk,m

U,h(UH
h ,GH

h )︸ ︷︷ ︸
state contribution

+
(
−Ψk,m

G,h

)T
Rk,m

G,h(GH
h )︸ ︷︷ ︸

GCL contribution

+R2 (15)

where UH
h , GH

h are injections of the coarse state and GCL variables into the fine space, δUh =
UH

h − Uh, δGh = GH
h − Gh, and R2 is a neglected remainder term that is second-order in the
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errors in the state, GCL, and their respective adjoints. Summation is implied on the index m,
which indexes the fine-space temporal degrees of freedom, 1 ≤ m ≤ r+ 2. We will refer to Eqn. 15
without the remainder term as δJest.

When Galerkin orthogonality holds, coarse-space approximations of the adjoints can be sub-
tracted from the fine space adjoints appearing in Eqn. 15. Theoretically this has no effect on δJ ,
but in practice it minimizes errors due to converging residuals only to a finite tolerance. We note
however that care must be applied when using the BR2 viscous discretization, which does not ex-
hibit Galerkin orthogonality for coarse-space solutions injected into an order-enriched fine space.
This is due to an order-dependence of the stabilization terms (the δ’s) in BR2. We employ a simple
remedy [19], which consists of using the coarse-space orders to approximate the stabilization terms
when evaluating the fine-space residuals in Eqn. 15. In addition, as quadrature effects tend to be
more pronounced for simulations on deformable domains, we use the coarse-space quadrature rules
in these fine-space residuals.

The error estimate in Eqn. 15 requires an evaluation of the fine-space unsteady residual associ-
ated with the coarse solution, and the fine-space adjoint solution Ψk,m

h . In this work we solve the
fine-space adjoint equation to machine precision to minimize additional sources of error in our esti-
mates. However, in practice, the fine-space adjoint can be computed by smoothing or reconstructing
the coarse-space adjoint in order to minimize computational cost [20].

5.2 Error Localization
Since our aim is to adapt the mesh to reduce the output error, we need to first localize the

error contributions to individual space-time elements in the mesh. This is done by noting that the
output error estimate in Eqn. 15 can be written as a sum over all space-time elements,

δJest =
∑

k

∑
e

εe,k, (16)

where the error contribution of a given space-time element (e, k) is

εe,k =
(
−ZeΨk,m

U,h

)T
ZeR

k,m
U,h

(
UH

h

)
+
(
−ZeΨk,m

G,h

)T
ZeR

k,m
G,h(GH

h ), (17)

and where summation is implied on the fine-space temporal degrees of freedom index m. Ze is a
mask matrix that simply restricts the adjoint-residual product to a specific element e. The error
indicator is taken as the absolute value of the elemental contribution to the output error,

error indicator = εe,k =
∣∣εe,k

∣∣.
This indicator identifies space-time elements that contribute most to the output error. However,
it does not contain information about the source of the error, i.e. spatial or temporal. This
information is obtained from a space-time anisotropy measure, which in this work is calculated in
the same manner as presented in [14, 20]. Specifically, we calculate the anisotropy using separate
projections of the fine-space adjoint onto semi-coarsened spatial and temporal spaces. The spatial
and temporal error estimates for space-time element (e, k) are obtained by using these projected
adjoints in Eqn. 17, resulting in separate εspacee,k and εtime

e,k estimates. We use the ratio of these values
to calculate the spatial/temporal error fractions on element e, k,

βspacee,k =
|εspacee,k |

|εspacee,k |+ |εtime
e,k |

, βtime
e,k = 1− βspacee,k . (18)
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6 Spatial and Temporal Adaptation
The output error estimate drives an adaptive process in which the unsteady problem is solved

on successively refined space-time meshes. At each adaptive iteration, the process requires forward
and adjoint solutions, which become more expensive on the finer meshes. The temporal refinement
preserves the slab-structure of the discretization in order to allow a solution strategy based on
an approximate factorization [20]. Adaptive indicators identifying the amount of temporal error
associated with each time slab and the amount of spatial error associated with each space-time
element are given by

spatial indicator on space-time element e, k = εspacee,k = εe,kβ
space
e,k , (19)

temporal indicator on time slab k = εtime
k =

∑
e

εe,kβ
time
e,k , (20)

where the sum indexed by e is taken over all spatial elements.
The above indicators are used in a fixed-growth adaptive strategy in which some combination

of time slabs and space-time elements are marked for coarsening or refinement. The change in the
total degrees of freedom at every adaptive iteration is governed by a multiplicative growth factor,
fgrowth. When coarsening is requested, a factor f coarsen of the current degrees of freedom, Dcurrent,
is first marked for coarsening. The coarsening and refinement budgets are then

Bcoarsen = f coarsenDcurrent,

Brefine = fgrowthDcurrent +Bcoarsen.

The following greedy algorithm is used to decide which space-time elements or time slabs to
refine or coarsen.

1. Define and sort a merit function separately for all space-time elements and all time slabs.
The figure of merit of each refinement option is the amount of output error addressed,
Eqns. 19 and 20, divided by the degrees of freedom added if the element/slab were refined.
For temporal refinement, the latter is approximated as the degrees of freedom in the targeted
slab k, dofk ≡

∑
e dof(pe,k), and for spatial refinement as the number of additional degrees of

freedom dof(pe,k + 1)− dof(pe,k) associated with an order increase of element e, k.

2. Coarsening stage

(a) Set coarsening degree-of-freedom tally to zero.
(b) Choose an unmarked space-time element or time slab with the lowest merit function.
(c) If a time slab was chosen, mark it for a factor of 2 coarsening and add 0.5 dofk to the

coarsening tally.
(d) If a space-time element was chosen, mark it for an order decrement and add dof(pe,k)−

dof(pe,k−1) to the coarsening tally.
(e) If the tally meets or exceeds the coarsening budget, stop. Otherwise return to step 2b.

3. Refinement stage

(a) Set refinement degree-of-freedom tally to zero.
(b) Choose an unmarked space-time element or time slab with the highest merit function.
(c) If a time slab was chosen, mark it for a factor of 0.5 refinement and add dofk to the

refinement tally.

10



(d) If a space-time element was chosen, mark it for an order increment and add dof(pe,k +
1)− dof(pe,k) to the refinement tally.

(e) If the refinement budget is met or exceeded, stop. Else, return to step 3a.

We note that the factor of 2 in the temporal refinement and coarsening is somewhat arbitrary, and
we have not investigated tuning or optimizing it for improved performance.

The coarsened or refined orders on the original time slabs define a spatial order layout as a
function of time for the next adaptive iteration. To handle temporal coarsening, time slabs are
redistributed using one-dimensional metric-based meshing, according to the following algorithm:

1. For each time slab k, define ∆tdesiredk = c∆tcurrentk where c is 0.5 for refinement, 2 for coarsen-
ing, and 1 if the time slab is not marked.

2. Define Ndesired =
∑

k(∆tcurrentk /∆tdesiredk ).

3. Scale ∆tdesiredk by Ndesired/dNdesirede, and set Ndesired = dNdesirede, where d e is the greatest
integer (ceiling) function.

4. Define ndesiredk = ∆tcurrentk /∆tdesiredk = piecewise function on current time slabs.

5. The new time slab breakpoints are times tl where
∫ tl

0 ndesiredk dt is an integer.

This algorithm refines the temporal grid while shuffling it slightly to make room for the new
coarsened slabs.

6.1 Alternative Adaptive Methods
In the results, we compare our output-based adaptive algorithm to uniform p-refinement in

space and bisection in time, as well as to a cheaper indicator based on the unweighted residual.
The unweighted residual indicator is given by a form similar to the output-error (Eqn. 17), but
without the adjoint and with absolute values on the individual residual components,

εrese,k = Ze

∣∣Rk,m
h (UH

h )
∣∣.

This indicator targets areas of the space-time domain where the partial differential equation is
not well satisfied. Note that we do not presently include the GCL residual in this indicator to
avoid complications with scaling quantities of different units. A jump-based space-time anisotropy
measure [11] is used to determine βspacee,k and βtime

e,k for this indicator.

7 Results
In this section, we present the results for several test cases. The first is a verification of the

adjoint and error estimation procedures described above. The following cases then employ this
error indicator to drive unsteady mesh adaptation for problems of engineering interest. These
problems consist of airfoils pitching and plunging at low Reynolds number, and the convergence of
the lift on these airfoils is compared for the three adaptive methods described above. The output
convergence is shown as a function of total space-time degrees of freedom, which is representative
of computational efficiency.
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7.1 Error Estimate Verification
Here, we verify the error estimation procedures described above with a simple Navier-Stokes

problem. The problem consists of a density perturbation in a stagnant fluid, situated in the corner
of a rectangular basin bounded by no-slip walls (Figure 5). The density perturbation is allowed to
diffuse for two time units, and the final force on the left wall is taken as our output of interest.

Now, since no boundaries are moving here, mesh motion is not required and the problem could
be solved with a fixed grid. However, to test the error estimation with mesh motion, we instead
choose to wave the mesh in the background, using the following formula to map the domain from
reference to physical space:

x1 = X1 + 2.0 sin
(2πX1

20

)
sin
(
πX2
7.5

)
sin
(2πt

3

)
,

x2 = X2 + 1.5 sin
(2πX1

20

)
sin
(
πX2
7.5

)
sin
(4πt

3

)
.

(21)

Since this mapping is relatively violent, with large variations in the GCL variable in both space
and time, it should introduce motion-related errors and provide a good test of our error estimation
procedure. Note that the movement of the mesh should in theory have no impact on the physics
of the problem, and the solution should converge upon refinement to that with no mesh motion.

(a) Density, t = 0 (b) Density, t = 2

Figure 5: Initial and final meshes and densities. The initial density perturbation is 25% above the nominal
value.

To verify the error estimation, three separate cases were run: (i) a no-motion case; (ii) a case
with motion but no GCL; and (iii) a case with both motion and GCL. These cases were run at
interpolation orders ranging from p = 1 to 4, with a DG1 time scheme and 10, 12, 14, and 16
time steps, respectively. Since we want to test both the spatial and temporal aspects of the error
estimation, the number of time steps is gradually increased as p increases, in an attempt to keep
the magnitude of the spatial and temporal errors comparable.

For each run, the output JH on the current mesh is first recorded. Next, error estimation based
on a (p+1, r+1) fine space is performed, and the predicted change in the output relative to the fine
space (δJest) is computed. Finally, the primal problem is solved directly on the (p+ 1, r+ 1) space,
and the output Jh is determined. The difference ∆J = JH − Jh between coarse and fine outputs
can then be obtained and compared to δJest. If the error estimation is working properly, these

12



values should correspond closely. Of course, since the problem is non-linear, the correspondence
will generally not be exact.

Table 2 shows a comparison between the actual and predicted errors for the three cases. Here,
the error in the error estimate itself is the figure of merit. From the table, we see that the error
estimates with mesh motion display 93-99% accuracy relative to the actual output errors. For the
GCL case specifically, this verifies that the GCL adjoint and error estimation procedures detailed
above were implemented correctly.

The breakdown of errors due to the state and GCL individually are given in Table 3 (which
includes an additional p = 0 run), and we see that the GCL-related errors constitute from 8-42%
of the total error estimate. Finally, while seemingly polluted by noise at low orders, the no-motion
error estimates – which are significantly lower than with mesh motion on – also converge to the
actual errors upon mesh refinement.
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Figure 6: Output convergence for both motion and no-motion cases, shown with the same scale.
Despite larger-magnitude errors, the corrected output converges rapidly to the true value for motion
cases.

GCL No GCL No Motion
Run δJest ∆J % Error δJest ∆J % Error δJest ∆J % Error
p = 1 -4.170e-3 -4.020e-3 3.73 -4.443e-3 -4.489e-3 1.03 -1.687e-4 -2.882e-4 41.44
p = 2 -4.746e-4 -5.080e-4 6.58 -5.782e-4 -6.115e-4 5.46 -5.922e-5 -7.026e-5 15.70
p = 3 -1.551e-4 -1.543e-4 0.49 -2.448e-4 -2.438e-4 0.40 -1.610e-5 -1.555e-5 3.51
p = 4 -1.022e-4 -1.008e-4 1.40 -1.626e-4 -1.608e-4 1.12 -7.308e-6 -7.015e-6 4.18

Table 2: Relative accuracy of error estimates for motion and no-motion cases at different orders p. “%
Error” denotes the error in δJest relative to ∆J .

p = 0 p = 1 p = 2 p = 3 p = 4
State Errors 3.593e-02 -4.607e-03 -5.930e-04 -2.526e-04 -1.675e-04
GCL Errors 2.633e-02 4.376e-04 1.184e-04 9.743e-05 6.525e-05

GCL % of Total 42.29 8.67 16.64 27.84 28.03

Table 3: Relative contribution of GCL and state errors to total error estimate.
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7.2 Dynamic Mesh Adaptation for a Pitching Airfoil

With the performance of the error estimates confirmed, we next use them to drive mesh adap-
tation for a case of engineering interest – an airfoil pitching sinusoidally at low Reynolds number.
The airfoil starts from an impulsive free-stream condition and undergoes three periods of pitching
motion (with amplitude 30 ◦ and period T = 2.5) at a Strouhal number of 1.0, a Reynolds number
of 400, and a free-stream Mach number of 0.2. The airfoil is a NACA 0012 situated in the center
of a 60 x 60 chord-length domain, and the mesh consists of 1,454 triangular elements.

Entropy contours at several phases of the motion are shown in Figure 9. A series of vortices
forms behind the airfoil as it completes the motion cycle, and these vortices combine with the
free-stream flow and inertial effects to generate forces on the airfoil. Our output of interest is the
lift component of these forces integrated over the final 2.5% of the simulation time.

To compute this output, the three adaptive methods described in section 6.1 (output-based,
residual, and uniform refinement) were considered. Several adaptations were performed starting
from an initial p = 1, 70 time step solution. The spatial order was constrained to lie within the
range 0 ≤ p ≤ 5, and a DG1 time scheme was used for all runs. For the output error and residual
methods, 5% of space-time elements were coarsened at each iteration, while the overall size of the
space-time mesh was increased by 30%.

7.2.1 Results
The output convergence for each adaptive method as a function of total space-time degrees of

freedom is shown in Figure 7. For the output error method, both the actual output J and the
corrected output J − δJest are given. The output-based adaptation converges much faster than
uniform refinement, requiring approximately two orders of magnitude fewer degrees of freedom to
achieve the true output value. It also significantly outperforms residual adaptation, which gets
distracted by acoustic waves emanating from the airfoil and fails to converge even after 14 adaptive
iterations.
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Figure 7: Pitching airfoil: Output convergence for various adaptive methods. The adjoint-based
method outperforms both residual-based and uniform refinement by orders of magnitude.
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The temporal and spatial grids from the final output-adapted run are shown in Figures 8 and
10, respectively. In Figure 10, we see that the regions where vortex shedding occurs are heavily
targeted, while a circular region surrounding the airfoil is refined to a lesser extent. In the far field,
most elements have been coarsened to p = 0, as expected. Temporally, the periods of strongest
vortex shedding are targeted, with a preference given to those occurring in the first half of the
simulation. This preference for earlier times makes sense, since the initial vortices influence the
vortex shedding during later parts of the simulation, and must therefore be resolved accurately.
The residual indicator also targets this vortex shedding, but does so blindly, giving roughly equal
weight to each vortex shed throughout the simulation (evidenced by the equally-spaced refinement
in Figure 8).

To highlight one of the factors driving the adaptation, contours of the GCL adjoint are shown
alongside the entropy contours in Figure 9. The first contour shows a band of inward-moving
sensitivity waves collapsing upon the trailing edge near time t = T/3 = 0.833. Similar behavior
is seen in the other adjoint components, and this is reflected in the adaptation, which heavily
targets the times following t ≈ 0.8. The final adjoint contour in Figure 9 shows the sensitivity field
converging on the airfoil near the end of the simulation. Any errors made outside of this region no
longer have time to reach the airfoil and influence the output.

Finally, since the GCL adjoint and error estimates are of particular interest in this paper, a
breakdown of the output error into its state and GCL components is provided in Table 4. From the
table, we see that the GCL errors initially make up only a small percentage of the total error, but as
the adaptations proceed, their contribution increases to over half of the total error estimate. While
this does not prove that the GCL itself is essential to obtaining an accurate output, it does imply
that if the GCL is being used, a corresponding GCL adjoint is necessary to obtain an accurate
error estimate.

0 1 2 3 4 5 6 7

Output error: 170 time slabs

Residual: 169 time slabs

Time

Figure 8: Pitching airfoil: Temporal grids from the seventh adaptation of both adjoint and residual
runs.

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7 Iter. 8
State Errors 9.87e-03 1.09e-02 3.82e-03 1.93e-03 6.62e-04 4.00e-04 4.49e-04 3.14e-04
GCL Errors -1.26e-04 -2.75e-04 -4.54e-04 -4.87e-04 1.27e-04 -8.90e-05 -3.49e-04 -3.36e-04

GCL % of Total 1.26 2.47 10.61 20.17 16.12 18.19 43.69 51.76

Table 4: Pitching airfoil: Relative contribution of GCL and state errors to the total error estimate for all
iterations of output-based adaptation.
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(a) t = T/3

(b) t = 2T

(c) t = 11T/4

Figure 9: Pitching airfoil: Entropy (left) and GCL adjoint (right) contours at various stages of the
pitch motion on a fine mesh. Note that the GCL adjoint contours have been re-scaled to more
clearly show the features. (Black is -1.5, white is 0.75.)

16



(a) t = T/3

(b) t = 2T

(c) t = 11T/4

Figure 10: Pitching airfoil: Output-adapted meshes at various stages of the pitch motion. Blue is
p = 0, red is p = 5.
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7.3 Dynamic Mesh Adaptation for Pitching and Plunging Airfoils

Next, we try a more complicated case – two airfoils pitching and plunging in series. The airfoils
start from an impulsive free-stream condition, and again undergo three periods of motion. The
plunge amplitude is 0.25 chords, and the pitch amplitude is 30◦. The Strouhal, Mach, and Reynolds
numbers are 2/3, 0.3, and 1200, respectively. The airfoils are offset 4.5 chords horizontally and 1
chord vertically, and are situated in a 60 x 60 chord-length mesh with 3, 534 triangular elements.

Entropy contours at various phases of the motion are shown in Figure 13. A reverse Kármán
vortex street develops behind each airfoil, and the second airfoil interacts with the wake from the
first airfoil near the end of the simulation. The output of interest is the lift on the second airfoil
integrated from time t = 7.25 to t = 7.5 (the final time).

To compute this output, we again considered output error, residual, and uniform refinement
strategies. Adaptations were performed starting from an initial p = 1, 90 time step solution, with
a 35% growth factor and 5% coarsening factor used for the output- and residual-based methods.
The spatial order p was again constrained to lie between 0 and 5, and a DG1 scheme was used in
time.

7.3.1 Results
The output convergence for each adaptive method as a function of total space-time degrees of

freedom is shown in Figure 11. Once again, the output-based adaptation performs the best. The
corrected output reaches the true value 1-2 orders of magnitude before uniform refinement, while
the residual adaptation is oscillatory and fails to converge.

10
6

10
7

10
8

10
9

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

Total space−time DOF

L
if
t 
in

te
g
ra

l

 

 

Output error

Output error, corrected

Residual

Uniform−p

Actual

Figure 11: Two-airfoil case: Output convergence for various adaptive methods. The adjoint-based
method performs the best.

The temporal and spatial meshes from the final output-based adaptation are shown in Figures
12 and 14, respectively. We see that the near-airfoil and vortex shedding regions are targeted for
adaptation, as well as the group of large elements surrounding the mesh motion regions. While
somewhat difficult to observe in the still-frames, the initial vortex shed from the first airfoil is
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heavily targeted throughout the simulation, since this vortex later collides with the second airfoil
near the final time.

The behavior of the GCL adjoint, shown in Figure 13, illustrates the output’s sensitivity to this
initial vortex as well. The time t = 7T/10 is the instant just before this vortex is shed, and the
large sensitivity of the output to this event can be seen in the adjoint contours. As the simulation
proceeds, the output sensitivity gradually shifts from the first airfoil to the second, before collapsing
upon the second airfoil at the final time.

Some other aspects of the GCL adjoint are worth pointing out. In the first two contours, the
near-circular rings represent inward-moving acoustic waves, which converge upon a particular region
as the simulation proceeds. The existence of a ring implies that an important event in space-time
is about to occur, and any errors made within the ring have the ability to influence this event. In
this simulation, the important events tend to be instances of vortex shedding, and the rings tend to
converge on the trailing edge regions. Lastly, between the two airfoils, a path can be seen tethering
them together. This path appears because any errors within it ultimately reach the second airfoil
via convection, and can therefore directly affect the output.

Finally, the breakdown of state versus GCL errors is shown in Table 5. Once again, the GCL
component of the error estimate is relatively small during initial adaptations, but becomes signif-
icant as the adaptations proceed. For this case however, use of the GCL overall provides only a
small improvement in accuracy relative to a similar no-GCL run (shown in Figure 15), particularly
when considering the corrected output. This suggests that for certain cases, satisfying the GCL
may not be critical to obtaining accurate outputs, especially if those outputs are corrected by an
appropriate error estimate.

0 1 2 3 4 5 6 7

Output error: 284 time slabs

Residual: 294 time slabs

Time

Figure 12: Two-airfoil case: Temporal grids from the seventh adaptation of both adjoint and
residual runs.

Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7 Iter. 8
State Errors 1.52e-02 2.21e-03 7.45e-04 3.84e-03 2.37e-03 1.03e-03 3.62e-04 -5.79e-04
GCL Errors -1.54e-04 -9.30e-05 -3.75e-05 -3.87e-05 -3.49e-04 1.68e-04 2.77e-04 9.53e-04

GCL % of Total 1.00 4.04 4.79 1.00 12.84 13.99 43.36 62.19

Table 5: Two-airfoil case: Relative contribution of GCL and state errors to the total error estimate for all
iterations of output-based adaptation.
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(a) t = 7T/10

(b) t = 5T/4

(c) t = 11T/4

Figure 13: Two airfoil case: Entropy (left) and GCL adjoint (right) contours at various stages of
the motion on a fine mesh. Note that the GCL adjoint contours have been re-scaled to more clearly
show the features. (Black is -2, white is 1.)
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(a) t = 7T/10

(b) t = 5T/4

(c) t = 11T/4

Figure 14: Two-airfoil case: Output-adapted meshes at various stages of the motion. Blue is p = 0,
red is p = 5.
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Figure 15: Two-airfoil case: Output convergence for runs with and without the geometric conser-
vation law.

8 Conclusions
In this paper, we provided methods for unsteady error estimation and mesh adaptation for the

compressible Navier-Stokes equations on deformable domains. The DG finite element discretization
in both space and time combined with adjoint solves on the fine space were shown to provide rigorous
error estimates for engineering outputs. Discrete adjoint equations for the geometric conservation
law were derived, and the impact of the GCL on error estimation was assessed. While the output
error due to the GCL is generally small relative to the state error, it can constitute a significant
portion of the total error as the output nears convergence. This means that if the GCL is used, the
corresponding GCL adjoint is required to obtain accurate error estimates. That said, preliminary
results indicate that for certain cases of engineering interest, use of the GCL does not significantly
improve output accuracy relative to runs without it.

Overall, the output-based adaptation presented here represents a marked improvement over
more heuristic methods when total mesh size is used as the measure of computational efficiency.
An alternative indicator of efficiency is the CPU time, which depends strongly on implementation
and parallelization choices. For parallel computations, dynamic-p adaptation leads to temporally-
varying processor workloads, suggesting that an algorithm for dynamically repartitioning the mesh
may be beneficial. Such an algorithm is the subject of ongoing research.
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