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Abstract: Reshocked Richtmyer–Meshkov turbulent mixing of sulfur hexafluoride (SF6) and air
for Atwood number At = −0.67 and incident shock Mach number Mas = 1.45 is simulated using a
third-order weighted essentially nonoscillatory (WENO) finite-difference implementation of a two-
equation K-ε multicomponent Reynolds-averaged Navier–Stokes (RANS) model. Experimental
measurements [F. Poggi et al., Physics of Fluids 10 (1998), 2698] and previous numerical results
using the BHR turbulence model [A. Banerjee et al., Phys. Rev. E 82 (2010) 046309] for the mixing
layer width before and after reshock, along with analytical self-similar power-law solutions of the
simplified model equations before reshock, are compared with the evolution of the predicted mixing
layer widths. Sensitivity to variations in the turbulent kinetic energy seed, initial perturbation
wavelength, and incident shock Mach number were investigated. Smaller shock Mach numbers
led to later reshock times, decrease in initial growth, and other effects in post-reshock mixing
depending on the two key model coefficients. Changes in the shock production model coefficients,
Cε0 and σρ, affected the predicted mixing layer widths after reshock, but had minimal effect on
the growth prior to reshock.

Keywords: Turbulence Modeling, Multicomponent Reynolds-Averaged Navier–Stokes, Richtmyer–
Meshkov Instability, Reshock.

1 Introduction
Understanding the effects of turbulence generated by multifluid hydrodynamic instabilities is of critical
importance to many applications in science and engineering. Of particular interest is the study of turbulence
effects in high-energy-density and astrophysical environments [1] such as supernovae, inertial confinement
fusion (ICF) capsule implosions, and shock tube flows. Related examples include high-energy-density laser
experiments and the mixing of gases in stellar interiors. Blast waves and shock instabilities [2] are critical
to the formation of supernovae and also have important roles in stellar and galaxy formation.

Turbulent mixing via reshocked Richtmyer–Meshkov instability is one important mechanism through
which turbulence is generated by the interactions of shock waves with material interfaces in fluids. For
example, in supernovae and ICF capsule implosions, turbulent mixing originating from this instability is
generated as shocks traverse perturbed interfaces separating fluids of different densities; shocks impulsively
accelerate the interfaces and induce perturbation growth and eventually turbulent mixing at sufficiently
large Reynolds numbers. The shock can be generated in either the light or the heavy fluid to impulsively
accelerate the first fluid towards the second. In many applications the evolving interface and resulting mixing
layer are reshocked by a reflected shock. Such reshocked Richtmyer–Meshkov instabilities are important to
model accurately as they are important fluid mixing mechanisms [3] occurring in supernovae and can limit
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thermonuclear fuel compression in ICF [4].
In the present study, a multicomponent (two species) Reynolds-averaged Navier–Stokes (RANS) model

based on a two-equationK-ε turbulence model was used to simulate reshocked Richtmyer–Meshkov instability
for shock Mach number Mas = 1.45 and Atwood number At = (ρair − ρSF6

)/(ρair + ρSF6
) = −0.67. The

model equations were solved using a conservative finite-difference weighted nonoscillatory (WENO) shock-
capturing method and a characteristic projection formulation. The governing equations account for heat
conduction, viscous effects, and enthalpy diffusion, unlike previous studies [5, 6, 10, 11] in which the Reynolds-
averaged Euler equations were considered. The present investigation elucidates the sensitivity of the predicted
mixing layer widths before and after reshock to variations in the key model coefficients and initial conditions
for the heavy-to-light gas transition case.

This paper is organized as follows. Previous modeling of Richtmyer–Meshkov instability correspond-
ing to At = 0.67 for three shock Mach numbers using the present model is summarized in Sec. 2. The
Richtmyer–Meshkov instability experiment modeled in the current study is briefly summarized in Sec. 3.
Governing equations for the multicomponent RANS model used in the simulations, model initial conditions,
and numerical method are discussed in Sec. 4. Numerical results for the mixing layer evolution obtained by
varying the principal model coefficients and initial conditions are presented and discussed in Sec. 5. Finally,
the conclusions of this study are given in Sec. 6.

2 Summary of Previous Modeling of Reshocked Richtmyer–Meshkov
Instability Corresponding to the Light-to-Heavy Transition

Modeling turbulent mixing generated via reshocked Richtmyer–Meshkov instability is a topic of current
interest. Depending on the turbulence model and numerical approach used to simulate this instability, a
variety of issues need be considered. For example, the results are sensitive to initial conditions and key model
coefficients, and to variations in these quantities.

To better understand the physical mechanisms by which reshocked Richtmyer–Meshkov instability gener-
ates turbulent mixing, Morán-López and Schilling [16] modeled three Richtmyer–Meshkov instability shock
tube experiments performed by Vetter and Sturtevant [7] with Atwood number At = 0.67. A shock was
generated in air a distance δ = 2.00 cm from the air/SF6 interface, impulsively accelerating the lighter gas
towards the heavier gas. The shock Mach numbers were Mas = 1.24, 1.50, and 1.98 with corresponding test
sections and total measurement times δ = 110 cm with τ ≈ 17 ms, δ = 61 cm with τ ≈ 6.0 ms, and δ = 49
cm with τ ≈ 2.3 ms, respectively. Mixing layer widths were compared with the experimental data of Vetter
and Sturtevant [7], three-equation BHR model predictions [6], and the power-law self-similar solution prior
to reshock.

In varying the initial turbulent kinetic energy seed, K0, it was found that changes in K0 had a more
significant effect on the predicted mixing layer width before reshock, while the width after reshock remained
relatively unchanged. Conversely, decreasing the key model coefficients σρ and Cε0 in the shock production
terms in the K and ε equations increased the turbulent mixing after reshock, while having minimal effect
on the initial growth. Similarly, increasing the shock Mach number steepened the mixing layer widths
and led to an increase in the post-reshock widths. Although the growth prior to reshock was relatively
unaffected with changes in Mas, reshock occurred earlier in time. Therefore, decreasing σρ and Cε0 and
increasing Mas resulted in an increase in mixing due to turbulence. Shock production (pressure work), shear
production, turbulent dissipation, and turbulent diffusion mechanisms were also considered by examining
the budgets in the turbulent kinetic energy equation. The further theoretical development and assessment of
turbulence models [5, 6] validated against experimental data [7, 9] predicting reshocked mixing layer growth
are important areas of contemporary hydrodynamic instability research. The present investigation considers
similar studies for a reversed order of gases, i.e., At = −0.67, in which the shock is generated in the heavy
gas (SF6) and accelerated towards the light gas (air).
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3 Description of reshocked Richtmyer–Meshkov instability experi-
ment for Mas = 1.45 and At = −0.67

One subset of Richtmyer–Meshkov instability experimental data used to validate the present K-ε model was
generated by Poggi, Thorembey, and Rodriguez [9]. Air and sulfur hexafluoride (SF6) were the light and
heavy gases, respectively, and the prescribed shock Mach number was Mas = 1.45. In this experiment the
heavy gas was accelerated towards the lighter gas by an upward propagating shock wave in a vertical shock
tube. The Atwood number and air test section length for this experiment were At = −0.67 and δ = 30 cm,
respectively. Schlieren visualization was performed to measure the time-dependent location and thickness of
the mixing layer; the two gases were separated by placing a thin wire mesh directly above a plastic membrane
0.30 µm thick.

4 Reynolds-Averaged Navier–Stokes Model and Numerical Method

4.1 Governing Equations and Model Description
The closed single-velocity, multicomponent Reynolds-averaged Navier–Stokes equations describing the trans-
port of mass, momentum, total energy, and heavy gas mass fraction are
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∂t
+
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∂
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(ρ ṽi ṽj) = − ∂p

∂xi
− ∂τij
∂xj

+
∂ σij
∂xj

, (2)

∂

∂t
(ρ ẽ) +
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respectively. The quantities ρ, ṽi, m̃H , and ẽ = ṽ2/2 + Ũ +K denote the mean density, velocity, heavy mass
fraction, and total energy, respectively; K is the turbulent kinetic energy and m̃L = 1−m̃H is the light mass
fraction (the subscripts H and L denote heavy and light). The dimensionless model coefficients appearing
in these equations are σρ, σU , σK , and σm. The gases are assumed to satisfy the ideal gas equation of state,
where the mean internal energy and mixture ratio of specific heats are

Ũ =
p

(γ − 1) ρ
= cv T̃ , γ =

cp
cv

=
cpH m̃H + cpL (1− m̃H)

cvH m̃H + cvL (1− m̃H)
, (5)

respectively; cpH,L and cvH,L are the specific heats at constant pressure and volume (each assumed to be
constant for each gas).

Binary mixture relations [8]

φ =
φH m̃H/

√
MWH + φL (1− m̃H) /

√
MWL

m̃H/
√
MWH + (1− m̃H) /

√
MWL

(6)

are used for the molecular transport coefficients, where φ = µ, D, and κ are the dynamic viscosity, mass
diffusivity, and thermal conductivity, respectively (each assumed to be constant for each gas). The heavy and
light gas molecular weights areMWH,L. The mean enthalpy diffusion term in Eq. (3) isHj = −

∑2
r=1 h̃rJr,j ,

where h̃r = Ũr + pr/ρr is the mean enthalpy of gas r and Jr,j = −ρ
(
Dr∂m̃r/∂xj − m̃r

∑2
s=1Ds∂m̃s/∂xj

)
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is the diffusive flux of gas r; the indices 1 and 2 refer to H and L, respectively.
Defining the turbulent kinetic energy dissipation rate, ε, and dimensionless model coefficient Cµ = 0.09,

the turbulent viscosity is

νt =
µt
ρ

=
CµK

2

ε
. (7)

The classical Boussinesq Reynolds stress tensor is
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2

3
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(
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3

)
, (8)

where S̃ij = (1/2)(∂ṽi/∂xj + ∂ṽj/∂vi) is the mean strain-rate tensor. The mean viscous stress tensor is
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with bulk viscosity neglected.
The closed turbulent kinetic energy and turbulent kinetic energy dissipation rate equations are [10, 16]
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respectively, where τdij = −2µt

(
S̃ij − δijS̃ k

k /3
)

is the deviatoric part of the Reynolds stress tensor and
σε, Cε0, Cε1, Cε2, Cε3, and Cε4 are dimensionless model coefficients. The pressure–dilatation correlation,
ΠK = p′∂v′′j /∂xj , is not currently included in the simulations.

4.2 Initial conditions, key model coefficients, and self-similarity
The turbulent kinetic energy and turbulent kinetic energy dissipation rate are initialized as constants through-
out the domain as

K(x, 0) = K0 (At v1)
2
, ε(x, 0) = K(x, 0)ω , (12)

with initial turbulence seed K0, Atwood number At, post-shock velocity v1, and linear Richtmyer growth
rate ω = (2π/λrms) |At|∆v. The rms wavenumber is krms = 2π/λrms, ∆v is the change in the interface
velocity due to the passage of the shock [12], and λrms = 0.50 cm is taken to be an initial rms perturbation
wavelength [8]. Thus, the initial turbulent kinetic energy is proportional to v21 and the initial turbulent
kinetic energy dissipation rate is related to K(x, 0) by the linear growth rate of an rms perturbation, rather
than an arbitrary value or a value based on a ‘turbulent’ lengthscale through the dimensional relation
ε(x, 0) = CεK(x, 0)3/2/L(x, 0) [where Cε and L(x, 0) must be specified].

The model coefficients kept constant throughout the simulations were Cε1 = 1.44, Cε2 = 1.92, and
Cε3 = 2.00. Values of Cε1 and Cε2 are standard values for shear turbulence [13], while the value of Cε3 is
chosen to be consistent with shockless rapid compression (see [5] for a derivation corresponding to the K-L
model). The coefficients varied in the simulations are σρ, Cε0, and σm = σU = σK = σε, which affect the
magnitude of the K and ε shock production terms [the first terms on the right sides of Eqs. (10) and (11)].

The analytical late-time self-similar mixing layer width prior to reshock is

h(t) = h0

(
t

t0
+ 1

)θ
(13)
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with t0 = θh0/∆v and power-law exponent θ = (2Cε2 − 3)/(3Cε2 − 3) ≈ 0.30 (see [5] for a derivation of
the self-similar mixing layer width corresponding to the K-L model). Note that self-similarity requires
σm = σU = σK = σε, and these coefficients are chosen here to be smaller than their typical shear flow values
close to unity. The expression for h(t) can be derived by solving a simplified form of the one-dimensional
Reynolds-averaged equations, in which the shock is treated as an impulse, ṽi = 0, τij = 0, and µ = 0. The
resulting reduced K and ε equations include only the dissipation and turbulent diffusion terms, and can be
solved analytically using the self-similar scaling variable η = 2x/h(t) with h(t) given by Eq. (13).

4.3 Numerical method
Inviscid (advective) flux reconstruction is achieved using a conservative Eulerian finite-difference weighted
essentially nonoscillatory (WENO) shock-capturing method and a characteristic projection formulation [14,
15]. The numerical implementation includes four mean flow equations and four turbulence model equations
(two of which correspond to scalar turbulence variables that are not considered in the present study). The
8 × 8 left and right eigenvector matrices resulting from the Jacobian of the fluxes are used to project the
fluxes between characteristic and physical space, together with Lax–Friedrich flux-splitting and Roe averaging
generalized to multicomponent flow (i.e., to include the mean mass fraction equation and a variable γ) and
to additional turbulent transport equations. An explicit third-order TVD Runge–Kutta method is used for
the time-evolution (a CFL number of 0.2 was used for all simulations); all first and second spatial derivatives
are calculated using centered WENO derivatives.

The present investigation considers (formally) third-order reconstruction. As shown in Sec. 5, good
agreement is obtained with experimental data and with the analytical self-similar solution prior to reshock.
No shock-detection is used to activate the turbulent production terms [the first terms on the right sides of
Eqs. (10) and (11)] when a shock is present locally. The velocity satisfied a reflecting boundary condition at
the endwall of the test section, and the computational domain was chosen large enough to allow the mixing
layers to evolve without waves traveling back from the left boundary and interacting with the interface. The
computational grid was uniformly spaced in x, and 9600 grid points were used in each simulation.

5 Numerical Results
A quantity measured in numerical simulations and experiments when studying turbulent mixing induced by
hydrodynamic instabilities is the total mixing layer width as a function of time t,

h(t) = hs(t)− hb(t) , (14)

which is the difference between the spike and bubble locations, hs(t) and hb(t), respectively. During the
mixing of gases with different densities, ‘spikes’ of heavier gas interpenetrate into ‘bubbles’ of lighter gas.
Using the heavy gas mole fraction

X̃H =
m̃HMWL

(MWL −MWH) m̃H +MWH
, (15)

the bubble and spike locations are determined by hb(t) = X̃H ≤ 1 − η and hs(t) = X̃H ≥ η. The mole
fraction limit for this study is η = 0.02, although values η = 0.01 and 0.05 are often also used. Criteria based
on the mass fraction or volume fraction are other options for computing the the spike and bubble locations.

A computational domain of length X = 70 cm with a 30 cm test section was used when performing the
Mas = 1.45 Richtmyer–Meshkov instability study. In the present investigation the shock was generated in
SF6 a distance δs = 0.13 cm from the SF6/air interface, with shock and interface locations at x = 39.87 cm
and x = 40 cm, respectively. In a previous study [16], a distance δ = 2 cm between shock and interface
was used. However, it was found that a shorter distance was necessary here, as too much turbulent kinetic
energy was dissipated before the shock interacted with interface, resulting in smaller mixing layer widths
after reshock.
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Figure 1: Mas = 1.45 predicted mixing layer widths for K0 = 10−1, 10−2, λrms = 0.50, 5.00 cm, σρ = 0.10,
σm = σU = σK = σε = 0.50 and Cε0 = 0.75. The experimental data points are from Ref. [9], the BHR
results are from Ref. [6], and the self-similar solution is given by Eq. (13).

5.1 Sensitivity to variations in initial conditions and Mach number
Figure 1 shows mixing layer widths h(t) obtained by varying the turbulent kinetic energy seed K0 = 10−1,
10−2 and initial rms perturbation wavelength λrms = 0.50, 5.00 cm with shock production coefficients
σρ = 0.10 and Cε0 = 0.75, and diffusion coefficients σm = σU = σK = σε = 0.50. The computed mixing layer
is compared with experimental data from Poggi, Thorembey, and Rodriguez [9], BHR model predictions [6],
and the self-similar solution Eq. (13) prior to reshock.

Previous Richtmyer–Meshkov instability modeling with At = 0.67 [16] demonstrated that K0 = 10−1

and 10−2 and λrms = 0.50 cm yielded results in good agreement with the experimental mixing layer width
prior to reshock for shock Mach numbers Mas = 1.24, 1.50, and 1.98. However, in reversing the order of
the gases (At = −0.67) the same initial conditions underpredict the initial width by approximately 0.75 cm
at the location of largest disagreement (see Fig. 1). Typically, the initial turbulent kinetic energy seed is a
fraction of the postshock velocity squared and is not increased past a value K0 = 10−1. Therefore, λrms was
increased to dissipate less turbulent kinetic energy at the initial time. Increasing the initial rms perturbation
wavelength to λrms = 5.00 cm resulted in changes throughout the mixing layer width, but with a more
significant increase prior to reshock.

Prior to reshock, the width increases nearly linearly and deviates from the self-similar solution before
t ≈ 0.5 ms and matches it more closely afterwards. However, despite the deviation at early times, the
predicted width agrees with the experimental data more closely. After reshock, the mixing layer width
also increases from that generated with the original initial conditions while maintaining the same profile,
unlike prior to reshock. Similar to the BHR model, the width deviates from the additional turbulent mixing
apparent at t ≈ 1.88 ms where a second shock interacts with the layer, leading to additional turbulent mixing.
Such additional mixing at later times is independent of the initial conditions, and therefore modifications in
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Figure 2: Predicted mixing layer widths for Mas = 1.45 and 1.40; K0 = 10−1, λrms = 5.00 cm, σρ = 0.10,
σm = σU = σK = σε = 0.50 and Cε0 = 0.75. The experimental data points are from Ref. [9], the BHR
results are from Ref. [6], and the self-similar solution is given by Eq. (13).

key model coefficients may be necessary to better match the experiment at later times.
Figure 2 shows the sensitivity of the predicted mixing layer widths to variations in incident shock Mach

number. Variations in Mas were also considered in the light-to-heavy case [16]. Using Mas = 1.45 as a
reference value, a lower incident shock Mach number Mas = 1.40 was also considered in the present study.
Changes in the predicted mixing layer width were noted before and after reshock when comparing the
Mas = 1.40 and Mas = 1.45 results. The initial width for Mas = 1.40 was lower but remained close to
the experimental data. Also, reshock occurred at a later time τr ≈ 1.22 ms as expected, because the shock
travels at a lower speed at smallerMas. The predicted mixing layer width was also lower forMas = 1.40 after
reshock. Similar results were seen in [16], where the mixing layer after reshock increased in magnitude with
larger incident Mach numbers. This is additional evidence that the turbulent kinetic energy available for
turbulent mixing increases correspondingly with Mas. As with variations in K0 and λrms, variations in Mas
do not have an effect on the additional mixing apparent at t ≈ 1.88 ms due to the second reshock, additionally
indicating that changes in key model coefficients may be required to better predict the experimental data.

5.2 Variations in model coefficients Cε0 and σρ

From Sec. 5.1 K0 = 10−1, λrms = 5.00 cm, Cε0 = 0.75, σρ = 0.10, and σm = σU = σK = σε = 0.50 are an
initial condition and coefficient set that yields numerical results in good agreement with the experimental
data. Using these values, additional model sensitivity studies to changes in the shock production model
coefficients Cε0 and σρ were performed.

Figure 3 illustrates the sensitivity to changes in the dissipation rate shock production model coefficient
Cε0, in conjunction with changes in the incident shock Mach number. Selecting a reference value Cε0 = 0.75,
simulations were performed with a variation in this coefficient. Simulations were also performed for a smaller
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Figure 3: Predicted mixing layer widths for Mas = 1.45 and 1.40, K0 = 10−1, λrms = 5.00 cm, σρ = 0.10,
σm = σU = σK = σε = 0.50 and Cε0 = 0.75 and 0.71. The experimental data points are from Ref. [9], the
BHR results are from Ref. [6], and the self-similar solution is given by Eq. (13).

Cε0 value: decreasing the value from 0.75 to 0.71 did not strongly affect the mixing layer width prior to
reshock, but a significant increase was seen in the post-reshock width. An increase in mixing is expected
as smaller values of Cε0 decrease the amount of turbulent kinetic energy dissipation production in the
flow, resulting in an increase of turbulent mixing; similar results were observed elsewhere [16]. Figure 3
demonstrates that this small decrease in Cε0 resulted in a 2.0 cm increase in the width at the time of most
mixing, t ≈ 1.88 ms. Also presented in Fig. 3 are corresponding results for variation in shock Mach number
Mas = 1.40: similar behavior is observed as with Mas = 1.45. The mixing layer increases significantly after
reshock while the initial width remains relatively unaffected. The mixing layer width is approximately 1.0
cm lower for Mas = 1.40 than for Mas = 1.45.

The other model coefficient considered was σρ, which appears inversely in both the turbulent kinetic
energy and dissipation rate shock production terms. Increasing σρ decreases the amount of turbulence
generation via shock production, which has an important role in post-reshock turbulent mixing and has a
small influence on the initial width. As illustrated in Fig. 4 where results are compared using σρ = 0.10 and
0.20, the results are very sensitive to changes in σρ. Similar effects were reported in [16], but the effect is more
pronounced in the present study where At = −0.67. Simulations were also performed using the same values
for Cε0 as in Fig. 3 to further explore the mixing layer sensitivity to changes in σρ when also varying Cε0.
In varying these coefficients, it is evident that using σρ = 0.20 significantly underpredicts the mixing layer
width following reshock, almost eliminating any further turbulent layer growth. Although Cε0 variations
can affect the width following reshock, σρ appears to be the dominant coefficient as the width assumes the
same values after reshock for σρ = 0.20 for all values of Cε0. It is not until t ≈ 1.88 ms that effects due
to variations in Cε0 become evident. Finally, Fig. 4 also shows that unlike changes in Cε0, variations in
σρ produced changes in the initial width. Thus, augmenting the value of σρ increased the predicted mixing
layer width prior to reshock and reduced the amount of turbulent mixing following reshock.

8



0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

4"

4.5"

0" 0.0005" 0.001" 0.0015" 0.002"

M
ix
in
g&
La
ye
r&[
cm

]&

Time&[s]&

Mas=1.45,&Ko=0.10,&lambda=5.00&cm&&
sigma_rho=[0.10,&0.20],&Ceps0=[0.71,&0.75]&

Experiment"
BHR"
Self8Similar"Solu<on"
Ceps0=0.75,"sigma_rho=0.10"
Ceps0=0.75,"sigma_rho=0.20"
Ceps0=0.71,"sigma_rho=0.10"
Ceps0=0.71,"sigma_rho=0.20"

Figure 4: Predicted mixing layer widths for Mas = 1.45, K0 = 10−1, λrms = 5.00 cm, σρ = 0.10 and 0.20,
σm = σU = σK = σε = 0.50 and Cε0 = 0.75 and 0.71. The experimental data points are from Ref. [9], the
BHR results are from Ref. [6], and the self-similar solution is given by Eq. (13).

6 Conclusions
The present study used a multicomponent (two species) Reynolds-averaged Navier–Stokes (RANS) two-
equationK-ε turbulence model to simulate reshocked Richtmyer–Meshkov instability for shock Mach number
Mas = 1.45 and Atwood number At = −0.67. Mixing layer widths were compared with SF6/air experimental
data from Poggi, Thorembey, and Rodriguez [9]. Additional comparisons were made with numerical results
from the three-equation BHR turbulence model for Mas = 1.45 [6] and the power-law self-similar solution
prior to reshock.

The first set of simulations considered the sensitivity of the predicted mixing layer width to variations in
initial conditions including the turbulent kinetic energy seed K0, initial rms perturbation wavelength λrms,
and incident shock Mach numberMas = 1.45. UsingK0 = 0.10 and 0.01 with λrms = 0.50 cm underpredicted
the experimental data throughout. However, using λrms = 5.00 cm produced better results. Furthermore,
although λrms = 5.00 cm caused the predicted mixing layer width to deviate from the self-similar solution at
early times, it agreed with the experimental data very well. Variations in the incident shock Mach number
had a more significant effect after reshock. Prior to reshock, smaller values in Mas resulted in a decrease in
initial growth and later reshock times.

The second set of investigations considered variations in shock production model coefficients σρ = 0.10,
0.20 and Cε0 = 0.75, 0.71 also in conjunction with incident shock Mach number variations Mas = 1.45 and
1.40. For both incident shock Mach numbers Mas = 1.45 and 1.40, a decrease in Cε0 from 0.75 to 0.71 led
to an increase in the post-reshock width. Increasing σρ from 0.10 to 0.20 significantly decreased the amount
of turbulent mixing after reshock, nearly suppressing any further mixing. Thus, σρ was the dominant model
coefficient in determining the amount of turbulent kinetic energy available for mixing after reshock, with
σρ = 0.10 producing results in best overall agreement with the experimental data.
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Grid refinement studies are planned to assess convergence of the mixing layer width and other quantities.
Additional studies are also planned to consider the budgets of the turbulent kinetic energy and dissipation
rate equations to further understand the generation and evolution of turbulent mixing induced by reshocked
Richtmyer–Meshkov instability. Comparison of the present results to those using fifth-order WENO recon-
struction will also be performed. The role of molecular transport processes is also under consideration.

This work was funded by the U. S. Department of Energy NNSA under the Predictive Science Academic
Alliances Program by grant DE-FC52-08NA28616 and performed under the auspices of the DOE by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
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