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Abstract: Several recently-developed AUSM-family numerical flux functions have 

been successfully extended to compressible multifluid and multiphase flow 

computations, based on stratified flow model concept, following the work by M.-S. 

Liou, C.-H. Chang, L. Nguyen, and T.G. Theofanous [AIAA J. 46:2345-2356, 

2008]. Through an extensive survey by comparing flux functions of different 

amounts of dissipation as well as physical modeling parameters, the following are 

found: (1) AUSM
+
-up with large dissipation parameters for low speeds (Kp=Ku=1), 

that with small dissipation (Kp=Ku=0.5), SLAU2, or AUSM
+
-up2 (Kp=1) can be 

used for all the problems solved here, even for a challenging 2D shock/water-

droplet interaction, with this order of smoothness/diffusivity of solutions; (2) 

SLAU showed oscillatory behaviors [though not as catastrophic as those of 

AUSM
+
 - a special case of AUSM

+
-up  with Kp=Ku=0)] due to insufficient 

dissipation arising from inherent limitation in extension of its dissipation term; (3) 

AUSM
+
-up modified by Y.-Y. Niu, Y.-C. Lin, and C.-H. Chang [Int. J. Numer. 

Meth. Fluids, 58:879-896, 2008] and AUSMPW+ are applicable to limited, two-

phase flow problems without steep pressure gradients, within the current two-fluid 

framework. 
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AUSM-Family, Two-Fluid Model, Stratified Flow Model. 
 

 

1     Introduction 
 
Multifluid and multiphase flow computations have been attracting many researchers and practitioners 

over wide-ranging fields of study for several decades [1-20]. Some recent studies have been dedicated 

to extend incompressible flow methods to compressible flows, because compressible methods 

obviously have more applicability, for instance, as in [5]. As a result, while we have many approaches 

for multiphase flows with their own pros and cons, it is difficult for users or beginner researchers to 

choose appropriate methods to meet their demands (see Figure 1). Those methods are categorized into 

two major groups, i.e., interface sharpening method and interface capturing method. The former 

method employs an additional step to recognize the location of interface and impose a numerically-

smoothed representation of jumps across the interface. The latter, on the other hand, captures interface 

discontinuities as part of numerical solution, but the jumps are smeared over a number of mesh points, 

largely depending on the numerical flux functions and order of accuracy in discretization. Because of 

not using “tracking” devices, the interface capturing approach is “the most practical approach” for 

dealing with complex geometries like turbopumps, as stated in [21], and also it is able to deal with 
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dynamic creation of cavitation [16]. Among the latter group, we chose the so-called two-fluid 

modeling (or also known as effective-fluid-modeling, EFM), which allows each fluid to possess its 

own physical variables except for pressure, whereas its one-fluid counterpart deals with averaged 

(mixture) density and other common variables, causing difficulties in its own justification under some 

circumstances [11]. 

A novel approach of two-fluid modeling was 

proposed by Liou et al. [14] based on the 

stratified flow model concept [13, 22], in which 

AUSM
+
-up [23] flux function, one of AUSM-

family schemes [23-27], was successfully 

extended from the single-phase version without 

relying upon an expensive, exact Riemann 

solver [13]. AUSM-family fluxes are known to 

give robust and accurate solutions efficiently in 

single-phase gas flows from low speed to 

hypersonic, but they have not fully been 

surveyed in multiphase flows. In addition, some 

issues were left open in [14], such as built-in 

parameters of the flux function. 

Thus, as the first step of exploring a better 

option of methods and parameters, we will extend the recently-developed flux functions of AUSM-

family [25-27] and compare their performances in multifluid and multiphase flows. The results and 

discoveries herein will provide users with guidelines on choosing methods, and also give us both 

directions and motivations for further developments of numerical modeling of multiphase flows. 

 

2     Numerical Methods 
 

2.1     Two-Fluid Modeling (or Effective-Fluid-Modeling, EFM) 
 

The 2-D compressible Euler equations in two-fluid modeling (or effective-fluid-modeling, EFM) are 

written as: 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

(hybrid method [20]) 

Figure 1: Various Methods for Multiphase Flow 

Computations. 
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Interface Capturing Method: 

One-Fluid (Homogeneous Equilibrium) [8-10] 

Two-Fluid (Effective Fluid) [11-19] 

Interface Sharpening Method: 

Level Set [1-3] 

Front Tracking [4, 5] 

Volume of Fluid [6, 7] 
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where  is volume fraction,  is density, u, v are velocity components in Cartesian coordinates, E is 

total energy [E = e + (p/), e is internal energy], p is pressure, H is total enthalpy [H = E + (p/)], and 

gx and gy are projection of gravity constant, 9.8 m/s
2
, to x and y coordinates, respectively, used only in 

‘Faucet’ problem in 3.2. Since we treat only gas-liquid systems in this study, k=1, 2 is interchangeable 

with k=g, l, where g stands for gas and l is liquid. As in single-fluid equations, Q is conservative 

vector, E, F are inviscid flux vectors in x, y directions, respectively, but with  included; Pk
int

 is the 

so-called interfacial pressure, and Sk is the source term containing gravity force considered in the 

‘Faucet’ problem in this study. The Eq. (2) expresses the compatibility relation for volume fractions, 

Eq. (3) and Eq. (4) assume pressure equilibrium, and Eq. (5) gives interfacial pressure, p
int

, as a 

departure from p by p
*
, which will be explained further in 2.3. Now we have 14 unknowns [, , u, v, 

e, p, p
int

]k closed by 12 equations [Eqs. (1)-(5)] with two equations-of-state (EOS) described later in 

2.4. 

 

2.2     Stratified Flow Model and Discretization 
 

Within the framework of a finite-volume, shock-capturing method, we follow the concept of stratified 

flow model proposed first by Stewart and Wendroff [22] (Fig. 2a) which was later refined by Chang 

and Liou [13] and Liou et al. [14]. In this model, the interfacial pressure p
int

 must work within the cell 

only, and the volume fractions are assumed to be continuous within the cell but allowed a jump at the 

cell boundaries (Fig. 2b). The discretized form of Eq. (1), by retaining only 1D form for illustration, 

is: 

where subscript k is omitted, and j applies to each direction in 2D, Vj is volume of cell j, Sj+1/2 is area 

of the cell interface between cells j and j+1. Cell interfacial variables such as j+1/2, L are given by 

spatially 2nd-order accurate MUSCL interpolation [28] with Van Albada’s limiter [29] (limiter 

coefficient is set as 10
-20

; limiter effects was surveyed as in Appendix A). Note that the present 

method is valid only for the 2nd-order or higher accuracy, because the 1st-order reconstruction yields 

to j+1/2, L =j-1/2, R =j (i.e., no interfacial pressure acting within a cell). Three-stage, 3rd-order TVD 

Runge-Kutta method [30] is used for time integration, and its details will be explained later in 2.6. 

The numerical code is extended from a single-fluid version previously used by Kitamura et al. in [31]. 

 

 

2.3     Interfacial Pressure 
 

The interfacial pressure, p
int

, introduced by Stuhmiller [32], working at a phase interface within a cell 

according to Liou et al. [14], is as already given as: 

 
j

n

j

n

jj

RjLjjjjjjj

j

t

V

pSS
t

V
SEEQ 








































1

,21,21

int

21212121

0

 
(6) 

 

 
 

 

 
 

 

 
 

 
(a) (b)  

Figure 2: Illustrations of Stratified Flow Concept, (a) Generic; (b) One-dimensional, Discretized [14]. 

1 

1 

Fluid 1 

Fluid 2 



 4 

and for a gas-liquid system, p
*
 is usually given by 

or more simply, after assuming l>>g  and (l,g) being finite,  

The interfacial pressure coefficient, Cp
*
 or , should be large enough (at least larger than or equal to 

unity) to keep the system hyperbolic [14, 19]. We will make use of Eq. (8) with Cp
*
=2.0, although 

there is still an open discussion of how big or small this value should be [14]: 

Furthermore, in order to prevent p
int

 from deviating too much from the static pressure p, the following 

limitation is imposed so that δp
*
 does not exceed a fraction of p: 

where p = 0.01 is used as in [13] for all the numerical tests here. 

 

2.4     Equation of State (EOS) 
 

For closure of the system we adopted the stiffened-gas model proposed by Harlow and Amsden [33] 

as an equation of state (EOS) expressed as: 

where ek is the internal energy per unit mass of fluid k, ak is the speed of sound, with the following 

values [14]: 

that is to say, the (ideal) gas is treated as merely a special case of the same EOS. 

 

2.5     Numerical Fluxes 
 

An AUSM-family flux function of AUSM
+
-up [23], SLAU [25], SLAU2 [26], AUSM

+
-up2 [27], 

AUSM+-up with Niu et al. modification [17], or AUSMPW+ [34] is used to calculate inviscid 

numerical fluxes at cell-interfaces for each phase, denoted as Fk,1/2,L/R, where “L” and “R” stands for 

left and right cells, respectively. The numerical flux is commonly expressed as: 

*int ppp   (5) 
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Be aware that different void fractions exist to the left and right of an interface, and the last term in 

(12a) will contribute differently, i.e., different numerical fluxes Fk,1/2,L and Fk,1/2,R, to the left and right 

cells respectively. In the case of  single-phase flux, it becomes common to both sides and is a special 

case of the above formula, because void fraction is constant. These schemes [23, 25-27, 34] have 

showed satisfactory performance in single-phase gas flows from low speed to hypersonic, but have 

not been fully surveyed in multiphase flows yet. Here we describe multiphase flow versions of those 

fluxes extended as in [14]. 

 

2.5.1     AUSM
+
-up 

First, AUSM
+
-up by Liou [23] for multiphase flows [14] is briefly reviewed as follows. The mass flux 

is given by 

where fa =1 here (hence, no prescribed Mach number is used), and the speed of sound, a1/2, common 

to gas and liquid [14], is 

where arithmetic mean of left and right states is used for the speed of sound for each fluid, a1/2,k. 

Although it is argued that this value can be obtained differently, e.g., geometric mean of left and right 

states, the effect of choosing a1/2 is not discussed here. However, we confirmed that the present choice 

gives robust performances to all the fluxes used here, in general. 

Then, the pressure flux is 

where tunable parameters are Kp and Ku, both set as unity in the previous works [13, 14, 18]. 

As seen above, the differences from single-phase version in [23] are (1) separate fluxes but common 

speed of sound for gas and liquid; (2) scaling function fa is eliminated, and hence, no cutoff or 

freestream Mach number is required, because we are dealing with transient flows only; (3) averaged 
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density, rather than summation of left and right densities, is used in Eq. (13k), thus, there would be 

equivalently a factor of 2 difference in Ku, i.e., setting a value of Ku is equivalent to setting a half of it 

in [23]. In this work, AUSM
+
-up with different Kp and Ku will be simply denoted as AUSM

+
-up (Kp, 

Ku). Note that AUSM
+
-up (1, 1) is commonly used choice, and that AUSM

+
-up (0, 0) corresponds to 

AUSM
+
 [24], the version prior to AUSM

+
-up, having no low speed treatment. In this study, different 

coefficients (Kp, Ku) = (1, 1), (0.5, 0.5), and (0, 0) are selected for comparison. 

 

2.5.2     SLAU 
SLAU (Simple Low-dissipation AUSM) by Shima and Kitamura [25] is also extended for multiphase 

flows in the same manner as in AUSM
+
-up. The mass flux for each fluid is given as: 

where the common speed of sound for gas and liquid a1/2 is given again by 

and the pressure flux is 
 

The dissipation term (last term) in pressure flux had been originally designed only for an ideal gas, 

according to the relation 2ap  . This term was then modified later in SLAU2 so that real fluids are 

treated in a unified manner. 

 

2.5.3     SLAU2 and AUSM
+
-up2 

In SLAU2 [26], the dissipation term in pressure flux of SLAU [Eq. (14i)] is modified as: 
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for (1) readily extension to real fluids and (2)  times dissipation addition at subsonic and more to 
stronger shocks. 
If the pressure flux of AUSM

+
-up in Eqs. (13i-k) are replaced with Eq. (15), AUSM

+
-up2 [27] is 

realized (in this study, Kp = 1 is chosen). In both flux functions, arithmetic mean of left and right 

states is employed for speed of sound of each fluid [Eq. (14h)]. Then, arithmetic mean of gas and 

liquid phases is used as a common speed of sound [Eq. (13g)], as in AUSM
+
-up and SLAU. 

 

2.5.4     AUSM
+
-up (Niu) 

Niu et al. [17] proposed a modified version of AUSM
+
-up, by replacing the dissipation term of mass 

flux [Eq. (14d)] with: 

with additional changes: 

Note that this modification eliminated one user-specified parameter, Kp = 1, albeit its dimension is 
altered, too [Eq. (13d) had no dimension, but Eq. (16a) has dimension of inverse of velocity, s/m]; 
hence, leading to problem-dependent amount of dissipation. 

 

2.5.5     AUSMPW+ 
Kim et al. [34] proposed AUSMPW+, featuring pressure-based weight functions with 

multidimensional dissipation. Instead of Eq. (12a), it is expressed as: 
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where pL,1 and pL,2, and pR,1 and pR,2 are pressure at neighbor cells of “L” and “R,” respectively, in the 

other direction to the cell-interface between “L” and “R” in 2D. 

Then, the mass flux is written as: 

and the pressure flux is: 

The speed of sound for each phase is defined using cell-interface-normal component of the total 
enthalpy for this flux: 

where the subscript n denotes the normal component, and the t is the tangential. Then, the gas and 
liquid speed of sound are averaged arithmetically as the final value: 

Further modifications were made by Kim and Ihm in [10] for one-fluid, two-phase flow extension 
with some success. However, since their modifications involve many mixture variables (e.g. mixture 
density) that are absent in two-fluid modeling, we took its original form for each phase here. 
 

2.6     Time Integration, Decoding, and Update of Variables 
 

Equation (6) is rewritten in the three-stage TVD Runge-Kutta [30] form as: 
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where k is omitted, and the term (p
int) is included in Q̂ as in Eq. (18d) [14 ,17], but p

int
 is frozen at n-

th time step value throughout the Runge-Kutta stages [17]. 
Once 1ˆ n

Q  is obtained, the following decoding process is required to update p
n+1

 and k
n+1

: 

with 

because the pressure is the positive root of the following equation. 

Since huge values such as pl∞ are handled in Eqs. (18)-(19), the resultant numerical errors are also 
large. Thus, the simultaneous Newton iteration method is introduced to improve accuracy for Eq. 
(19b) [13] as: 

Usually, a few iterations are enough to drive pressure error under O(10
-5

). 
Then, following Paillère et al. [15] and Chang and Liou [17], variables of “vanishing” phase (i.e., 

min≤1≤max) are blended with those of remaining phase (i.e., 2≈1) to enhance stability: 

where G is a smooth function satisfying G (0) = 0, G (1) = 1, and G’(0) = G’(1) = 0. The small values 
of min and max are chosen as 0.1 (=10

-8
) and 10

3 (=10
-4

) in this paper, if not mentioned otherwise. If 
1 is below min, 1 = min is enforced. Here k = 1, 2 is interchangeable with k= g, l and k= l, g both. 
We must update (u, T), not (u, ). If the density is replaced by that of the other phase, which is O(10

3
) 

different, the temperature may have huge error, say, O(10
5
) [K] of water in the standard air condition, 
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for instance. 
 

2.7     Boundary Conditions 
 

Since a cell-centered, 2D structured grid solver is used here, the following typical boundary 
conditions using the typical “ghost cell” approach are applied as in [15]: 

 Inlet: all the variables are imposed except for pressure, which is extrapolated from the interior 

cell. 

 Outlet: only pressure is imposed, and all the other variables are extrapolated from the interior 

cell. 

 Side (for a 1D problem): all the variables are extrapolated from the interior cell (for the 

direction irrelevant to the problem to be solved). 

 Slip: also known as “mirror” condition 

in which the opposite sign is put to the 

velocity component normal to the 

boundary, and all the other variables are 

extrapolated from the interior cell. 

 

3     Numerical Examples 
 
In what follows, we shall demonstrate that 

recently-developed AUSM-family fluxes, i.e., 

AUSM
+
-up (1, 1), AUSM

+
-up (0.5, 0.5), 

AUSM
+
-up (0, 0), SLAU, SLAU2, AUSM

+
-

up2, AUSM
+
-up (Niu), and AUSMPW+ are 

extended to multifluid and multiphase flows in 

the same framework, as well as comparisons 

of their performances. Here, as explained in 

detail by Saurel and Abgrall [16], the term 

(numerical) “multifluid flow” stands for a flow 

in which each computational cell is filled with 

a (nearly) pure fluid (either gas or liquid) 

except for well-defined phase interfaces, 

whereas the “multiphase flow” allows the cells 

to contain some portions of both phases with 

many interfaces treated in an averaged manner, 

e.g., 80% water and 20% air as in the ‘Faucet’ 

problem. 

For convenience, the following “CFL-like 

number,” usually taken between 0.1 and 0.63, 

is used to describe how big the time step is: 

For ease of reference, all the results will be 

summarized in Table 1 at the bottom of this 

section. 

 

3.1     Moving Phase Discontinuity 

(Two-Fluid Flow) 

(a)  

(b)  

(c)  

Figure 3: Moving Phase Contact Discontinuity 

Solutions at t=0.03s (a) Void fraction, g; (b) 

Pressure; (c) Pressure (expanded scale). 
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As the first problem, a moving contact discontinuity between air and water separated at x=5m [13] is 

solved. It is desired to accurately capture this phase discontinuity across which pressure constancy 

should be maintained. 200 uniform cells are used for [0m, 10m] domain (hence, the grid spacing 

x=0.05m), and the initial conditions are given as: 

 (p,g,uk, Tk)L = (10
5
 Pa, 1-, 100 m/s, 0 m/s, 300K) for x 5m 

  (p,g,uk, Tk)R = (10
5
 Pa, , 100 m/s, 0 m/s, 300K) for x>5m 

where k=g, l, and =1.0×10
-7

 (min=1.0×10
-8

, max=1.0×10
-4

). The computations are conducted with 

t=6.0×10
-6

s (CFL≈0.2), up to 0.03s (5,000 steps). 

The results are shown in Fig. 3. All the fluxes tested except for AUSM
+
-up (Niu) and AUSMPW+ 

showed excellent performance both in smooth transition of the two phases (Fig. 3a) and in preserving 

pressure across them (Fig. 3b). When the 

pressure is expanded as in Fig. 3c, however, 

there are from O(10
-6

) to O(10
-5

) [Pa] of 

disturbances downstream the interface with 

different profiles; but still, they are negligibly 

small, compared with the initial uniform 

pressure, 10
5
 [Pa], and freestream liquid 

pressure, 8.5×10
8
 [Pa]. AUSM

+
-up (Niu) led 

to divergence of computation due to 

inappropriate  dissipation, and  AUSMPW+ 

also failed [if the weight function is not used, 

i.e., Eq. (12a) is employed rather than Eq. 

(17a), it worked. This form, however, almost 

corresponds to AUSM
+
-up (0, 0)]. 

 

3.2     Faucet Problem (Two-Phase 

Flow) 
 

The second test is the well-known ‘Faucet’ 

problem dealing with a water jet injected with 

10m/s and accelerated by gravity downward 

(and hence, narrowed, according to the mass 

conservation law) surrounded by a stationary 

air, in a 12m length tube [0m, 12m]. This 

problem is usually modeled by the following 

initial conditions: 

 (p, g, ug, ul, Tg, Tl) = (10
5
 Pa, 0.2, 0 m/s, 

10 m/s, 300K, 300K) 

The same set is applied to the inlet boundary 

condition, except for pressure which is 

extrapolated from the interior cell; whereas 

pressure of 10
5
 Pa is specified and other 

variables are extrapolated from interior cells at 

the outlet. Note that the gas and liquid 

velocities are set differently not as in [9, 13] 

but as in [12, 15, 16]. It is a feature of the two-

fluid model that different velocities are 

allowed within a single cell, in contrast to one-

fluid model having only one velocity 

according to velocity-equilibrium assumption 

[9]. Only in this test case, (gx, gx) = (9.8m/s
2
, 

0m/s
2
) is activated in the source term of Eq. 

(1b) in order to reproduce the gravity effects 

accelerating the water downward (+x-

(a)

 
(b)

 
(c)

 

Figure 4: Faucet Problem Solutions at t=0.5s (a) 

Overview; (b) Blow-up view of top of wave front; 

(c) Blow-up view of bottom of wave front. 

(air) (water) 

b 

c 
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direction). 

As a default grid, the following uniform cells and time step are used: 

 500 cells: x=0.024m, t=1.0×10
-5

s (CFL≈0.63), computations up to 0.5s (50,000 steps) 

[Default Grid] 

(a)

 

(b)

 
(c)

 

(d)

 
(e)

 

(f)

 
(g)

 

(h)

 

Figure 5: Faucet Problem Solutions at t=0.5s (a) AUSM
+
-up (1, 1); (b) AUSM

+
-up (0.5, 0.5); (c) 

AUSM
+
-up (0, 0); (d) SLAU; (e) SLAU2; (f) AUSM

+
-up2; (g) AUSM

+
-up (Niu); (h) AUSMPW+. 
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whereas in the grid convergence study, the following denser grids are used with different time steps: 

 1,000 cells: x=0.012m, t=5.0×10
-6

 (CFL≈0.63), computations up to 0.5s (100,000 steps) 

[Fine Grid] 

 2,000 cells: x=0.006m, t=2.5×10
-6

 (CFL≈0.63), computations up to 0.5s (200,000 steps) 

[Very Fine Grid] 

The computed results are compared with the following analytical solution [15]: 
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(24) 

(a)

 

(b)

 
(c)

 

(d)

 
(e)

 

(f)

 

Figure 6:  air-to-water shock tube problem solutions at t=2ms, (a) AUSM
+
-up (1, 1); (b) AUSM

+
-up 

(0.5, 0.5); (c) AUSM
+
-up (0, 0); (d) SLAU; (e) SLAU2; (f) AUSM

+
-up2 

(air) 

(water) 

Fig.7 
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Figure 7: Magnified View of Pressure Profiles near Shock Front in Water, at t=2ms of the Air-to-

Water Shock Tube Problem 

(a)

 

(b)

 
(c)

 

(d)

 

Figure 8: Solutions showing Grid Convergence at t=2ms of the Air-to-Water Shock Tube Problem of 

AUSM
+
-up (0.5, 0.5)  (a) Void fraction; (b) Pressure; (c) Averaged temperature; (d) Averaged 

velocity. 
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The results of the default grid are shown in Fig. 4. AUSM
+
-up (1, 1) and (0.5, 0.5) showed slight 

overshoots at the top of the wave front (Fig. 4b), whereas the others exhibit slightly abrupt drop at the 

bottom (Fig. 4c); but in general, all the flux functions yielded almost the same, smooth profiles 

without serious oscillations (Fig. 4a). 

As shown in Fig. 5, grid convergence is achieved with smooth profile for each flux function, even for 

AUSM
+
-up (0, 0) having no low speed cares. From the next example, however, steep pressure 

gradients will apear and affect the solution. 

 

3.3     Shock tube problems 
 

As a preliminary investigation, we had solved an underwater shock tube problem, showing behaviors 

of each flux function at a very low Mach number in water: AUSM
+
-up (1, 1) and AUSM

+
-up (Niu) 

captured a shock and a rarefaction wave in the most smooth but slightly diffused manner; AUSM
+
-up 

(0.5, 0.5) looked a good balance; SLAU, SLAU2, and AUSM
+
-up2 exhibit slight oscillations yet 

reduced with a special care; AUSM
+
-up (0, 0) showed catastrophic profile; AUSMPW+ was not able 

to compute this problem (see Appendix B for details). Keeping them in mind, we will deal with shock 

tube problems involving a propagating shock from air to water, or vice versa. 

 

3.3.1     Air-to-Water Shock Tube (Two-Fluid Flow) 
As in the moving contact discontinuity problem, a 1D domain of [0m, 10m] is separated by left and 

right states at x=5m, but with the following different conditions: 

 (p,g,uk, Tk)L = (10
9
 Pa, 1-, 100 m/s, 0 m/s, 308.15K) for x 5m 

 (p,g,uk, Tk)R = (10
5
 Pa, , 100 m/s, 0 m/s, 308.15K) for x>5m 

where k=g, l, and =1.0×10
-7

 (min=1.0×10
-8

, max=1.0×10
-4

), again. A default grid composed of the 

following uniform cells with time step is used: 

 500 cells: x=0.02m, t=2.0×10
-6

s (CFL≈0.2), computed up to 2.0×10
-3

s (1,000 steps) [Default 

Grid] 

The following additional grid with a different time step is used for grid convergence study: 

 5,000 cells: x=0.002m, t=2.0×10
-7

s (CFL≈0.2), computed up to 2.0×10
-3

s (10,000 steps) 

[Fine Grid] 

The results for all the fluxes are shown in Fig. 6. AUSM
+
-up (0, 0) required a smaller time step (t 

=2.0×10
-7

s; CFL≈0.02), because otherwise the computation diverged. Even with this time step, 

AUSM
+
-up (Niu) and AUSMPW+ drove divergence soon at the phase interface, thus, the results are 

not shown. All the cases displayed smoothly captured a rarefaction wave in air (x≈4.5m), a phase 

interface between air and water (x≈5.5m), and a shock in water (x≈8.5m), except for AUSM
+
-up (0, 0) 

showing slight oscillations at shock front (Fig. 6c). This is clearly seen in the magnified view of the 

top of the shock front in Fig. 7, in which all the computed cases are compared. AUSM
+
-up (1, 1), 

AUSM
+
-up (0.5, 0.5), SLAU2, AUSM

+
-up2 are smooth, and the last two, sharing the common 

pressure flux, are indistinguishable. SLAU showed a slight kink due to smaller dissipation, but not 

severely. AUSM
+
-up (0, 0), having insufficient dissipation, showed large variation of pressure at the 

shock (although the local velocity there was approximately 220 [m/s], not very slow). Furthermore, 

grid convergence is achieved for each flux except for AUSM
+
-up (0, 0), AUSM

+
-up (Niu), and 

AUSMPW+, when compared with the case using 5,000 cells, as shown in Fig. 8 represented by 

AUSM
+
-up (0.5, 0.5). 

 

3.3.2     Water-to-Air Shock Tube (Two-Fluid Flow) 
Now the same grid system is used as in the air-to-water shock tube with the following setup: 

 (p,g,uk, Tk)L = (1×10
7
 Pa, , 100 m/s, 0 m/s, 308.15K) for x 5m 

 (p,g,uk, Tk)R = (5×10
6
 Pa, 1-, 100 m/s, 0 m/s, 308.15K) for x>5m 

with the following default grid and time step: 

 500 cells: x=0.02m, t=2.0×10
-6

s (CFL≈0.2), up to 2.0×10
-3

s (1,000 steps) [Default Grid] 

whereas the fine grid for grid convergence study used: 

 5,000 cells: x=0.002m, t=2.0×10
-7

s (CFL≈0.2), up to 2.0×10
-3

s (10,000 steps) [Fine Grid] 

 The results for AUSM
+
-up (1, 1), (0.5, 0.5), and (0, 0), SLAU, SLAU2, and AUSM

+
-up2 are shown 
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in Fig. 9. Again, AUSM
+
-up (Niu) and AUSMPW+ were not able to compute this problem, thus, the 

results are not shown. In this test, AUSM
+
-up (0, 0) exhibited severe pressure oscillations in the water 

portion of the middle region where Mach number is of the order of O(10
-3

) (Fig. 9c) as in the 

underwater shock tube in Appendix B. The other methods seemed free from such oscillations, 

showing reasonable capturing of a rarefaction wave in water (which is very steep compared with the 

one in air) (x≈2m), smooth transition at a phase interface (x≈5m), and robust capturing of a shock in 

air (which looks very weak) (x≈6m). In Fig. 10 the foot of the strong rarefaction is closed up for 

comparison of different flux functions. As in the previous problem, AUSM
+
-up (1, 1) is the most 

smooth, followed by AUSM
+
-up (0.5, 0.5). AUSM

+
-up (0, 0) is totally erratic, and the other methods 

show slight undershoots. Grid convergence is, again, confirmed for AUSM
+
-up (0.5, 0.5) in Fig. 11. 

 

 

(a)

 

(b)

 
(c)

 

(d)

 
(e)

 

(f)

 

Figure 9:  Water-to-Air Shock Tube Problem Solutions at t=2ms, (a) AUSM
+
-up (1, 1); (b) AUSM

+
-

up (0.5, 0.5); (c) AUSM
+
-up (0, 0); (d) SLAU; (e) SLAU2; (f) AUSM

+
-up2 

(air) (water) 

Fig.10 
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Figure 10: Magnified View of Pressure Profiles around Foot of Expansion Wave in Water, at t=2ms 

of the Water-to-Air Shock Tube Problem 

(a)

 

(b)  

(c)

 

(d)  

Figure 11: Solutions showing Grid Convergence at t=2ms of the Water-to-Air Shock Tube Problem 

of AUSM
+
-up (0.5, 0.5), (a) Void fraction; (b) Pressure; (c) Averaged temperature; (d) Averaged 

velocity. 
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(a)  

 
(b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

(i)  (j)  

(k)  (l)  

Figure 12: 1D Cavitation Problem Results at t=25ms (a) AUSM
+
-up (1,1), void fraction, g; (b) 

AUSM
+
-up (1,1), averaged density; (c) AUSM

+
-up (0.5,0.5), g; (d) AUSM

+
-up (0.5,0.5), averaged 

density; (e) AUSM
+
-up (0,0), g; (f) AUSM

+
-up (0,0), averaged density; (g) SLAU, g; (h) SLAU, 

averaged density; (i) SLAU2, g; (j) SLAU2, averaged density; (k) AUSM
+
-up (Niu), g; (l) 

AUSM
+
-up (Niu), averaged density. 
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3.4     1D Cavitation Problem (Two-Phase Flow) 
 

This test was proposed by Saurel and Abgrall in [16], in which receding liquid flow containing 1% 

gas in a tube dynamically creates a cavitation zone at the center. As the problem setup, 200 cells are 

uniformly distributed over the [0m, 10m] domain (i.e., the grid spacing is x=0.05m), and the initial 

conditions are given as: 

 (p,g,uk, Tk)L = (10
5
 Pa, , -100 m/s, 300K) for x 5m 

 (p,g,uk, Tk)R = (10
5
 Pa, , 100 m/s, 300K) for x>5m 

where k=g, l, and =1.0×10
-2

 (min=1.0×10
-3

, max=1.0×10
-1

). The computations are conducted with 

t=5.0×10
-6

s (CFL≈0.16), up to 25ms (5,000 steps). 

Fig. 12 shows the results. AUSM
+
-up2, which showed identical results to SLAU2, and AUSMPW+, 

which failed to compute this problem, are omitted. It has been demonstrated that, as in Saurel and 

Abgrall’s more ellaborate, relaxation-involved method, “even starting from a situation in which 

interfaces are not present,” most of fluxes, including AUSM
+
-up (Niu) this time, are “capable of 

dynamically creating interfaces,” as stated in [16]. This feature motivates us to go on to more realistic 

cavitation problems in future. 

(a)

 

(a)

 
(b)

 

(b)

 
(c)

 

(c)

 

Figure 13: time evolution of solution of 

shock/water-droplet interaction problem of 

AUSM
+
-up (1, 1) (a) t = 3.75s; (b) t = 5.25s; 

(c) t = 6.75s (numerical Schlieren). 

Figure 14: time evolution of solution of 

shock/water-droplet interaction problem of 

AUSM
+
-up (0.5, 0.5) (a) t = 3.75s; (b) t = 

5.25s; (c) t = 6.75s (numerical Schlieren). 
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3.5     Shock/Water-Column Interaction 

(Two-Fluid Flow, 2D) 
 

As the final and realistic example, a shock in air 

impacting on a water-column (i.e., 2D droplet) is 

simulated. 400×200 isotropic cells are used for a 

domain of [-5mm, 5mm]×[0mm, 5mm] to cover 

the 6.4mm diameter water column with its center 

at origin, i.e., the diameter being 256 times grid 

spacing xmin=ymin=0.025mm in this region; 

then the cells are stretched toward outer 

boundaries so that a domain of [-15mm, 

20mm]×[0mm, 15mm] is filled with 900×420 

cells as a total. 

The initial conditions are as the same as in [14]: 

 (p, g, uk, vk, Tk)L = (2.35438×10
5
 Pa, , 

225.86 m/s, 0 m/s, 381.85K) for x -4mm 

 (p, g, uk, vk, Tk)R = (1×10
5
 Pa, , 0 m/s, 0 

m/s, 293.15K) for x>-4mm, except for 

x
2
+y

2
<(3.2mm)

2
 where g1- 

where k=g, l, and =1.0×10
-5

 (min=1.0×10
-5

, 

max=1.0×10
-4

). Then the shock starts to move 

with Msh =1.47 at t=0, and hits the water-column 

at t≈1.5s. The computations are carried out 

with t=1.25×10
-9

s (CFL≈0.3) up to 10s (8,000 

steps). 

Since the air/water interface having a circular 

shape should reside on the Cartesian-type grid, 

we specified a smooth transition region of 

±2xmin width on the initial phase interface so 

that the void fraction gis interpolated using the 

same blending function applied for “vanishing” 

phase treatment: 

 

 

 

At the bottom boundary, the conventional slip condition is imposed, i.e., only the y-component 
velocity is reflected, while the other variables are simply extrapolated from the interior cells. The 
other boundaries are typical: the left boundary is the inlet condition, the right is the outlet, and the top 
boundary is the side. Those far field boundaries are far away from the water-column enough to 
prevent the influence to the problem. 
The results are shown in Figs. 13-15 (in which numerical Schlieren function    1log1 2   l

 [13] is 
used with the range between 4 and 28) for AUSM

+
-up (1, 1), AUSM

+
-up (0.5, 0.5), and SLAU2. 

AUSM
+
-up2 results are very similar to those of SLAU2, thus, omitted. AUSM

+
-up (0, 0), SLAU, 

AUSM
+
-up (Niu), and AUSMPW+ were unable to compute this problem. 

(a)

 
(b)

 
(c)

 

Figure 15: time evolution of solution of 

shock/water-droplet interaction problem of 

SLAU2 (a) t = 3.75s; (b) t = 5.25s; (c) t = 

6.75s (numerical Schlieren). 
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AUSM
+
-up (1, 1) in Fig. 13 shows similar results evolved with time as in [14]. After impacting on the 

water-column, the shock transmits into the water region; in the air region, on the other hand, it 
diffracts as if it began to glance around a solid object (t = 5s, Figs. 13a). Then, as seen in Figs 13b, 
the shock travels faster inside the water-column than outside because of the greater speed of sound. At 
t = 6.75s, the shock in the water-column has reflected from the rear phase interface (Figs. 13c). 
AUSM

+
-up (0.5, 0.5), less diffusive than AUSM

+
-up (1, 1), shows very similar solutions overall (Fig. 

14) but with a slightly non-smooth inside-water profile in Fig. 14c. Thus, although AUSM
+
-up (0.5, 

0.5) looked a good balance for some of the previous test cases, AUSM
+
-up (1, 1) may be better for 

challenging problems like this test. SLAU2 in Fig. 15, again, still resolves flow features yet with 
slightly more oscillations in the water-column. Thus, SLAU2 (and AUSM

+
-up2) may be used, when 

those (weak) oscillations are acceptable, or in combination with the exact Riemann solver, as briefly 
introduced in Appendix C (which will be further studied as a future work). 
All in all, AUSM

+
-up (1, 1), AUSM

+
-up (0.5, 0.5), and SLAU2 solutions are roughly similar, yet with 

different smoothness/diffusiveness in this order, as in all the other tests. Still, more importantly, those 

methods have been successfully extended for multifluid and multiphase flows including such a two-

dimensional, challenging problem. The results of all the test problems with all the flux functions are 

summarized in Tables 1. 

 

4     Conclusions 
 
Following Liou et al. [14], recently-developed, AUSM-family numerical flux functions have been 
successfully extended to compressible multifluid and multiphase flow computations, based on the 
stratified flow model concept. Then, we carried out an extensive survey using those flux functions. 
The key findings are as follows: 

 AUSM
+
-up with large dissipation parameters for low speeds (Kp=Ku=1), that with small 

dissipation (Kp=Ku=0.5), and SLAU2 or AUSM
+
-up2 (Kp=1) can be used in all the problems 

solved here (with this order of smoothness/diffusivity of solutions), even in a challenging 2D 

shock/water-droplet interaction. 

 SLAU showed oscillatory behaviors [though not as catastrophic as those of AUSM
+
, i.e., 

AUSM
+
-up (Kp=Ku=0)] due to insufficient dissipation arising from inherent limitation in 

extension of its dissipation term. 

 AUSM
+
-up modified by Niu et al. [17] and AUSMPW+ are applicable to limited, two-phase 

flow test cases having no steep pressure gradients. The former has problem-dependent 

dissipation which is inappropriate to the other problems, and the latter has weight functions that 

behaved adversely under the water. 
We hope the results and discoveries here will serve as a guideline for users when choosing fluxes in 
particular problems, and also they will help us with further developments of numerical modeling of 

Table 1. List of solutions of test problems (S: Successful, A: Acceptable, F: Failure) 

Flux functions (listed in 

order of smoothness/ 

diffusiveness of solutions 

in general) 

3.1 Moving 

phase 

discontinuity 

(Two-fluid) 

3.2 Faucet 

problem 

(Two-phase) 

3.3.1 Air-to-

water shock 

tube (Two-

fluid) 

3.3.2 Water-

to-air shock 

tube (Two-

fluid) 

3.4 1D 

cavitation (Two-

phase) 

3.5 Shock/ 

water-column 

interaction 

(Two-fluid, 2D) 

AUSM+-up (1, 1) S S S S S S 

AUSM+-up (0.5, 0.5) S S S S S A (slightly 

oscillatory) 

SLAU2 or AUSM+-up2 S S S A (slight 

undershoot) 

S A (weakly 

oscillatory) 

SLAU S S A (slight 

oscillation) 

A (slight 

undershoot) 

S F (diverge) 

AUSM+-up (0, 0) S S F (oscillatory) F (oscillatory) S F (diverge) 

AUSM+-up (Niu) F (diverge) S F (diverge) F (diverge) S F (diverge) 

AUSMPW+ F (diverge) S F (diverge) F (diverge) F (diverge) F (diverge) 
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multiphase flows. 
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Appendix A: Limiter Effects 
 

A.1     Moving Phase Discontinuity with Different Flux Limiters (Two-Fluid Flow) 
 

We had also surveyed effects of 

choosing flux limiter functions. The 

moving phase discontinuity results of 

AUSM
+
-up (1, 1) with the following 

limiters are compared: Van Albada 

[denoted as “VA,” with the limiter 

coefficient 10
-20

 (default) or 10
-6

], 

minmod, or Chakravarthy-Osher 

(denoted as “C-O,” which was adopted 

in Chang and Liou [13]), along with 

the MUSCL coefficient  = -1 

(default; fully upwind 2nd-order) or 

1/3 (upwind-biased 3rd-order). The 

results are shown in Fig. A1 in which 

pressure disturbance is closed up to the 

10
-6

 [Pa] level. It is seen that the C-O limiter (with either  =  -1 or 1/3) has the best performance in 

preserving pressure constancy, but more importantly, any choice can suppress the pressure error 

within 10
-5

 [Pa], which is 10 orders smaller than the uniform pressure.  

Among these choices, we selected the Van Albada’s limiter with  = -1 as a default combination, 

because we found it the most robust combination in the challenging, shock/water-column test from 

our experience. 

 

Appendix B: Single-Liquid Flow 
 

B.1     Underwater Shock Tube (Single-Phase Flow) 
 
As a preliminary study, we had solved an underwater shock tube problem and compared behaviors of 
flux functions at a very low Mach number in water. Following [14], a 1D domain of [0m, 1m] is 
prepared, the diaphragm was placed in the middle, and the initial conditions for the both sides were 
specified as below [18]: 

 (p,g,uk, Tk)L = (10
6
 Pa, , 0 m/s, 300K) for x 0.5m 

 (p,g,uk, Tk)R = (10
5
 Pa, , 0 m/s, 300K) for x>0.5m 

where k=g, l, and =1.0×10
-16

 (min=1.0×10
-16

, max=1.0×10
-12

). The grid and time step are 

 200 cells: x=0.005m, t=5.0×10
-7

s (CFL≈0.15), up to 1.0×10
-4

s (200 steps) 
In this (nearly) pure water case for the entire computational domain, the cell-interfacial speed of 
sound used in flux functions is that of liquid, not the gas-liquid-averaged one. The results are shown 
in Fig. B1 
From Figs. B1a and B1g, AUSM

+
-up (1, 1) and AUSM

+
-up (Niu) captured both the shock (right) and 

the expansion (left), albeit in a slightly diffused manner. Furthermore, AUSM
+
-up (Niu) needed a 

small timestep; otherwise, the computation blew up. On the other hand, AUSM
+
-up (0, 0), showed 

severe oscillations as in Fig. B1c. AUSM
+
-up (0.5, 0.5), showing sharp wave capturing in Fig. B1b, 

looked the best balance among AUSM
+
-up results. SLAU, SLAU2, and AUSM

+
-up2, in turn, bore 

only velocity oscillations of O(0.01) m/s, an order smaller than the local velocity O(0.1) m/s [or a 
Mach number order of O(10

-4
)] (Figs. B1d-f). Although physically correct solutions were reportedly 

 

Figure A1: Magnified View of Limiter Effects on Pressure 

Disturbance from Moving Phase Contact Discontinuity 
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obtained for low speed steady flows of M≈O(10
-3

) by those flux functions as surveyed by Kitamura et 
al. in [26, 27, 35], it is possible that additional treatment may be required for transient, very low speed 
flows, M<O(10

-4
). One of such remedies is enhancing pressure difference term in mass flux of SLAU 

and SLAU2, as recently suggested by Dr. Ashvin Hosangadi of Combustion Research and Flow 
Technology (CRAFT Tech), Inc., PA, USA, (in private communication through Dr. Eiji Shima, 
JAXA, Japan, on Feb. 29, 2012, and also in [36]). This is realized, for example, by replacing with 
/(1-) and introducing cutoff Mach number, Mco (=0.05 here), into Eq. (14f) as: 

Although such a correction sacrifices parameter-free nature of SLAU and SLAU2, its effect is 
confirmed from the result of SLAU2 with this very low Mach correction as included in Fig. B1h, in 
which the velocity oscillations were significantly reduced, but requiring a very small CFL number to 
maintain stability. Nevertheless, since only problems where such a small velocity error is almost 
negligible are solved, this very low Mach correction is not applied in the main text of the paper. For 
those flows, all the methods except for AUSM

+
-up (0, 0) and AUSMPW+, which showed divergence 

(and also showed possibility that the weighting function in this flux is not suitable for use in stiffened 
gas EOS), may be applied. 

 

Appendix C: Combination with Exact Riemann Solver 
 
We have basically followed the work by Liou et al. in [14], in which AUSM

+
-up, one of AUSM-

family fluxes, was used standalone. In [13], on the other hand, Chang and Liou used AUSM
+
-up only 

at gas-gas and liquid-liquid interfaces, and the exact Riemann (Godunov) solver is used at phase 
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Figure B1:  Underwater shock tube solutions at t=1.0×10
-4

s (a) AUSM
+
-up (1, 1); (b) AUSM

+
-up 

(0.5, 0.5); (c) AUSM
+
-up (0, 0); (d) SLAU; (e) SLAU2; (f) AUSM

+
-up2; (g) AUSM

+
-up (Niu); (h) 

SLAU2 (with very low Mach correction, Mco=0.05) (10 times smaller time step; CFL≈0.015). 
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interfaces. We confirmed that the latter choice, although computationally more expensive, is able to 

deal with more challenging problems, such as water-air shock tube with high pressure ratio (PR), 10
3
, 

which will be briefly demonstated below. 

 

C.1     Water-to-Air Shock Tube with High Pressure Ratio (Two-Fluid Flow) 
 

Similarly to 3.3.2, the problem setup is given as follows, but with PR=10
3
 (which could not be treated 

by a single AUSM-family flux), as opposed to the original value of 2: 

 (p,g,uk, Tk)L = (10
8
 Pa, , 100 m/s, 0 m/s, 308.15K) for x 5m 

 (p,g,uk, Tk)R = (10
5
 Pa, 1-, 100 m/s, 0 m/s, 308.15K) for x>5m 

where k=g, l, and =1.0×10
-5

 (min=1.0×10
-7

, max=1.0×10
-3

), with the grid and time step: 

 500 cells: x=0.02m, t=2.0×10
-6

s (CFL≈0.16) for AUSM+-up(1,1)/Godunov; t=1.0×10
-6

s 

(CFL≈0.08) for SLAU2/Godunov, up to 2.0×10
-3

s (1,000 or 2,000 steps) 

The results of AUSM
+
-up(1,1)/Godunov and SLAU2/Godunov are shown in Fig. C1 (pressure is 

displayed in log scale for better presentation). Both the results successfully captured expansion in 

water as steep pressure gradients and relatively weak shock in air without oscillations. 

 

C.2     Moving Phase Discontinuity (Two-Fluid Flow) 
 

As in 3.1, the moving phase contact discontinuity was solved using AUSM
+
-up(1,1)/Godunov and 

SLAU2/Godunov. As shown in Fig. C2, the pressure was preserved across the phase interface within 

O(10
-5

) [Pa], as well as the AUSM
+
-up (1, 1) or SLAU2 alone. 

Therefore, we have confirmed that while AUSM-family fluxes can solely be used in most cases, we 

can resort to the exact Riemann solver for problems involving high pressure ratio in combination with 

AUSM-family fluxes such as AUSM
+
-up (1, 1) or SLAU2. Further survey on both single AUSM-

family and AUSM-family/Godunov methods is our next interest as an immediate future work. 

(a)

 

(b)

 

Figure C1:  Water-to-Air Shock Tube Problem (with High Pressure Ratio, PR=1,000) Solutions at 

t=2ms, (a) AUSM
+
-up (1, 1)/Godunov; (b) SLAU2/Godunov. 

(a)

 

(b)

 

Figure C2:  Moving Phase Contact Discontinuity Solutions (using Exact Riemann 

Solver at Phase Interface) at t=0.03s (a) Void fraction, g; (b) Pressure (expanded scale). 

(air) (water) 


