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1 Introduction

Modeling two-phase �ows is of primary importance for engineering applications. Two aspects are fundamen-
tal: (i) how to model the interface between two �uids with di�erent thermodynamic properties and (ii) to
characterize the mechanisms occurring at the interface as well as in zones where the volume fractions are
not uniform. Several methods have been proposed to model the interface time evolution and reconstruction
as in Lagrangian methods, Arbitrary Lagrangian-Eulerian methods (ALE), the Level set method, etc. [1, 2, 3]
or to deal with the interface as a di�usion zone, for which consistent thermodynamic equations should be
considered [4, 5, 6, 7].

Instead of the traditional approaches to multiphase modeling, where an averaged system of (ill-posed) par-
tial di�erential equations (PDEs) discretized to form a numerical scheme are considered, the discrete equation
method (DEM) results in well-posed hyperbolic systems. This allows a clear treatment of non-conservative
terms (terms involving interfacial variables and volume fraction gradients) permitting the solution of inter-
face problems without conservation errors. This method displays several advantages, such as an accurate
computation of transient �ows as the model is unconditionally hyperbolic, boundary conditions solved with
a simple and accurate treatment, an accurate computation of non-equilibrium �ows as well as �ows evolving
in partial or total equilibrium. With the DEM, each phase is compressible and behaves according to a convex
equation of state (EOS). In many works of interface problem, the Sti�ened Gas (SG) EOS was usually used
[8, 6, 9, 10]. As explained in Saurel et al. [11, 12], this EOS allows an explicit mathematical calculations of
important �ow relation thanks to its simple analytical form. Moreover, in mass transfer problem it assures
the positivity of speed of sound in the two-phase region, under the saturation curve.

When complex �uids are considered, such as cryogenic, molecularly complex and so on, the use of simplex
EOS can produce imprecise estimation of the thermodynamic properties, thus deteriorating the accuracy of
the prediction. Increasing the complexity of the model and calibrating the adding parameters with respect
to the available experimental data constitutes a valid option for saving the good prediction of the model.
Nevertheless, it could be very challenging because of the numerical di�culties for the implementation of more
complex mathematical model and because of the large uncertainties that generally a�ected the experimental
data.

An e�ort for developing a more predictive tool for multiphase compressible �ows is underway in Bacchus
Team (INRIA-Bordeaux). Within this project, several advancements have been performed, i.e. considering
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a more complete systems of equations including viscosity [13], working on the thermodynamic modeling of
complex �uids [14, 15], and developing stochastic methods for uncertainty quanti�cation in compressible �ows
[14, 16]. The aim of this paper is to show how the numerical solver based on a DEM formulation has been
modi�ed for including viscous e�ects and a more complex equation of state for the vapor region. The method
used in this paper is the DEM (see [6]) for the resolution of a reduced �ve equation model with the hypothesis
of pressure and velocity equilibrium [17], without mass and heat transfer. This method results in a well-posed
hyperbolic systems, allowing an explicit treatment of non conservative terms, without conservation error.
The DEM method directly obtains a well-posed discrete equation system from the single-phase conservation
laws, producing a numerical scheme which accurately computes �uxes for arbitrary number of phases. The
DEM method has been extensively tested in several test cases reproducing unsteady and wave propagation
�ows [6, 17, 18]. In this paper, two thermodynamic models are considered, i.e. the SG EOS and the Peng-
Robinson (PR) EOS. While SG allows preserving the hyperbolicity of the system also in spinodal zone,
real-gas e�ects are taken into account by using the more complex PR equation. The higher robustness of the
PR equation when coupled with CFD solvers with respect to more complex and potentially more accurate
multi-parameter equations of state has been discussed in [19, 20]. In this paper, no mass transfer e�ect is
taken into account, thus the PR equation can be used only to describe the vapor behavior, while only the
SG model is used for describing the liquid.

This paper is organized as follows. In section 2, a description of the reduced �ve equation model with
viscous e�ects is given. We derive a semi-discrete numerical approximation of the two-phase model. Then, we
perform an average procedure of the discrete approximation and an extension to the second-order. Finally,
the asymptotic expansion is analyzed to obtain a semi-discrete approximation for a reduced �ve-equation
model. Then, in section 3.1, we describe the SG and PR EOS for the pure �uid and then we derive the
thermodynamic properties of mixture, supposing the use of SG EOS for all phase and of PR EOS only for
the vapor phase. The section 4 is divided in two parts: in the �rst one, the implementation of the complex
equation of state is validated by reproducing a quasi single-�uid shock tube, i.e. considering a very reduced
liquid fraction. Then, in the second part, the code is validated against some well-known two-phase test-cases
in literature. Finally, the in�uence of using a more complex equation of state is analyzed by considering
several operating conditions in the proximity of the saturation curve.

2 Problem Statement

The present approach is based on a �ve-equation model with pressure and velocity equilibrium, obtained
after an asymptotic analysis in which the relaxation terms disappears. The method for the resolution of a
viscous �ve equation model has been amply developed in [13]. In this work, we give the main lines of the
scheme. In this section, let us start by illustrating the reduced model, then the numerical scheme and �nally
the thermodynamic closure of the system.

2.1 Five equation model

The starting point of the present analysis is a viscous seven equation model composed by the conservative
equation for each phase and by the characteristic function Xk of the phase Σk. The function Xk(x, t) is
equal to 1 if x lies in the �uid Σk at time t and 0 otherwise. An averaging procedure similar to that used by
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Drew [21] is applied to this equation, obtaining the following model:

∂ᾱk

∂t
=− E(σ · Oᾱk) + µr(P

k − P k
∗
)

∂ᾱkρ̄k

∂t
+ O(ᾱkρ̄k~vk) =E(ρI(~v

k
I − σ) · OXk)

∂ᾱkρ̄k~vk

∂t
+ O(ᾱkρ̄k~vk ⊗ ~vk + ᾱkP̄ kI) =E

(
(ρkI~v

k
I (~vkI − σ) + PII) · OXk

)
+

+ O · (ᾱk τ̄k)− E(τI · OXk) + λ(~vk
∗
− ~vk)

∂ᾱkρ̄kĒk

∂t
+ O(ᾱk(ρ̄kĒk~vk + P̄ kI~vk) =E

(
(ρIEI(~v

k
I − σ) + PII) · OXk

)
+

+ λ~vkI (~vk
∗
− ~vk) + µrPI(P

k − P k
∗
)

+ O · (ᾱk(τ̄k · ~vkI ))− E((τI~v
k) · OXk)

(1)

where the two phases are indicated with k and k∗; ρk, αk, ~vk and Pk are the �uid density, the volume
fraction, the velocity vector and the pressure for each phase k, respectively; Ek is the total energy of each
phase de�ned as Ek = ēk+ 1

2 ūk ·ūk. PI and vI are the pressure and velocity at the interface of the component
k, respectively, de�ned as: P

k
I = ZkPk∗+Zk∗Pk

Zk+Zk∗ + sign
(
∂αk

∂x ,
)

(vk
∗
−vk)

Zk+Zk∗

vkI = Zkvk+Zk∗vk
∗

Zk+Zk∗ + sign
(
∂αk

∂x ,
)
Pk∗+Pk

Zk+Zk∗

(2)

where Zk represents the acoustic impedance, i.e. Z = ρc, where c is the speed of sound. The coe�cients λ
and µr are the relaxation velocity parameter and the dynamic compaction viscosity, respectively. They are
associated to the relaxation terms that appear in the system to reproduce relaxation process behind shock
and pressure waves in the two-phase �ow, inducing a pressure and velocity equilibrium.
Writing λ = 1

ε and µr = 1
ε , the system can be formulated in a simpli�ed notation, as follows:

∂U

∂t
+
∂F (U)

∂x
=
∂U

∂t
+A(U)

∂U

∂x
=
R(U)

ε
(3)

where U is the vector of conservative variables, F (U) the �ux vector and R(U) the relaxation term. The
reduced model, i.e. supposing Pk = Pk∗ and vk = vk∗ , can be obtained using an asymptotic analysis that
allows to �nd the solutions S, a subset of RN of system (3) when ε→ 0+:

W =
{
U ∈ RN : R(U) = 0

}
(4)

As demonstrated by Murrone and Guillard [9] (see also [22, 17]), for each solution U ∈W , we can compute
a parametrization M such that, let u = (α1, ρ1, u, P, α2, ρ2)t ∈ R5 the vector of primitives variables, the
parametrization M : u→M(u) is de�ned as follows:

u→ U = M(u) =



α1

ρ1
u
P
α2

ρ2
u
P


. (5)

The reduced model of (3) is thus obtained by neglecting the terms of order ε:

∂u

∂t
+ PA(M(u))dMu

∂u

∂x
= O(ε). (6)

The term dMu represents the Jacobian matrix that forms a basis of ker R′(M(u)), moreover P is the
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projection over ker R′(M(u)) in the direction of Rng(M(u)), that is the range of R′(M(u)). In particular,
the projection P is obtained as inversion of the matrix S = [dM1

u , ..., dM
n
u , I

1, I2], where
{
I1, I2

}
is a basis

of Rng(R′(M(u))). The reduced model is the following:

∂ᾱ1

∂t
=− ~v · Oα1 +KO(~v)

∂α1ρ1

∂t
+ O(α1ρ1~v) =0

∂α2ρ2

∂t
+ O(α2ρ2~v) =0

∂ρ~v

∂t
+ O(ρk~v ⊗ ~v + P ) =Oτ

∂E

∂t
+ O(E + P ) =Oτ · ~v

(7)

where K = α1α2(ρ2c
2
2 − ρ1c21)/(α1ρ2c

2
2 + α2ρ1c

2
1).

As explained in Abgrall [17], unfortunately, in the system (7), a nonconservative production appears in the vapor
volume fraction equation. The di�culty, from a mathematical point of view, is that this term has no meaning in
the case where v and K are simultaneously discontinuous. In this case, it is di�cult to derive a numerical scheme.
However, in [17], a scheme that allow to overcome this problem has been proposed and it is used in this work. It is
explained in the following section.

In the system (7), ρ = α1ρ1 + α2ρ2, P and E = α1ρ1e1 + α2ρ2e2 are the mixture density, pressure and energy,
respectively. To close the system (7), we need an EOS for each pure �uid and for the mixture, permitting to de�ne
all the needed thermodynamic properties. In the case of SG EOS, the value of the mixture pressure is easily derived
from the mixture energy and the density for each phase [23]. On the contrary, when the PR EOS is used, there is
no explicit relation between the pressure and the energy, thus making more complex the computation of the mixture
pressure.

2.2 Numerical Method

Here, we illustrate how obtaining a semi-discrete numerical approximation of the two-phase system including the
viscous term (Eq. 1), following the same procedure of [6].

We describe this scheme in the framework of �nite volume discretization with a Godunov solver, but the procedure
can be easily adapted to other solvers. Let us de�ne our time-space domain. At time t, the computational domain
Ω is divided into a constant number of cells Ci =]xi−1/2, xi+1/2[. In addition, each cell Ci is divided into a random
subdivision xi−1/2 = ξ0 < ξ1 < ... < ξN(ω) = xi+1/2 (where ω is a random parameter).

In each subcell ]ξl, ξl+1[, Xk is constant and so only one phase Σk can exist. Neglecting the source terms S of
Eq.2, the integral form of Navier-Stokes equations for the space-time domain Ci × [t, t+ s] is equal to∫ t+s

t

∫
Ci
X
∂U

∂t
+

∫ t+s

t

∫
Ci
X
∂(F − Fv)

∂x
dx dt = 0 (8)

The Godunov scheme is no longer applied on the mesh cells, but on the modi�ed and non-uniform cells constructed
according to the position of the interface.

The variable σi+1/2 = σ(Ui, Ui+1) denotes the speed of the interface between the two cells Ci and Ci+1. Remark
that it is equal to zero, if the same phase is present into the cells, otherwise σi+1/2 coincides with the speed of
propagation of the interface in the Riemann solution (x, t) → vr(

x
t
;Ui, Ui+1). Thus, assuming that between the

times tn and tn+1 = (t + s), the interface xi+1/2 moves at velocity σi+1/2, the cell Ci is not �xed, but it evolves in
C̄i =](xi−1/2 + sσi−1/2), (xi+1/2 + sσi+1/2)[ (see Fig. 1). The cell may be either smaller or larger than the original
ones Ci, depending on the signs of the velocities σi+1/2. We denote with F (UL, UR) the Godunov numerical �ux
between the states UL and UR, and with F lag(UL, UR) the �ux across the contact discontinuity between the states
UL and UR (see Fig. 2). As a consequence, we have:

F lag(UL, UR) = F (U+
LR)− σ(UL, UR)U+

LR = F (U−LR)− σ(UL, UR)U−LR

Considering Fig. 1, the previous integral (Eq.8), de�ned on the mesh cell Ci, can be divided into three contributions,
i.e. the integrals on abb' for the left boundary, the integral on bcc' for the right boundary and the Lagrangian internal
cells.

4



Thus Eq.8 can be rewritten as ∫
abb′

X

[
∂U

∂t
+
∂(F − Fv)

∂x

]
dx dt + (I)

+

N($)−2∑
l=2

∫ t+s

t

∫ ξl+1+sσ(U
l
i ,U

l+1
i )

ξl+sσ(U
l−1
i ,Ul

i )

X

[
∂U

∂t
+
∂(F − Fv)

∂x

]
dx dt + (II)

+

∫
dcc′

X

[
∂U

∂t
+
∂(F − Fv)

∂x

]
dx dt = 0 (III)

Including the characteristic function X in derivative terms and applying the Godunov scheme, we obtain for each
term, the solution at time t + s. For the boundary terms (I) and (III), it is important to remark that the domain
where computing the integral is a triangle. At time t we have only one point (a) and thus the spatial integral is zero.

Remembering that the characteristic function obeys to the following property:

N($)−1∑
l=0

∫ t+s

t

∫ ξl+1

ξl

∂X

∂t
dx dt+

N($)−1∑
l=0

∫ t+s

t

∫ ξl+1

ξl

σ
∂X

∂x
dx dt = 0, (10)

Figure 1: Subdivision of computational domain.

Figure 2: The various states in the Riemann problem between states UL and UR.
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we can write for (I)∫
abb′

X

[
∂U

∂t
+
∂(F − Fv)

∂x

]
dx dt =∫

abb′

[
∂XU

∂t
+
∂X(F − Fv)

∂x

]
dxdt−

∫
abb′

[
U
∂X

∂t
+ (F − Fv)

∂X

∂x

]
dxdt =∫ xi−1/2+sσ

+(U+
i−1,U

−
i ,)

xi−1/2

X(x, t+ s)U(x, t+ s) dx− sX(xi−1/2, t)F (U∗i−1/2) +

−sF lag(U+
i−1, U

−
i )[X]j=0 + sX(xi−1/2, t)Fv(U∗i−1/2) + sFvI(U

+
i−1,U

−
i )[X]j=0,

where U∗i±1/2 is the solution of the Riemann problem. In this work, no mass transfer is considered, then when
a jump is considered, the viscous contribution is zero because there is not transfer of viscous information.
Similarly, the term (III) can be manipulated as follows∫

dcc′
X

[
∂U

∂t
+
∂(F − Fv)

∂x

]
dx dt =∫

dcc′

[
∂XU

∂t
+
∂X(F − Fv)

∂x

]
dxdt−

∫
dcc′

[
U
∂X

∂t
+ (F − Fv)

∂X

∂x

]
dxdt =∫ xi+1/2+sσ

−(U+
i ,U

−
i+1,)

xi+1/2

X(x, t+ s)U(x, t+ s) dx+ sX(xi+1/2, t)F (U∗i+1/2) +

+sF lag(U+
i , U

−
i+1)[X]j=N(w) − sX(xi+1/2, t)Fv(U∗i+1/2)− sFvI(U

+
i ,U

−
i+1)[X]j=N(w).

Concerning the internal terms (II), the integral becomes∫ t+s

t

∫ ξj+1+sσ(U
l
i ,U

l+1
i )

ξj+sσ(U
j−1
i ,U

j
i )

X

[
∂U

∂t
+
∂(F − Fv)

∂x

]
dx dt =

∫ ξj+1+sσ(U
l
i ,U

l+1
i )

ξj+sσ(U
j−1
i ,U

j
i )

X(x, t+ s)U(x, t+ s) dx−
∫ ξj+1

ξj

X(x, t)U(x, t) dx+

−s
(
F lag(U ji , U

j+1
i )[X]j − F lag(U j−1

i , U ji )[X]j−1,
)

+

+s
(
Fv(Uj

i,U
j+1
i )[X]j − Fv(Uj−1

i ,Uj
i)[X]j−1,

)
.

Summing up all terms, dividing for s and taking the limit when s→ 0, we obtain the semi-discrete scheme

∂

∂t

(
1

4x

∫ xi+1/2

xi−1/2

X(x, t)U(x, t) dx

)
+

+
1

4x
(
X(xi+1/2, t)F (U∗i+1/2)−X(xi−1/2, t)F (U∗i−1/2)

)
+

− 1

4x

(
X(xi+1/2, t)Fv(U∗i+1/2)−X(xi−1/2, t)Fv(U∗i−1/2)

)
=

=
1

4x

N(w)−1∑
j=1

(
F lag(U ji , U

j+1
i )[X]j − F lag(U j−1

i , U ji )[X]j−1,
)

+

+
1

4x

(
F lag(U−i , U

+
i−1)[X]j=0 − F lag(U+

i , U
−
i+1)[X]j=N(w)

)
+

−
N(w)−1∑
j=1

(
Fv(Uj

i,U
j+1
i )[X]j − Fv(Uj−1

i ,Uj
i)[X]j−1,

)
+

− 1

4x

(
Fv(U+

i ,U
−
i+1)[X]j=0 − Fv(U+

i ,U
−
i+1)[X]j=N(w)

)
. (11)
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We may assume that two adjacent subcell contains di�erent phases, so that

N(w)−1∑
j=1

(
F lag(U ji , U

j+1
i )[X]j − F lag(U j−1

i , U ji )[X]j−1

)
=

= N(ω)int
(
F lag(U2

i , U
1
i )− F lag(U1

i , U
2
i )
)

(12)

and

N(w)−1∑
j=1

(
Fv(Uj

i,U
j+1
i )[X]j − Fv(Uj−1

i ,Uj
i)[X]j−1,

)
= (13)

= N(ω)int
(
Fv(U2

i , U
1
i )− Fv(U1

i , U
2
i )
)
.

2.3 Averaging procedure

Now, it is possible to apply to the discrete equations system (11), the same averaging procedure used for
the system of partial di�erential equations of (1). Taking the mathematical expectancy of the semi-discrete
scheme (Eq.11) for which we have:

∂

∂t

(
1

4x

∫ xi+1/2

xi−1/2

X(x, t)U(x, t) dx

)
=
∂α

(1)
i U

(1)
i

∂t
(14)

and introducing the notation for the average number of internal interfaces,

λi = E
(
N(ω)int
4x

)
,

the scheme can be rewritten as:

∂α
(1)
i U

(1)
i

∂t
+

1

4x
E
(
X(xi+1/2, t)F (U∗i+1/2)−X(xi−1/2, t)F (U∗i−1/2)

)
+

− 1

4x
E
(
X(xi+1/2, t)Fv(U∗i+1/2)−X(xi−1/2, t)Fv(U∗i−1/2)

)
=

+
1

4x
E
(
F lag(U−i , U

+
i−1)[X]j=0 − F lag(U+

i , U
−
i+1)[X]j=N(w)

)
+

− 1

4x
E
(
FvI(U

+
i ,U

−
i−1)[X]j=0

)
− FvI(U

+
i ,U

−
i+1)[X]j=N(w)

+λi
(
F lag(U2

i , U
1
i )− F lag(U1

i , U
2
i )
)
− λi

(
(Fv(U

2
i , U

1
i )− Fv(U1

i , U
2
i )
)
. (15)

The development of both conservative and non-conservatives terms have been fully described in [6, 17, 13],
then here only �nal expressions of these terms are given for a second order scheme. We consider the cell
boundary i + 1/2 and focus on the �uxes available for �uid Σ1. On this cell boundary, four instances may
occur on the base of the phase present in the cell xi and in the cell xi+1 (see Tab. 1). Thus, we can de�ne
the �ux indicator

β
(l,r)
i+1/2 = sign(σ(U li , U

r
i+1)) =

{
1 if σ(U li , U

r
i+1) ≥ 0,

−1 if σ(U li , U
r
i+1) < 0

and the corresponding probability to have the same phase or two di�erent phases into the left and right cell
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of cell boundary i+ 1/2

Pi+1/2(Σ1,Σ1) := P
(
X(x−i+1/2) = 1 and X(x+i+1/2) = 1

)
= min

(
α
(1)
i , α

(1)
i+1

)
,

Pi+1/2(Σ1,Σ2) := P
(
X(x−i+1/2) = 1 and X(x+i+1/2) = 0

)
= max

(
α
(1)
i − α

(1)
i+1, 0

)
,

Pi+1/2(Σ2,Σ1) := P
(
X(x−i+1/2) = 0 and X(x+i+1/2) = 1

)
= max

(
α
(2)
i − α

(2)
i+1, 0

)
,

Pi+1/2(Σ1,Σ2) := P
(
X(x−i+1/2) = 0 and X(x+i+1/2) = 0

)
= min

(
α
(2)
i , α

(2)
i+1

)
.

Following the MUSCL approach, we propose the following extension to a second-order approximation of the
scheme. The system 15 can be written as follows:(

α
(1)
i U

(1)
i

)n+1

−
(
α
(1)
i U

(1)
i

)n
∆t

+
E (XF )i+1/2 − E (XF )i−1/2

∆x
−
E (XFv)i+1/2 − E (XFv)i−1/2

∆x
=

= E
(
F lag

∂X

∂x

)
i,bound

+ E
(
F lag

∂X

∂x

)
i,relax

+

−E
(
Fv
∂X

∂x

)
i,bound

− E
(
Fv
∂X

∂x

)
i,relax

. (16)

In the following, Ui±1/2,l(resp.Ui±1/2,r) are the vector of conservative variables on the left (resp. right) of
the boundary cell xi±1/2 after the MUSCL extrapolation, using a minmod limiter. Thus, all terms in the
predictor-corrector scheme for a multiphase �ows, take the following form

• Conservative terms

E (XF )i+1/2 = P1+1/2(Σ1,Σ1)F (U
(1),n+1/2
i+1/2,l , U

(1),n+1/2
i+1/2,r )

+P1+1/2(Σ1,Σ2)
(
β
(1,2)
i+1/2

)+
F (U

(1),n+1/2
i+1/2,l , U

(2),n+1/2
i+1/2,r )+

+P1+1/2(Σ2,Σ1)
(
−β(2,1)

i+1/2

)+
F (U

(2),n+1/2
i+1/2,l , U

(1),n+1/2
i+1/2,r )

(17)

E (XF )i−1/2 = P1−1/2(Σ1,Σ1)F (U
(1),n+1/2
i−1/2,l , U

(1),n+1/2
i−1/2,r )

+P1−1/2(Σ1,Σ2)
(
β
(1,2)
i−1/2

)+
F (U

(1),n+1/2
i−1/2,l , U

(2),n+1/2
i−1/2,r )+

+P1−1/2(Σ2,Σ1)
(
−β(2,1)

i−1/2

)+
F (U

(2),n+1/2
i−1/2,l , U

(1),n+1/2
i−1/2,r )

(18)

E (XFv)i+1/2 = P1+1/2(Σ1,Σ1)Fv(U
(1)
i+1/2,l, U

(1)
i+1/2,r)

+P1+1/2(Σ1,Σ2)
(
β
(1,2)
i+1/2

)+
Fv(U

(1)
i+1/2,l, U

(2)
i+1/2,r)+

+P1+1/2(Σ2,Σ1)
(
−β(2,1)

i+1/2

)+
Fv(U

(2)
i+1/2,l, U

(1)
i+1/2,r)

(19)
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E (XFv)i−1/2 = P1−1/2(Σ1,Σ1)Fv(U
(1)
i−1/2,l, U

(1)
i−1/2,r)

+P1−1/2(Σ1,Σ2)
(
β
(1,2)
i−1/2

)+
Fv(U

(1)
i−1/2,l, U

(2)
i−1/2,r)+

+P1−1/2(Σ2,Σ1)
(
−β(2,1)

i−1/2

)+
Fv(U

(2)
i−1/2,l, U

(1)
i−1/2,r)

(20)

• Non-conservative terms

E
(
F lag

∂X

∂x

)
i

= E
(
F lag

∂X

∂x

)
bound

+ E
(
F lag

∂X

∂x

)
relax

=

= +P1+1/2(Σ1,Σ2)
(
β
(1,2),n
i+1/2

)+
F lag(U

(1),n
i+1/2,l, U

(2),n
i+1/2,r)+

−P1+1/2(Σ2,Σ1)
(
β
(2,1)
i+1/2

)+
F lag(U

(2),n
i+1/2,l, U

(1),n
i+1/2,r)+

−P1−1/2(Σ1,Σ2)
(
β
(1,2)
i−1/2

)+
F lag(U

(1),n
i−1/2,l, U

(2),n
i−1/2,r)+

+P1−1/2(Σ2,Σ1)
(
β
(2,1)
i−1/2

)+
Flag(U

(2)
i−1/2,l, U

(1)
i−1/2,r)+

+

l=1∑
N−1

max
(
0,∆α1

i

)(
F lag(U2

i , U
1
i )−max

l=1∑
N−1

(
0,∆α2

i

)
F lag(U1

i , U
2
i )

)
,

(21)

E
(
Fv
∂X

∂x

)
i

= E
(
Fv
∂X

∂x

)
bound

+ E
(
Fv
∂X

∂x

)
relax

=

= P1+1/2(Σ1,Σ2)
(
β
(1,2)
i+1/2

)−
FvI(U

(1)
i+1/2,l, U

(2)
i+1/2,r)+

−P1+1/2(Σ2,Σ1)
(
β
(2,1)
i+1/2

)−
FvI(U

(2)
i+1/2,l, U

(1)
i+1/2,r)+

−P1−1/2(Σ1,Σ2)
(
β
(1,2)
i−1/2

)+
FvI(U

(1)
i−1/2,l, U

(2)
i−1/2,r)+

+P1−1/2(Σ2,Σ1)
(
β
(2,1)
i−1/2

)+
FvI(U

(2)
i−1/2,l, U

(1)
i−1/2,r)+

+max
(
0,∆α1

i

) (
Fv(U

2
i , U

1
i )−max

(
0,∆α2

i

)
Fv(U

1
i , U

2
i )
)
,

(22)

where ∆α1
i = α1

i+1/2,l−α
1
i+1/2,r and ∆α2

i = α2
i+1/2,l−α

2
i+1/2,r are the limited slope of α1 and α2 in the cell

Ci. The viscous �uxes Fv and FvI are reconstructed by a backward di�erence on the base of �ow direction.
We consider that the cell boundary i+ 1/2 and the viscous �uxes for the momentum and energy equations
are:

• momentum

Fv(U
(k)
i+1/2,l, U

(k)
i+1/2,r) =


4
3µ

u
i+1

2
−u(k)

(r)i−1

(3/2)dx if σ ≥ 0

4
3µ

u
i+1

2
−u(k)

(l)i+2

(3/2)dx if σ < 0

(23)

• energy

Fv(U
(k)
i+1/2,l, U

(k)
i+1/2,r) =


4
3µui+ 1

2

u
(k)

i+1
2

−u(k)

(r)i−1

(3/2)dx if σ ≥ 0

4
3µui+ 1

2

u
(k)

i+1
2

−u(k)

(l)i+2

3/2dx if σ < 0
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• momentum

FvI(U
(k)
i+1/2,l, U

(k)
i+1/2,r) =

 4
3µ

u
(k)

I(r)i+1
−u(k)

I(r)i

dx if σ ≥ 0

4
3µ

uI(r)i
−u(k)

I(r)i+1

dx if σ < 0

(24)

• energy

FvI(U
(k)
i+1/2,l, U

(k)
i+1/2,r) =


4
3µu

(k)
I
i+1

2

u
(k)

I(r)i+1
−u(k)

I(r)i

dx if σ ≥ 0

4
3µu

(k)
I
i+1

2

u
(k)

I(r)i
−u(k)

I(r)i+1

dx if σ < 0

where

u
(k)

i+ 1
2

=

{
u
(k)
(r)i

if σ ≥ 0

u
(k)
(l)i+1

if σ < 0

u
(k)
I
i+1

2

=

 u
(k)
(r)Ii

if σ ≥ 0

u
(k)
(l)Ii+1

if σ < 0

where l and r represent the left and right side. To obtain the predictor scheme, the solution is calculated
at time t = n + 1/2 and in the corrector scheme the solution is calculated at the time t = n + 1, using the
solution computed at the predictor step.

3 Asymptotic analysis of the numerical scheme

The scheme presented in Eq. 16 is a semi-discrete numerical approximation of the seven equation model for
modeling a two-phase �ow. Now, the aim is to obtain the semi-discrete scheme for the reduced �ve equations
model in a 1D con�guration, where viscous e�ects are considered, following the procedure described in [13].
If we set εi = 1/λi, the discrete scheme for the seven equations model can be formally rewritten as

∂W

∂t
+

G

4x
=
R(W )

εi
. (25)

where W = (α(1), α(1)U (1), α(2), α(2)U (2)), G is the sum of convective �uxes, viscous �uxes and bound
lagrangian �uxes, and R(W ) are the relaxation terms. As explained in section 2.2, let us consider ε → 0
searching for the solutions such that the relaxation terms could disappear:

W =
{
W such that R(W ) = 0⇒ E

(
F lag ∂X∂x

)
i,relax

= 0.
}

(26)

Hence, the �nal scheme for the �ve equation model in conservative variables is equal to:

∂ᾱ2

∂t
= FV2 +

ᾱ1ᾱ2

ᾱ2ρ̄1a21 + ᾱ1ρ̄2a22

{
SE2

ᾱ2ρ̄2β2
− u2SU2

ᾱ2ρ̄2β2
+

u2
2

2
− ε2 − ρ2κ2

ᾱ2ρ̄2β2
M2+

ρ22κ2FV2

ᾱ2ρ̄2β2
− SE1

ᾱ1ρ̄1β1
+
u1SU1

ᾱ1ρ̄1β1
−

u1
2

2
− ε1 − ρ1κ1

ᾱ1ρ̄1β1
M1 −

ρ21κ1FV1

ᾱ1ρ̄1β1

}
∂ ¯αkρk
∂t

= Mk

∂ρu

∂t
= SU1 + SU2

∂ρE

∂t
= SE1 + SE2

(27)
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Flow Patterns Left and Right States Flux Indicator

Σ1,Σ2 U
(1)
i , U

(2)
i+1

(
β
(1,2)
i+1/2

)+
Σ1,Σ1 U

(1)
i , U

(1)
i+1 1

Σ2,Σ1 U
(2)
i , U

(1)
i+1 −

(
β
(2,1)
i+1/2

)+
Σ2,Σ2 U

(2)
i , U

(2)
i+1 0

Σ1,Σ2 Fv(U
(1)
i , U

(2)
i+1)

(
β
(1,2)
i+1/2

)+
Σ1,Σ1 Fv(U

(1)
i , U

(1)
i+1) 1

Σ2,Σ1 Fv(U
(2)
i , U

(1)
i+1) −

(
β
(2,1)
i+1/2

)+
Σ2,Σ2 Fv(U

(2)
i , U

(2)
i+1) 0

Interface Flux

Σ1 − Σ2 F lag(U
(1)
i , U

(2)
i+1)

(
β
(1,2)
i+1/2

)−
Σ1 − Σ1 F lag(U

(1)
i , U

(1)
i+1) 0

Σ2 − Σ1 F lag(U
(2)
i , U

(1)
i+1) −

(
β
(2,1)
i+1/2

)−
Σ2 − Σ2 F lag(U

(2)
i , U

(2)
i+1) 0

Σ1 − Σ2 FvI (U
(1)
i , U

(2)
i+1)

(
β
(1,2)
i+1/2

)+
Σ1 − Σ1 FvI (U

(1)
i , U

(1)
i+1) 0

Σ2 − Σ1 FvI (U
(2)
i , U

(1)
i+1) −

(
β
(2,1)
i+1/2

)+
Σ2 − Σ2 FvI (U

(2)
i , U

(2)
i+1) 0

Table 1: The �ow con�gurations at the cell boundary i+ 1/2.
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where FV, Mk, SU and SE are the �uxes of vapor volume fraction equation, conservative mass equation,
momentum equation and conservative energy equation, respectively and where:

βki =

(
∂εki
∂P ki

)
ρki

and κki =

(
∂εki
∂ρki

)
Pk

i

3.1 Thermodynamic closure

As we have previously mentioned, we deal with pure �uid and arti�cial mixture zone, thus the EOS must
be able to describe the �ow both in pure �uids and mixture zones.
In this section, �rst we describe two EOSs, i.e. the Sti�ened Gas (SG) EOS and the Peng-Robinson (PR)
EOS. Then, we build the mixture EOS using �rst the SG EOS for each phase and after the PR and the SG
for the gas and the liquid phase, respectively.

3.1.1 Sti�ened Gas EOS for pure �uid

The Sti�ened Gas EOS is usually used for shock dynamics and its robustness for simulating two-phase �ow
with or without mass transfer has been amply demonstrated [6, 9, 10, 17, 23]. It can be written as follows:

P (ρ, e) = (γ − 1)(e− q)ρ− γP∞, (28)

e(ρ, T ) = Tcv +
P∞
ρcv

+ q (29)

h(T ) = γcvT, (30)

where p, ρ and e are the pressure, the density and the energy, respectively. The politropic coe�cient γ is
the constant ratio of speci�c heat capacities γ = cp/cv, P∞ is a constant reference pressure and q is the
energy of the �uid at a given reference state. Moreover, T, cv and h are the temperature, the speci�c heat at
constant volume and the enthalpy, respectively. The speed of sound, de�ned as c2 = (∂P∂ρ )s can be computed
as follows:

c2 = γ
P + P∞

ρ
= (γ − 1)cpT (31)

where c2 remains strictly positive (for γ > 1). It ensures the hyperbolicity of the system and the existence
of a convex mathematical entropy [24].

3.1.2 Peng-Robinson (PR) EOS for pure �uid

Peng and Robinson (1976) proposed a cubic EoS of van der Waals type in the form:

p =
RT

v − b
− a

v2 + 2bv − b2
. (32)

where p and v denote respectively the �uid pressure and its speci�c volume, a and b are substance-speci�c
parameters related to the �uid critical-point properties pc and Tc and representative of attractive and re-
pulsive molecular forces. To achieve high accuracy for saturation-pressure estimates of pure �uids, the
temperature-dependent parameter a in Eq. (32) is expressed as

a =
(
0.457235R2T 2

c /pc
)
· α (T ) , (33)

while
b = 0.077796RTc/pc. (34)

These parameters are not completely independent, since isothermal lines in the p-v plane should satisfy the
thermodynamic stability conditions of zero curvature and zero slope at the critical point. Such conditions
allow computing the critical compressibility factor Zc = (pcvc)/(RTc) as the solution of a cubic equation.
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The correction factor α in Eq. (33) is given by

α (Tr) =
[
1 +K

(
1− T 0.5

r

)]2
, (35)

with
K = 0.378893 + 1.4897153ω − 0.17131848ω2 + 0.0196554ω3. (36)

The parameter ω is the �uid acentric factor. The other needed information to complete the thermodynamic
model, namely the ideal-gas isochoric speci�c heat of the �uid, is approximated through a power law, i.e.,

cv,∞ (T ) = cv,∞ (Tc)

(
T

Tc

)n
(37)

with n a �uid-dependent parameter. From thermodynamic rules, the energy equation can be expressed as:

e = ec +
cv,∞(Tc)

(n+ 1)Tnc
(Tn+1 − Tn+1

c )− a

80.5b

(
α(T )− T dα(T )

dT

)
ln
∣∣∣V+b(1+20.5)
V+b(1−20.5 )

∣∣∣ (38)

where ec is an energy reference value. The speed of sound can be expressed as follows:

a2 =

(
∂P

∂ρ

)
T

+
1

ρ2
T

cv

(
∂P

∂T

)2

ρ

. (39)

3.1.3 SG EOS based mixture

The EOS for the mixture can be easily obtained using the EOS of the single phases. In this section, let us
consider the mixture obtained supposing a SG EOS for each phase. The starting point is the mixture energy
equation:

ρE = α1ρ1e1 + α2ρ2e2. (40)

The energy of each phase, ek, can be replaced by the Eq.(28), obtaining the mixture total energy as a
function of the phase pressure. Under pressure equilibrium, we obtain the following expression for the
pressure mixture:

P (ρ, e, αk) =
ρ(E − α1ρ1q1

ρ − α2ρ2q2
ρ )−

(
α1γ1P∞,1

γ1−1 +
α2γ2P∞,2

γ2−1

)
α1

γ1−1 + α2

γ2−1
(41)

In this paper, the term q is supposed equal to zero for each phase.

3.1.4 PR-SG EOS based mixture

In this section, let us consider a mixture, obtained using the SG EOS for the liquid and the PR EOS for the
gas. In the case of SG EOS (see section (3.1.1)), we showed how the pressure mixture can be easily obtained
from the energy and the density of each phase. If a PR EOS is considered, it is not possible to formulate
explicitly the pressure as a function of the energy and the density. Then, the procedure shown in section
(3.1.3) for the SG EOS can not be used in this case.
Under pressure equilibrium, the following system of two equations is obtained:{

P1(T1, ρ1) = P2(T2, ρ2)
ρE = α1ρ1e1 + α2ρ2e2.

(42)

where P1 represents the pressure state computed for the phase 1 described by the PR EOS, and P2 the
pressure of the phase 2 described by SG EOS. Remark that in this case, the unknowns are T1 and T2.
Replacing P1 as a function of T1 and ρ1 using Eq. (32) and P2 using Eq. (28) in the �rst equation of the
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system (42), the liquid temperature T2 can be expressed as a function of the gas temperature T1:

T2 =

[
T1R1
1
ρ1
− b1

− α(T1)a1
1
ρ21

+ 2b1
ρ1
− b21

+ P∞,2

]
1

(γ2 − 1)ρ2cv,∞2

(43)

Replacing the energy ek of each phase using Eq. (38) for e1 and using Eq. (29) for e2 in the mixture energy
equation (second equation of the system (42)), we obtain:

ρE = α1ρ1

{
ec +

cv,∞(Tc)
(n+1)Tn

c
(Tn+1

1 − Tn+1
c )− a

2
√
2b

(
α(T1)− T1 dα(T )

dT

)
ln
∣∣∣V+b(1+

√
2)

V+b(1−
√
2

)
∣∣∣}+α2ρ2

[
T2cv,∞2

+
P∞,2
ρ2cv,∞2

+ q

]
.

(44)
Now, by replacing T2 in the Eq. (44) using the Eq. (43), it is possible to derive a relation between the gas
temperature, T1, and the mixture energy. This is a function E = E(T1) that depends exclusively by T1.
Solving iteratively Eq. (44) by using a Newton-Raphson method, the value of the gas temperature T1 can
be computed.
Once T1 is obtained, the mixture pressure can be easily computed using Eq. (32).

4 Results

This section illustrates various results. First, the implementation of the PR equation of state is validated by
running a monophasic shock tube where the liquid fraction is supposed very reduced, and by comparing with
respect to well-known results in literature. In this case, the working �uid is the FC70 �uid, permitting to
simulate a rarefaction shock wave in the tube for some speci�c conditions of pressure and temperature. The
aim of this test case is twofold, i) to validate the implementation of PR EOS and to check the robustness of
the proposed numerical scheme. Secondly, a two-phase shock tube is considered where the impact of using
a more complex equation of state with respect to a simpler one is shown for several operating conditions.

4.1 Validation

Let us consider the test case presented by Fergason et al. [25], where a rarefaction shock is observed in
a single-phase shock tube con�guration. This non-classical phenomenon has been observed numerically in
literature [26, 15, 27], even if an experimental con�rmation of the rarefaction shock wave still does not exist.
Only an accurate EOS, such as the PR EOS, can describe a so particular gas thermodynamic behavior. For
this reason, this test-case represents a good validation for checking the EOS implementation.
The shock tube is �lled out with only one �uid, the FC70, but for numerical reasons, each chamber contains
a very weak volume of fraction of water (αl = 10−8). The left side is at a pressure of 10.766× 105 Pa, with
a density equal to ρ = 470.398 kg/m3, while the right one is at a pressure of 8.635 × 105Pa with a density
equal to ρ = 248.991 kg/m3. The diaphragm is located at x = 2.5 m (the tube is long 5 m). The results
obtained with DEM have been validated with the numerical results obtained with the NZDG code (see [15]
for more details), comparing the pro�les at a time of t = 2.3 ms. The Table 2 provides the �uid properties
of FC70 and the corresponding PR EOS parameters, i.e. the �uid acentric factor ω and the n coe�cient
(see Eq. 37), taken from [28].

In Figure 3, the evolution of dimensionless (computed with respect to the critical point) pressure, density,
velocity and Mach along the tube axis are shown. A non-classical discontinuity wave �eld displaying a
rarefaction shock wave on x = 1.8 m (see Figure 3) and a compression shock wave on x = 3.5 m are
observed. The results obtained with the DEM code and the NZDG code [15] display a perfect agreement.

Name M(Kg/mol) Tc(K) Pc(atm) vc(m
3/kg) ω n

FC70 0.821 608.2 10.2 1.8544×10−3 0.7584 0.4930

Table 2: Molecular weightM , critical temperature Tc, critical pressure Pc, critical speci�c volume vc, acentric
factor ω and n coe�cient
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Figure 3: Comparison of the DEM results with the ones obtained with the NZDG code for a monophasic
shock-tube �ow in terms of pressure, density, Mach and velocity.

4.2 Dodecane test-cases

In this section, let us consider a shock tube �lled out with liquid dodecane on the left and with vapor dodecane
on the right without mass transfer. In the �rst test-case, already shown in [11], the vapor operating conditions
are far from the saturation curve. In order to evaluate the importance of using a more complex EOS, three
others test cases have been considered, using the same operating conditions for the liquid dodecane, but
with the vapor operating conditions closer to the saturation curve. These three conditions, reported in the
Amagat diagram in �gure 4, have been named as TC2, TC3, and TC4.

4.2.1 Original dodecane test-case

The shock tube is �lled out with liquid dodecane on the left and vapor dodecane on the right, but for
numerical reasons, each chamber contains a weak volume of the other �uid (αk = 10−8). The left side is at
a pressure of 108 Pa, with a density equal to ρl = 500 kg/m3, while the right one is set to an atmospheric
pressure of 105 Pa with a density equal to ρv = 2 kg/m3. The diaphragm is located at x = 0.75 m (the tube
is long 1 m) and the results are shown at a time of t = 473 µs.

Two equations of state, i.e. PR and SG eos, have been considered. Also the exact solution for the SG EOS
is reported (see Figure 5). The exact solution has been shown in [11] and it was calculated considering an
Euler model coupled with the SG EOS. The comparison with exact solution of pressure and velocity pro�les
obtained with both the EOS shows a good agreement, showing that the viscous terms do not in�uence
the �nal result. Anyway, this is coherent with the results shown in [13]. The Figure 5 illustrates a classical
incident wave �eld, in which a rarefaction wave propagates from left to right through the liquid (see pressure,
density and velocity pro�les in Figure 5 at x < 0.2 m), a contact discontinuity is moving from left to right
(see density pro�le in Figure 5 at x < 0.8 m) and �nally a shock wave propagates through the vapor (at
x < 0.85 m in Figure 5).
The comparison between the two EOS does not display di�erences in term of pressure, velocity and density
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Figure 4: Dodecane saturation curve. The dash line is the isothermal curve T = Tc. TC2, TC3 and TC4
indicate the vapor operating conditions used in the second, third and fourth test cases, respectively.

(Figure 5). On the contrary, the temperature pro�les shows a drop between the SG pro�le and the PR pro�le.
Let us focus to the zone for which x > 0.75 which corresponds to shock wave zone propagation though the
vapor phase (Remark that for x < 0.75 the gas fraction is nearly equal to zero then the associated temperature
has not a physical sense). If on the one hand it is normal to obtain two di�erent temperature values using
two di�erent EOS when imposing the same pressure and the same density, on the other hand a di�erence of
about 300 K, between the two temperatures, is observed.
When cavitating �ows should be considered, this di�erence can no more be negligible since that the cavitation
term is activated according to the value of the local temperature.

4.2.2 Modi�ed dodecane test-cases

Now, let us suppose to have the same liquid initial conditions of the previous test case, but to change the
vapor initial conditions as in Table 3 (see Figure 4). The diaphragm is located at x = 0.75 m (the tube is
long 1 m) and the results are shown at time t = 473 µs. In this case, the pro�les obtained by using the two
EOS show evident di�erences not only in terms of temperature, but also in terms of density and pressure
and velocity. In particular, an increasing density di�erence of about 7.7%, 36.36% and 42.85% is shown for
the PR EOS with respect to SG EOS in the case TC2, TC3 and TC4, respectively. The same increasing
di�erence can be observed for the temperature pro�les. In particular, we observe that, instead of the �rst
two cases (Figure 5-6), in the other ones, the temperature pro�le obtained with PR EOS is lower than the
one obtained with SG EOS (see Figure 7-8). Observing that the density estimated with PR is always higher
than the SG density, this change is due to the pressure between the rarefaction wave and the compression
shock. In fact, in the last two cases the pressure obtained by PR between 0.15 < x < 0.85 is lower than the
pressure obtained by SG EOS.

Finally, it is important to observe that getting closer to the saturation curve, i.e. from TC1 to TC4, the
shock wave propagation velocity lowers, producing a change in the shock position. This can be observed in
the velocity pro�les (see Figure 5-7).

5 Conclusion and Future Work

In this paper, a semi-discrete scheme for the resolution of interface problems with viscosity has been presented,
taking into account two di�erent EOS for evaluating real gas e�ects. A reduced �ve equation model, under
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Conditions TC2 TC3 TC4
P [MPa] 1.6 1.5 1.4
V [m3/Kg] 0.017 0.012 0.01

Table 3: Pressure and speci�c volume for the TC2, TC3 and TC4 conditions

the hypothesis of pressure and velocity equilibrium, is used and discretized through the Discrete Equations
Method (DEM). No mass and heat transfer is supposed. In this work, two EOS has been compared, the
SG EOS and the PR EOS. In particular, the liquid phase is reproduced by the SG EOS, instead, the vapor
phase is reproduced �rst with the SG EOS and, then, with the PR EOS. The PR EOS implementation has
been validated by comparing the results obtained with the DEM code with the ones of a monophasic code
[15]. In particular, the operating conditions and the working �uid have been chosen in order to reproduce
a rarefaction shock wave. A perfect agreement has been obtained between the DEM and the NZDG code.
Then, a two-phase shock tube (liquid and vapor Dodecane) has been considered, where the in�uence of
using a di�erent equation of state has been evaluated. As expected, for conditions closer to the saturation
curve, the importance of considering a more complex equation of state, i.e. the PR EOS, increases. The
implementation of the mass transfer terms is underway.
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Figure 5: Vapor volume fraction, vapor density, mixture density, velocity, pressure and gas temperature
pro�les for the original dodecane test case [11].
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Figure 6: Vapor volume fraction, vapor density, mixture density, velocity, pressure and gas temperature
pro�les for TC2 test case.
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Figure 7: Vapor volume fraction, vapor density, mixture density, velocity, pressure and gas temperature
pro�les for TC3 test case.
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Figure 8: Vapor volume fraction, vapor density, mixture density, velocity, pressure and gas temperature
pro�les for TC4 test case.
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