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Abstract: This paper is concerned with the ability of a high-order discontinuous Galerkin com-
pressible flow solver to perform implicit large eddy simulation of transitional and turbulent flows.
The approach is first validated on canonical test cases: the decay of homogeneous isotropic tur-
bulence at very high Reynolds number and the channel flow at Re, = 395. The method is first
assessed with respect to referenced results: DNS or even theoretical behavior. The results are also
compared with those obtained with SGS models implemented in spectral and finite volume codes.
Finally, the method is applied on a more challenging test case: the flow past a SD7003 airfoil at
Re = 60k with an angle of attack a = 4°. DNS as well as ILES have been performed and assessed
with respect to the literature.

1 Introduction

In the near future the use of Large Eddy Simulation (LES) or even Direct Numerical Simulation (DNS)
will become ever more widespread, e.g. for the prediction of flow instabilities and noise generation, or even
simply the global performance of flow machinery. However, the use of these approaches requires highly
resolved computations. Therefore, the discretisation method should feature a high order of convergence,
as well as excellent parallel scaling to tackle the huge resolution requirements. An additional difficulty
stems from the geometrical complexity of industrial geometries. Recently finite element (FEM)-like high-
order methods such as discontinuous Galerkin (DGM) [1, 2|, spectral difference (SDM) [3, 4] and spectral
element (SEM) [5, 6] methods have been applied to such computations. The main motivation is that these
methods bridge the gap between the high accuracy - deemed indispensable for adequate resolution of the
turbulent structures - of academic solvers and the geometric flexibility of industrial solvers. In addition to
very interesting dispersion and dissipation properties, DGM furthermore provides computational efficiency
and a simple way of checking grid resolution without requiring additional computations. These advantages
potentially make DGM a powerful tool for high fidelity simulation of transitional and turbulent flows.

An implicit time-integration DGM compressible flow solver has been assessed in a previous study for
different orders of interpolation, with respect to a high-order finite difference (FDM) and a spectral code on
DNS computations of the Taylor-Green vortex at Re = 1600 [7]. Although dissipative, DGM shows better
accuracy for the same number of degrees of freedom as central (and hence dissipation-free) FDM of the same
order of accuracy, probably due to better dispersion properties. The method has been further evaluated
on more complex geometries such as the transitional flow around low Reynolds airfoils (Eppler E387 and
SD7003, Re = 60k with low angle of attack) or the flow past a low pressure turbine cascade at a realistic
isentropic Reynolds number Re;s = 85000 [8].

The results of those validation showed that, for slightly under-resolved computations, the small features
of the flow (i.e. the high wavenumbers) were dissipated by the discretisation scheme. Indeed, DGM only
dissipates the scales that the model is not able to capture correctly, thus acting like a subgrid scale model.
This property makes DGM an excellent candidate for implicit large eddy simulation (ILES).



The present study focuses on the validation of ILES of transitional flows using DGM. In the first part, the
validation of ILES with DGM is performed on canonical test cases. The Homogeneous Isotropic Turbulence
(HIT) at very high Reynolds number and the channel flow at Re, = 395 [9] are considered. In the second part,
the DNS and the ILES of the transitional flow past an airfoil are compared. The flow around a SD7003 airfoil
at a Reynolds number equal to 60k with an angle of attack of a = 4° is considered. At this Reynolds number,
the flow typically features a laminar separation, followed by transition in the resulting shear layer and a
reattachment zone (figure 13). This benchmark has been already studied in several publications [10, 11, 12].

Figure 1: Instantaneous vorticity field on the periodic plane and skin friction on the surface of the airfoil.

The test case has also been selected for the first International Workshop on High-Order CFD Methods
(Nashville, Tennessee, 2012).

2 Numerical methods

2.1 The discontinuous Galerkin / Symmetric Interior Penalty method

For compacity reasons, the compressible Navier-Stokes equations are written as a set of generic convection-
diffusion equations for the state vector @ defined on domain §2:
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whereby appropriate Dirichlet and Neumann boundary conditions are defined on the boundary 0€2. m is the
index running on the different variables in the state vector. For the description of the discretisation of the

viscous terms, we furthermore rely on a first order expansion of the diffusive fluxes:
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2.1.1 Spatial discretisation

The discontinuous Galerkin method [13, 14| is a Galerkin finite element method based on an interpolation
space @, composed of functions ¢ that are polynomials of order p on each of the elements e in the mesh F,
but not required to be continuous across any of the interfaces f between elements. Such an interpolant is
illustrated in figure 2.

The DGM then approximates component m of the solution state vector u by u as
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Figure 2: The DGM interpolation space

As for any Galerkin method, the expansion weights u;,, are found by requiring that the residual of
the model equations, evaluated with w, is orthogonal to any function ¢; of the interpolation space ®. This
principle is further complemented with consistent and penalty terms on the element interfaces, using the Roe
upwind flux for the convective terms whilst the diffusive terms are discretised according to the Symmetric
Interior Penalty (SIP) method [14]:
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Using + and — to indicate lower and upper values with respect to the face normal n, we define n~ = n and
nt = —n. The interface average {{}} and jump [[.]] operators are then defined as
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For the convective terms, the Riemann solver H assures the correct flux of characteristics sent to and
received from neighbouring cells, thus assuring correctly posed elementwise problems and global energy
stability. For the diffusive term the method generalises a boundary penalty method to enforce weak coupling
at the interfaces. The penalty parameter o must be chosen to be large enough to guarantee stability. Sharp



bounds for the value of o have been elaborated for simplices [15], and recently for hybrid meshes [16].

All Dirichlet boundary conditions, both for the convective and diffusive terms are imposed weakly by
providing a fictitious exterior state for the convective interface flux terms CI, the consistent diffusive flux
DI, the symmetrising term DS and the penalty term DP. Neumann boundary conditions for the diffusive
terms are enforced by modifying the consistent DI and symmetrising term DS on the concerned faces.

2.1.2 Discussion

The most intuitive interpretation of the method is then to see it as a collection of single element finite element
problems, coupled through weak boundary conditions.

The main advantages of the method consist on the one hand of a high order of accuracy on unstructured
meshes, resulting in interesting dissipation and dispersion properties and data locality on the other. The
dispersion and dissipation errors are illustrated on figure 3. Even second order DGM (p = 1) presents very
low dispersion errors, compared to centered finite difference (FD) schemes. The dissipation of the scheme
becomes progressively more focused on the higher wave numbers, as the order of interpolation increases.
This dissipation property of DGM makes it an excellent candidate for ILES.
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Figure 3: Dispersion (left) and dissipation (right) errors of DGM (p=1,3 and 7) compared with centered
finite difference (order 2, 4 and 6) [17].

Finally, the data locality allows for a very efficient serial (see [18]) and parallel implementation, as
illustrated by the weak parallel scaling of the implicit code as obtained on the Jiilich BlueGene/P computer
“Jugene”, giving a 92% of efficient for 16k CPUs (figure 4). Therfore, the combination of those characteristics
offers great potential for the use of DNS and LES computations of wall-bounded flows in complex geometry.

3 Validation of the method on canonical test cases

Before tackling complex geometries, the method will be validated on test cases for which detailed reference
data are available. The HIT at very high Reynolds number is chosen to represent the behaviour of the
method in the free-stream region of the flow. To assess the discretisation in the near-wall region, the channel
flow at Re, = 395 is considered.

3.1 HIT at very high Reynolds number

The flow is computed in a box, periodic in all three dimensions. A very high Reynolds number is considered
with ¥ — oo. The initial condition is generated with a pseudo-spectral code. After a given transient phase,
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Figure 4: Weak scaling on Jugene.

due to the sudden absence of viscosity, the kinetic energy evolves following a power law
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According to literature, the value of the decay exponent should be around o = 1.30 4+ 0.10. In the spectral
domain, the energy spectra should give a semi-infinite range, with a true k~°/2 behavior according to
Kolmogorov theory. The ILES approach has been used on a 643 and a 1282 dof grid (i.e. 163 and 323
elements with p = 4). Figure 5 displays the temporal evolution of the energy. The results are coherent with
literature: in the statistically developed regime, the kinetic energy decreases following an exponential law,
around o = —1.3. The energy spectrum presented in figure 6 is then computed by averaging the spectra in
this regime. Only the 323 grid is presented as the spectral range of 163 is too short to obtain a true k=%/3
behavior. The results are compared with those obtained by Cocle et al. [19] with a pseudo-spectral code on
a 1283 grid using different subgrid scale models: regularized variational multiscale (RVMs), hyperviscosity
and Smagorinsky. It can be seen that the behavior of the ILES/DGM is very similar to the RVMs of the
spectral code. The result is even a bit better for the larger wavenumber. Compared to Smagorinsky, which
is the more commonly used SGS model, the results of DGM are much better, with a larger inertial range.
It is important to notice that this result for ILES/DGM is obtained without constant tuning, as opposed to
the SGS models.

3.2 LES of a turbulent channel flow

The turbulent channel flow test case at Re, = 395 and low mach number M = 0.1 is chosen to assess the
behavior of the method on wall-bounded flows. Furthermore, a large number of references are available in
the literature [20, 21]). It consists in the simulation of the turbulent flow between two no-slip walls separated
by a distance 2 h. The domain is periodic in the z and z direction and the size of the domain is 27 x 2h X 7.
Usually, the velocity reference for this problem is the friction velocity u, which is linked to the average wall
shear stress 7, in the following way: u2 = %—“. The flow is forced by a pressure gradient which is computed

from the targeted Re,: %me = —p%. The results of a fourth order accurate (p = 3) ILES/DGM are compared

with DNS results of Moser and LES computations performed with a FVM solver by Georges et al. [22]. The
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Figure 5: Evolution of the kinetic energy for the HIT at very high Reynolds number. ILES/DGM results
for two grids: 163 and 323.
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Figure 6: Energy spectra for decaying HIT. Results of ILES/DGM (blue) compared with those of a pseudo-
spectral code with RVMs, hyperviscosity and Smagorinsky SGS model.

turbulence model used in this last computation is the filtered version of the WALE model as proposed by
Bricteux et al. [21]. The number of dof for the LES computations are the same (48 x 48 x 64). The wall
normal stretching used in both computations is slightly different. Nevertheless, studies with the FVM solver
have shown that results are not significantly impacted by the mesh distribution if one consider wall resolved



LES. Third order polynomials are used for the DGM computation leading to fourth order accuracy in space.
The temporal integration is performed with the second order implicit Three Points Backward Difference
(3BDF) scheme. The time step is chosen as AtT = 0.002, with t* = % 40t are necessary to obtain a
statistically developed flow and 40t™ to converge statistics. Figure 7 displays the space and time averaged
velocity profile in wall coordinates: ut = w/u, as a function of y©™ = yu,/v. The results obtained by
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Figure 7: Mean velocity profile for the channel flow at Re, = 395.

both computations are close, except near the center of the channel where the FVM seems to over-predict
the velocity. The differences between the computations are clearer when comparing the computed velocity
variances (u/u/, v'v’ and w'w’), as presented in figure 8. The DGM simulation seems to be more accurate,
even if some oscillations are present around y* = 40. The results are even better when looking at the
covariance Reynolds shear stress —u/v’. Here, the DGM result is almost perfectly superimposed with that
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Figure 8: Velocity fluctuations (left, u'u’ (top), w'w’ (mid) and v"v" (bottom)) and Turbulent mean shear
stress profile (right, —u/v’) of the simulation of the channel flow at Re, = 395.



of the reference while the curve obtained with FVM is slightly shifted to the right. Here again, as in the
HIT case, it is important to note that the coefficient of the SGS model used for the FVM computations
needed to be calibrated to obtain the best fit with the reference. Obviously, an ILES approach does not
need such a calibration, and the DGM method finds itself the right amount of dissipation. This property is
very interesting for industrial applications, where the use of dynamic procedures for the computation of the
model coefficient is very difficult to use and does not always provide accurate results.

4 DNS and ILES of the flow past the SD7003 airfoil

In this section, DNS and ILES of the flow past a SD7003 at Re = 60000 and M = 0.1 are performed using
a fourth order accurate DGM (p = 3). A non swept, constant chord wing is considered with an aspect ratio
equal to 0.2 (following Galbraith [12]) and an angle of attack of 4°. The motivation to perform a DNS was
due to the lack of real reference solution in the literature. Only LES and ILES can be found and the results
were not totally in agreement.

4.1 Numerical setup and mesh

For both computations, the temporal integration is performed using the 3BDF scheme. The time step
is the same for both computations and is equal to At = ¢./1000 with ¢. = ¢/Us the convective time.
Periodic boundary conditions are imposed in the spanwise direction to simulate an infinite wing. Free-
stream boundary conditions are weakly imposed on the other surfaces. Those are located at a distance equal
to 100 chords away from the airfoil to avoid strong interactions with the latter. The grids are constructed by
extruding an unstructured two-dimensional mesh resulting in a mesh composed of hexahedra and wedges.
The mesh size of the extrusion is chosen to obtain a uniform mesh in the turbulent region. Two meshes have
been considered in this study: one designed for DNS and one for LES. For both grids, the grid specifications
have been determined during a number of preliminary two dimensional runs such as to ensure sufficient
resolution near critical regions of the laminar region (laminar boundary layer separation point). Refinement
boxes are placed in the turbulent region and in the wake of the flow (see figure 10). The mesh size in these
refinement boxes is four times coarser for the LES than for the DNS. The boundary layer mesh has a first
layer size equal to Ayg/c = 3.33 10~* and a growth rate of » = 1.2. Figure 9 and 10 show the resulting DNS
and LES meshes.
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Figure 9: Comparison between DNS (up) and LES (down) mesh at the suction side of the airfoil.
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Figure 10: Comparison between DNS (up) and LES (down) mesh at the periodic plane. Refinement box 1

(red) and 2 (blue) are also shown.

Table 4.1 summarizes the mesh size in different regions of the flow, the mesh size at the wall in the
turbulent region (at x/c = 0.8) and the total size of the mesh. As the computation is fourth order accurate
(with p = 3), the mesh sizes correspond to the distance between two high-order nodes, i.e. the size of an

element divided by p.

DNS LES
Ayg/c (wall-normal) 3.33107% [ 3.33 1071
Az/e (box 1) 1.67 1073 | 6.67 103
Azx/c (box 2) 3.331073 | 1.33 1072
Az/c (spanwise) 1.67 1072 | 6.67 1073
ytat x/c=0.8 1.2 1.2
T =zt at x/c=0.8 6 24
Number of hexahedra (/1000) 84.7 8.7
Number of wedges (/1000) 646.1 47.9
Total number of dof per variable (at continuity) [k] | 10934.3 874.5

Table 1: Mesh characteristics for DNS and LES.

4.2 Preliminary unsteady results

Figure 11 shows the time evolution of the lift and the drag coefficients for both computations. The ILES
has been running for 45¢, and the DNS for 40¢.. Even if the lift coefficients have converged to a value
around C, = 0.6, the drag coefficients still globally increase. This means that the flows have not completely
reached a statistical developed state. The time needed to obtain a statistically converged solution is longer
than what has been reported in literature (Uranga et al. [11]) and this may be due to the large size of the
computational domain. Nevertheless, both computations are converging to the same values, in agreement
with the literature. Due to a lack of time, a preliminary analysis is done in this section on the last timesteps
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Figure 11: Temporal evolution of the lift (left) and drag (right) coefficients for DNS (blue) and ILES (red).

obtained. Fully converged results will be presented at the conference.

Instantaneous velocity fields are presented for both computations in figure 12. The flow fields are globally
in agreement: the separation point, the transition position and the turbulent region are located at the same
position in both computations. As expected, the small turbulent structures that can be seen on the DNS
are filtered by the mesh in the LES. Nevertheless, the larger energetic scales seem to be well captured; the
flow is globally continuous in all regions of the flow.

Figure 12: Snapshot of the velocity norm. DNS (top) and LES (bottom).

Therefore, strong discontinuities can be seen on the vorticity field for the LES at the contrary to the
DNS where the field is globally continuous, assessing the adequate resolution of the computation (figure 13).
Small turbulent structures are generated near the bursting of the shearlayer. Even if the scales are larger in
the LES, the magnitude of those vortices are similar to the DNS.

The same remark can be made from the friction coefficient at the suction side of the airfoil (figure 14).
The structure are larger in the LES and some discontinuities can be seen in the field. Nevertheless, the
position, the pattern and the magnitude of the large scales are in good agreement.
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Figure 13: Snapshot of the vorticity norm.

Figure 14: Snapshot of the friction at the wall. DNS (top) and LES (bottom).

4.3 Averaged flow fields

All the quantities of interest are averaged during the last 5t.. Figure 15 shows the averaged value of the
pressure and the friction coefficients at the surface of the airfoil. The same behavior is obtained for both
coefficients. Only small differences can be seen on the pressure coeflicient at the transition region and a
slight overprediction of the friction coefficient for the ILES in the turbulent region.

Figure 16 compares the pressure and friction coefficients of the DNS/DGM with those of LES found in the
literature [11]. Results are globally in good agreement, the LES curves are located around the DNS/DGM.
Nevertheless, the differences between the computations are more pronounced than what can be observed on
figure 15.

Table 4.3 compares the results of the two DGM computations (DNS and ILES) with those obtained by
the ILES of Galbraith [12] and Uranga [11], on a 4.8 M grid and a 1.8 M grid respectively. The computational
times are also presented for DGM. Results are globally in agreement, especially with Uranga et al.[11]. Only
a discrepancy can be found in the mean drag coefficient, but as shown on figure 11, the drag of DGM
computations seems to converge to the same value as Uranga. ILES/DGM is able to globally reproduce the
major quantities of the flow at a cost 25 times lower than the DNS. Nevertheless, those results have to be
validated and confirmed on more converged results.

11
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Figure 15: Mean pressure (left) and friction (right) coefficients for DNS (blue) and ILES (red).
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Figure 16: Mean pressure (left) and friction (right) coefficients for DNS (green), Uranga (black), Galbraith
(blue) and XFOIL (red). Source: Uranga et al. [11].

DNS/DGM | ILES/DGM | Uranga [11] | Visbal [12]
Cr 0.196 0.201 0.22 -
Cp 0.602 0.607 0.603 -
Separation 0.209 0.207 0.21 0.23
Reattachment 0.654 0.647 0.65 0.67
Cost to compute one t. [CPUL| 11001 415 - -

Table 2: Averaged results. Comparison between DNS, ILES and literature.

5 Conclusion

The ability of DGM to perform efficient ILES has been assessed on canonical test cases and applied to a
more advanced benchmark. The canonical test cases have been chosen to represent free turbulence (HIT
at infinite Reynolds) and wall-bounded turbulence (channel flow at Re, = 395). For the HIT at infinite
Reynolds, the results are in agreement with theory. The results are also very close to those obtained with
a spectral code using state-of-the-art SGS models. For the channel flow, the results are in agreement with
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the DNS reference of Moser et al. [20]. The results are even slightly closer to the DNS than those obtained
with a second-order finite volume method using RVMs. Finally, the method has been applied to a more
challenging test case: the transitional flow around a SD7003 airfoil at Re = 60k with an angle of attack of
4°. As no references were found in the literature, a DNS has been also performed. Both meshes have been
designed to fit with DNS and LES constraints. To assess the quality of the DNS, the global continuity of
the flow field (velocity, vorticity and skin friction) have been verified with success. The ILES is very close
to the DNS for every quantities, despite the coarse mesh. Both computations are also globally in agreement
with the literature [11, 12]. Unfortunately, the computations were not fully statistically converged but the
results are very encouraging. Statistically converged results will be presented at the conference.
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