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Abstract: We study very-high-order conservative discretizations for diffusive terms with variable
viscosity, which are present in the compressible Navier-Stokes equations, based on the construction
of numerical viscous fluxes at cell-interfaces. We introduce a novel conservative approach for the
discretization of (v(z) u’(x))l which yields O(Ax?%) accuracy on the stencil {i—s,- -+ ,i,--- ,i+s},
thus obtaining the same order-of-accuracy as nonconservative methods on the same stencil, and
improving upon previous conservative proposals which are O(Aarzzr%T )-accurate on the same stencil.
The extension of the scheme to 2-D and 3-D regular Cartesian grids, including cross-derivatives, is
described. Several typical 1-D and 3-D computational examples substantiate the order-of-accuracy
of the method.
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1 Introduction

Very-high-order accuracy is essential in several practical applications where the solution contains widely
varying spatial and temporal scales, as in the case of direct numerical simulation (DNs) of compressible
turbulent flows in physical space [1, 2, 3, 4, 5, 6, 7, 8]. Since such flows may contain shockwaves [1, 4, 6, 7],
particular care is taken in designing and using very-high-order conservative methods for the convective
part of the equations, WENO schemes [9] being a widely adopted choice [4, 5, 6, 7, 8]. On the other hand
the discretization of the diffusive (viscous) terms has received less attention. Many authors revert to a
nonconservative formulation [3], the compact scheme developed by Lele [10] being a popular choice [11],
while others prefer using low-order conservative schemes for the viscous terms [8], combined with very-high-
order schemes for the convective terms [12].

However, nonconservative approaches do not warrant global equilibrium of forces in the momentum
equation [13], which is only achieved approximately, with accuracy depending on the truncation error of the
scheme on the grid used in the particular computation. Therefore, when very coarse grids are used, as eg in
the case of preliminary ill-resolved DNS calculations, the error in global equilibrium may be not negligible.!
It is precisely such global equilibrium relations that conservation ensures [13].

Zingg et al. [14] have developed a conservative scheme for the viscous terms on the stencil 8; 33 := {i —
3,---,i+3}, which yields an O(Az*)-accurate approximation of (v(z) u'(x))’. As will be shown in the present
work the formulation of Zingg et al. [14] can be easily extended to the general stencil 8; 5 5 := {i—s,- -+ ,i+s}
to yield O(Az?31)-accurate numerical approximation of (v(z) u/(x))’. Notice that the order-of-accuracy
obtained for the viscous terms is lower than the accuracy O(Az(?*=1)) obtained by the WENO(2s — 1) schemes
for the convective terms on the same stencil [15, 16, 8]. Shen et al. [17], working on the same S; 3 3 stencil
as Zingg et al. [14], developed an alternative O(Ax?)-accurate conservative formulation, which they showed
to have smaller truncation error (but the same order-of-accuracy).

Leg in fully-developed incompressible plane channel flow [8] the global equilibrium relation is 27y + Ly0zp = 0, where 7, is
the wall-shear-stress 0. p is the streamwise pressure-gradient, and Ly is the channel’s height



Both these conservative approaches [14, 17] construct fluxes? at the cell-interfaces using a face-based
(and face-centered) stencil. Alternatively, Gassner et al. [18], extending the generalized Riemann problem
[19] to diffusive terms, proposed a cell-based reconstruction, leading to left (L) and right (R) reconstructing
polynomials on the 2 sides of each face, which are combined through a diffusion Riemann solver [18], to
construct the interface flux for the diffusive terms. In the present work, we concentrate on the face-based
approach. Furthermore, we assume that the investigated problems are sufficiently smooth, postponing the
treatment of weak solutions (eg through WENO reconstruction [9, 20]) to a future specific study. Throughout
the paper we work on general stencils parametrized by the order-parameter s, so that all of the developed
relations and results are scalable to arbitrary order-of-accuracy.

2 Fluxes for (v(x)ul($)>/

Both Zingg et al. [14] and Shen et al. [17] developed their schemes on the stencil ;33 :={i —3,--- ,i+ 3}.
Shen et al. [17] express explicitly the numerical fluxes [F(UU/LSZQSMS]H% and [F(vu'),szc,si,l,z,g] 1, defined
on the stencils S; 23 :={i —2,--- ,i+ 3} and S;_1,2.3 = Si,3.2 := {i — 3,--- , i+ 2}, respectively, which yield
an O(Az*)-accurate approximation of (vu');. On the other hand, Zingg et al. [14] gave directly the finite-
difference expression approximating (vu’); to O(Az?), on the stencil s; 33 := {i—3,---,i+3}. Their method
can easily be interpreted in terms of interface-fluxes, using reconstruction concepts [21]. In the following
we show how both these schemes can be extended to arbitrary O(Az?/31) order-of-accuracy on the general
centered (around 7) stencil S; s s := {i —s,--+,7+ s}. Then, we present a more compact approach yielding
an asymptotically twice more accurate O(Az?®) approximation of (vu')} on S; 55 := {i — s, ,i+ s}.

The explanation of the scheme of Zingg et al. [14] is more intricate than the original finite-differencing
analysis, in order to bring forward intermediate steps and stencils (Fig. 1), where accuracy is lost. This more
intricate analysis, also applied to the scheme of Shen et al. [17], highlights the reasons of loss of accuracy
and provides guidance towards improvement.
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2.1 Definitions

The following tools of polynomial reconstruction [22, 9, 21] are used, both to describe and extend to arbitrary
order-of-accuracy the methods of Zingg et al. [14] and of Shen et al. [17], and to develop the present approach.
On a homogeneous 1-D grid

;i =x1+ (i— 1)Azx Az = const € Ry (1a)
we define the stencil
Siov_my ={i—M_,--- i+ M} ; M:=M_+M,>0 (1b)

of M + 1 points in the neighbourhood of i, with M_ neighbours to the left and M neighbours to the right.
Assume that the real function f : R — R is sufficiently smooth, and that there exists a real function
h: R — R whose sliding (with ) cell-averages are equal to f(z), ie

x %Am . 1 _ _ 1
f) = ﬁ/+A MO Va € fo,b] P! pr(g) = I 2M)Mh(x 27 eelat (10

Because of (1c¢), an approximation to h(z) can serve to define interface fluxes at ¢ + % for the approximation
of f'(x). It simplifies notation to write, for 2 functions f: R — R and h : R — R satisfying (1c)

(le) <= h=Raan(f) (1d)

i
2although the original scheme of Zingg et al. [14] gave the expression for the numerical approximation of (U(x)u’(x)) , it

can be easily reinterpreted in terms of interface fluxes (§2.2)
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Figure 1: Example for £k = 2 — Srs1=2 = 3 of the different approximation steps and stencils used for
the construction of the numerical fluxes at i + & for the approximation of [(vu’)’];, on the stencil S; 5 :=

{i—87--- 7i+8} 523 {1_37 77’+3}7 [F(vu’)

[F(vu/)-,szcﬂsi2r£1722r£171]i+% (3f) of Shen et al. [17] (§2.3), both of which use intermediate values at the
’ 2 ’ 2

interfaces i + ¢+ (¢ € {—[5]+1,---,[5] — 1} =2 {-1,0,+1}), and [F(vu/),cv,si,sfl,s]wr% (6) developed in
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]i+% (2f) of Zingg et al. [14] (§2.2) and

the present work (§2.4), which uses reconstruction of interpolating polynomials on the entire stencil (

interface where a quantity is approximated, 0 not used, ® point used for the computation at the interface,

m intermediate values at interfaces computed using ® points).




and we will call f and h a reconstruction pair in view of the computation of the 1-derivative [21].
We will note

My
21, (45
Py vy (T + EAx; 2y, Ay f) (21, g5e)] Z ar vy (&) flai +1Ax) (1e)
=—M_
BL B e 4 eAr) + O(AZM*) (1f)
the Lagrange interpolating polynomial on S a7 ar, = {i —M_,--- i+ My}, of degree M := M_ + M,

which approximates f(x) to O(Az*1), and whose derivative with respect to z,

Proar o, (T + EAT 24, As f) = [dd pr.v_ vy ) (5w, A f Z & ar o, o) flai + 0A)
(1g)
Wt (2; + EAz) + O(ALM) (1h)

approximates f’(z) to O(Ax™). The corresponding Lagrange reconstructing polynomial is defined by re-
quiring that

1 r+iAz )
pron i & ) = g [ s s A )G Ve € R (1)

This polynomial, which is also of degree M [21, Lemma 3.1, p. 277], can be represented by

[21

PR, MM, (i + EAT; 24, A f Z apy M- My 0(8) i + LAx) (1))

[217;513”11(:51- +EAT) + O(AzMHY) (1k)

and approximates, to O(Az™*1) [21, Proposition 4.7, p. 292], the function h(z), whose sliding (with )
cell-averages are equal to f(x). The Lagrange reconstructing polynomial (1j) defines interface fluxes for the

computation of f/(z) to O(Az™*1) |21]. By analogy with (1c), we have |21, Corollary 4.9, p. 295]

[21, (60)| PRy, M_ My (Ti + A5x4, Az f) — PRy vy (00 — AT 31, Az f)

(@) + O(AgMT) o= » * 11
7w+ O(AM ) 2 (1
proM_ M, (T4 5 AT, Az f) — pry v 11,0, -1 (T — Az 24, Az f) (1m)

B Ax
By (1j), the reconstructing polynomials at i + % and i — 5, calculated on the stencils S; ps_ ar, = {i —

M_, - i+ M }and iy v vy ={i—1—-M_,--- i—1+M;} =:S; pm_ 41,1, -1, respectively, define the
interface fluxes for calculating f! := f’(z;) to O(AzM-+M++1) = O(A:EM+1). The fundamental functions of
Lagrange reconstruction ag, ar_ ar, ¢ € Rag[€] are polynomials of degree M which can be explicitly calculated
from the analytical expressions [23| of the fundamental functions of Lagrange interpolation oy as ar, ¢ €
Ras[€]. Analytical expressions for g, ar_ ar, ¢(§) were obtained by Shu [22, (2.19), p. 336], and can also be
expressed using the elements of the inverse of the Vandermonde matrix [21, (45g), p. 287]. These analytical
expressions [24, (10,11,14), p. 2768] are easily implemented using symbolic calculus [25] and will be used to
explicitly evaluate and tabulate the coefficients of the different schemes.?

3 In [21, pp. 301-303] it was shown that numerical fluxes for the approximation of the 2-derivative f”(z) can be constructed
by applying twice the reconstruction operator (1d). However, the case of the numerical approximation of (vu’)’, which is studied
here, is more complicated.



2.2 Zingg et al. [14]

Both the scheme of Zingg et al. [14] extended to arbitrary order-of-accuracy here, and the scheme of Shen
et al. [17] studied below (§2.3), are defined on stencils with an odd number of neighbours on each side of
point 4, S;ox—12k—1 := {i — 2k +1,--- ;i + 2k — 1} (k € Nxg), on which they are O(Az?*)-accurate. For
the purpose of comparison with the present method we describe them on the general centered (around i)

stencil S; s := {i — s, -+ ,i + s} (s € N5g), by replacing k := [J], ie on the stencil Si2fs]-12[5]-1 =
{i—2[5]+1,---,i+2[§] —1} (s € N5g), where they are O(Az?/#1)-accurate. When s = 2k —1 (k € N5o),
the entire stencil S; 55 := {i —s,---,i + s} (s € Nyg) is used, as in the present scheme (§2.4), whereas

when s = 2k (k € N5¢) the schemes of Zingg et al. [14] and of Shen et al. [17] do not use the end-points
{i —s,i+ s}. Although Zingg et al. |14] followed a standard finite-differencing approach in developing their
scheme on s; 33 := {i—3,- - ,i+3}, we describe the method in the following in terms of equivalent polynomial
interpolations, both because this allows the explicit analytical calculation of all scheme-coefficients in a
straightforward manner, but also because it clarifies order-of-accuracy relations by (1g, 11), and the more
detailed results in [21].

Interpreted in terms of interface fluxes

. [F(Uu,)>ZRNP7Si,2(%'\—2,2(%'\71]7;"1'% B [F(

[(U’u,l);]zRNP,Si,Q(%]71,2(%]71 - A./L'

=[(vu)'](z:) + O(Az?'31) (2a)

’ s s ] 1
Vu/) ZRNP,S; 1 5151 -2,2[§]1-11i— 3

the method of Zingg et al. [14] computes the numerical flux [F{,, i+1 on the stencil

»ZRNP7Si,2(%'\—2,2(%'\—1]
Siofs)-2.27s1-1 = {i = 2[5] +2,---,i+2[5] — 1} (Fig. 1). First, O(Az?'31)-accurate interpolations of
v(z) and u(z) at the cell-interfaces S; 1 12112721 = {i = [5] + 3,---,i+ [5] — 3} are constructed.
The interpolation at each cell-interface i + ¢+ % (¢ € {—[5] +1,---,[£] — 1} is obtained on the stencil
Sivera1-1r51 = {i+L€—T[5]+1,--+,i+ L+ [5]} which is centered around i + £ + z.

— . . ) 1 o .
[U]ZRNP,Si+L(%-|7L(%'|,i"rf"r% =PILI51-1,14] (‘T“LZ + 2A‘T"T1+Z’ AIE,’U)

(lo) — (1f) .
= Z al,[g]q,rg],p(%) Vitl+p = U(fci+e+§) + O(sz[z]) (2b)
p=—[31+1

’ R/ . 1 - .
[u ]ZRNRSH@,(%]?L(%]>i+f+% =Prrs1-1.08] (CCH.g + 2ACL‘,CL'H_¢, ACL‘,U)

51
(1g) 1 (1h) 2
= Az > O rs1-1757.0(3) Viterq = Ul(fci+e+%)+0(AfE2[2]) (2¢)
g=—T51+1

By (1f) we know that the interpolation on {i+€—[5]+1,-- i+ £+ [5]} is O(Az?[21). The derivative of
the interpolating polynomial in (2c) is an O(Axz2[21-1)-accurate approximation of the derivative in general,
but is O(Az?21) at i+ £+ J because the stencil Siters1-1,r51 == {i+L—[3]+1,--- i+ L+ [5]} is centered
around i + £ + % (a linear interpolation between 2 points yields an O(Axz?)-accurate approximation of the
derivative at the center of the interval but only O(Az) elsewhere). Then we use the O(Az2[21)-accurate
approximations to vu/(z) at the 2[5]—1 points i+£+42 (€ € {—[5]+1,---,[5]—1} to obtain an O(Az?I21)-
accurate reconstruction of the function [R(1,a.)(vu')](x),* whose sliding with z cell-averages (1c, 1d) are

equal to v(z)u/(z). For ease of notation we define as [vu/] the Lagrange interpolating

X
ZRNP,S,L’2’-%-‘72’2’—%-‘71( )

*in (1c) v(z)v'(z) is f(z) and the unknown function [R;aq)(ve’)](z) is h(z)



polynomial defined by the 2[$] — 1 values [v]

/
. u .
ZRNP.S; Lo [£1-1,75] Ji+0+3 [ ]ZRNp,siJrL(%],IJ%] JiHe+d

2 (Le) T— Tyt
[vu’]ZRNESM(%W722[%%1(33) = Z (af,f;‘l—l,f;]—l,é(T)
=—T31+1

- !
([’U]ZRNP,S,H,@J%]fL(%-‘ ,i+é+% [u ]ZRNP,SHZJ%],L(% ,i+é+%)>

(0229 oyl (@) + O(A2?T3) @d)

although only the halfpoint-values (2b, 2c) appear in the final scheme.? The interface-flux is obtained by

the reconstruction of [vu/] () (2d) on the stencil S; 1 1271 127-1 = {i+ 387, i—

ZRNP,S; o[ £7-2,2[ §1-1 2

2+ [£]} which is centered around i + £ + %

)

” — . N
[F(’Uu/),ZRNP,Siyz(%W,22(%“,1]i+% '_pR17[%]—17[%—‘—1($i+% ) xi«f»% 9 A.I, [UU ]ZRNP>Si+@,2(%]—2,2(%]—1

- _
- ’ (OZRL[%W—L[%W—LZ(O) ([U]ZRNP,Si+L(%-‘71J%-|,i-‘rf-‘r%[u]ZRNP,Si+L(%-‘71J%-‘,i-‘rf-‘r%))

:[R(I;Az)(vu/)](xi-i-%) + O(szr%]) (28)

Again, (2e) is O(Az?I21=1)-accurate in general, but is O(Az2/31) at i+ £ because the reconstruction stencil
Sitl[8]-1,78]-1 = {i+3—[%],---,i— 1421} Replacing (2b, 2c, 2d) in (2e), gives the final expression®

[F(U“')»ZRNP)Si,zr%W72,2r%171]i+% =

1 [51-1 21 [51

~ 2 |omrs-ns-1e0) ( > orfs-1i510(3) Uz‘+é+p>( > Lrs-nrstal) “z‘+é+q>
="T3141 p=T3141 a=-T31+1

(2f)

Using the analytical expressions for aRl,[gl—l,[‘;W—l,m(f) [21, (45g), p. 287] and for a;)[%]_”%]p(g) [21,
(45h), p. 287] it is straightforward to compute the 2[5] — 1 rational constants ag, r51-1,757-1,m(0) (£ €
{=I31+1,---,[5] —1}), the 2[$] rational constants oy 127-1,57,(3) (p € {=[5]1+1,---,[51}), and the
2[ 5] rational constants aQ,[%W—lyf%M(%) (g e {=[51+1,---,[5]}), appearing in the approximation (2f) of

the numerical flux [F(WILZRNF,’SI_M%W72’2%171]i+%.

2.3 Shen et al. [17]
The scheme of Shen et al. [17] uses the same as Zingg et al. [14] Si2fs]-2.2[5]-1 = {i—=2[51+2,--,i+

2[5] — 1} stencil to compute the numerical flux [Flyu')szcs, 5151 gars7_1)i+3- The 2 schemes are quite
’ 2 ’ 2

similar, except for the approximation of u’(xi+g+%) (e {-131+1,---,[5]—1}), for which the entire stencil

Si2fs]-2.2[5]-1 = {i—2[5]+2,---,i+2[5] —1} is used by Shen et al. [17], V£ € {—[5]+1,---,[§] —1}.

Interface fluxes are defined by

" B [F(vu’),szc,siyz(%w,1,2(%W,1]i+% - [F(vu’),szc,siflg(%],1Y2T%1,1]i7%
[(vu )i]szcysig(%]—lﬂ(%'lfl - Az

= [(vu')'](z:) + O(A2?31)  (3a)

5 [vu’] %-‘71(%1’+Z+%) = pI”'%-‘fly[%"fl(wi+Z+%;-’Ei+%,AfE; [”“/]zm«p,s

eargloaarglon)
(@]

ivery VO A=T31+ 1, T3] = 1} because afrg1-1,751-1,6(m) = dem

ZRNPSS; 2187 -2,2]

[’[}]ZRNP,Si+E, ’—%]71, f%'\ ,i+l+%
(23]

ZRNESi4 e, [51-1.151



Halfpoint values, at the cell-interfaces i + ¢ + 5 (¢ € {—[£] +1,---,[£] — 1}) are defined, using Lagrange
interpolation,

2b) (3b)

[U]szc,si+e,(%171,(§‘1 7i+€+% ::[U]ZR,NP7Si+eY"%-‘71J%-‘ ,i+é+% = (

/ e . 1 s .
[u ]SZC,S«;+£,2(%172,2r%1711i+2+% ,—p172|—%-‘7212|-%-‘71($1 + (ﬂ + Q)A‘T7 i, AL; u)

2[51-1
(1g) 1 (1h) 81—
T Az Z O‘Q,z[%kz,z[%%l,q(f"’ 3) Uitq = “I($i+e+%) +0(Act17%)
q=—2[57+2
(3¢)
and used to construct the interpolating polynomial of v(x)u’(z), defined by
r$1-1
- (1e) T Lt
[Uul]szc,si’2’—%-‘72’2’—%-‘71(‘T) = Z <C¥]1|';'|1)|';'|1)e( Az 2)
=—[351+1
([{}]szc,siJrL(%],lJ%] Jit 4% [ﬁ/]szcvswe,(\%}fl,(%} ,i+é+§)>
(68259 () (2) + O(A2?31) (3d)
Then, this polynomial is reconstructed [21] to obtain the interface fluxes
[F(Uu')>SZC>Si,2r%172,2y%171]i+% ::PRl,rgkl,f%Fl(fUH% 7 Lip1s Az; [Uu/]SZC>Si+z,2r§172,2%1—1)
[31-1
= (CYRI)[%",L[%",L[(O) ([’D]SZCﬁiJrE,(%'\—l,]'%'\ Jitl+1 [al]szc,si+£’r%],l,r%] ,i+l+%))
(=—[51+1
=[Ra0 (v0)](2) + O(A2?M3T) (3e)

Replacing (3b, 3¢, 3d) in (3e), gives in analogy with the scheme of Zingg et al. [14],% the final expression

[$1-1

) 1
[ty 5205, 21 41-22051-1)i+3 = Az > (aRl,rgw,r%M,e(O)
=T51+1

s 2[31-1
( Z alJ%]—l,f%]»p(%) Ui+f+p> ( Z 0/1,2[3172,2[;1714@ + %) ui+q>> (3f)
p=—T[51+1 q=—2[51+2

The difference compared to Zingg et al. [14] is that Shen et al. [17] use a higher-order interpolant for
approximating u'(x), but as they correctly state in their paper this reduces the magnitude of the truncation
error on a given grid, without improving the order-of-accuracy.

The rational constants O‘Rhfﬁ—l,f%]—lﬂn(o) (¢ e {—[%] + 1,: SR [%] —1}) and 0417[5_1)[57;0(%) (p €
{=151+1,---,[51}) in the expression (3f) of the numerical flux [F(yu) ssc,s, o1 o151, Ji+1 are the same as
’ 2 ’ 2

those used in (2f) by Zingg et al. [14]. The new (2[5]—2)x (2[5]—1) rational constants 04972[5_2)2[%]_17(1(64—
DWe{-T51+1,--,[5]1-1}; g€ {-2[£]+2, -+ ,2[£] —1}) can be easily calculated using the analytical
expression for ay rs7-1,r27,(6) [21, (45h), p. 287].

2.4 Present scheme

The schemes of Zingg et al. [14] and of Shen et al. [17] yield O(Az?'31)-accurate approximations of (vu'))
on the stencil 8; 55 :== {i — s, -+ ,i+ s}, where centred approximations of u by standard finite-differencing
yield O(Ax?®)-accuracy [26, (7.6), p. 297]. Examining the method of Zingg et al. [14] (§2.2) it is obvious



that accuracy is limited both by the accuracy of the substencils used for approximating vu’ at halfpoints,
but also by the final reconstruction from information on 2[5] — 1 discrete values compared to the 2s + 1
available discrete values for v and u on the entire stencil. Shen et al. [17] used higher-order approximations
for ', but since the final reconstruction again only uses 2[5 ] —1 discrete values for (vu’) the resulting scheme
is only O(Az?31)-accurate. The difficulty with both these approaches [14, 17| lies in the choice made of
first approximating v’ at halfpoints, and then finite-differencing |14| or reconstructing [17| to obtain the
approximation to (vu’)’ [14] or to the appropriate fluxes [17]. It turns out that we may obtain O(Az?*)
accuracy (roughly twice more accurate) on the stencil s; s s := {i —s,- -+ ,i+ s} by simply interpolating v(x)
and u(x) on the entire stencil S; 515 := {i —s+1,---,i+ s} used for the evaluation of the flux, using all
available information at the nodes, and then reconstructing the approximating polynomial of v(z)u’(z) to
define the interface fluxes.

To avoid loss of information, and hence order-of-accuracy, we base the present approach for evaluating the
flux at i+3 on the O(Ax?*)-accurate interpolating polynomials py s—1,s(; zi, Az; v) and pr s—1,s(2; x5, Az u),
so that the final approximation

Flow isfsi—_Fvu’,,ifsfsi——
(o, = lzdEvstacselins AL< v fuy)e) +0aa®) ()

uses all information contained in the stencil.

2.4.1 Flux at i+ % on the general stencil s; s_1s:={i—M_,--- i+ M,}
It will prove useful, when working on biased discretizations for near-boundary points, to develop the expres-
sion of the flux on the general stencil S; s_15:={i — M_,--- i+ My} (1b). We define
(1e) o (11)
~ le Xr — Ty 1 M
[U]GV,SLMHM+ (z) = Pr,M_ M, (w524, Ax;v) = % aI,M,,M+,p(W) Viyp = v(z) + O(Az H)
p=—DM_
(5a)
My
. d (1g) 1 / T — @ (1) M
¥levion_ e, () = ggpronae (i Ami) B 3 oar () it = (@) +O(Ax™)
q=—M_

(5b)
using Lagrange interpolation on the entire stencil S; r_ ar, = {¢ — M_,---,i 4+ M.}, and approximate
v(z)u'(x) by the product of (5a, 5b)

- 1 u Tr— x; - T —T;
[W']GV,SI»JL,M+ () = E( Z aI7M—7M+7P(—A$ ) Uz‘+p> ( Z O‘},M,,M+,q(—A$ ) ui+¢1>
p=—M_ q=—M_

(52,50) v(z)u (z) + O(Az™) (5¢)

The polynomial (5¢) is then reconstructed on S; a7_ v, , to define the numerical flux
[F(vu/),cv,si,Mi,MJr]iJr% “=PRi,M_,M4 (‘T; Tit s Az; [UUI]GV,Si,M,,MJr)
(1) <=
1g T — T; ~
= Z aR11M71M+,m( Ax ) [UU/]GV,SZ',M,,MJF (,IZ —+ mAI)
=—M_

(E‘) / A 2s5—1
= [R;80) (vu)|(z) + O(Az™77) (5d)



so that we have finally

M M

| (5¢, 5d) 1 1 - 1y

[F(vu’),cav,si,M,,M+]z‘+% = Ax Z Vitp Z (aR11M77M+1P(§)aI,M,,M+,q(p))ui+q (5e)
p=—M_ q=—M_

= Qv ,av,M_,M)pq

where we used the well known fact that the fundamental functions of Lagrange interpolation oz ar_ ar, p(€)
are = 0 at all integer nodes on the stencil (Vp € {i —M_,--- ,i+ M} \{p}), except at the node & = p where
aJ,M,,M+,p(P) =1 [23]-

2.4.2 Flux at internal points

At points with sufficient distance from the boundaries so that the points in the stencil S; s_1,s := {i — s +
1,---,i+ s} be defined on the computational grid, ie for points i € {s,--- , N; — s}, the flux

y (5¢) 1 u u
[F(Uul),Gvysi,s—l,s]i-'r% = E Z (viJr;D Z (a(vu’,Gv,s—l,s)pq ui+q) ) (63‘)
p=—s+1 qg=—s+1

(5e)

cl{—-s+1,---.s
A(vu’,v,5s—1,5)pq ::aRhS—l»SﬁD(%) 0/],5_1,5,11(]9) €Q { . { 7 , }

ge{-s+1,---,s} (6b)
is constructed at the interface i + % Using the analytical expressions for ag, s—1,5—1,m(&) |21, (45g), p.
287] and for ass—1,5,(€) [21, (45h), p. 287] it is straightforward to compute by (6b) the (2s)? rational
constants a(yu’ cv,s—1,s),, (P>q4 € {—s+1,---,s}) appearing in the definition (6a) of the numerical flux

[F('UU,),GVﬁi,s—l,s]i-‘r%? which were tabulated for s € {1,---,6} (Tab. 1).

2.5 Remark

It is easy to verify that all of the 3 methods (§2.2, §2.3, and §2.4) yield the same basic O(Ax?) approximation
on the stencil 8;11 :={i— 1,i,i+1} (s=1=[5]=[3]=1=05)

s=1 ;= - = Vit1 + U U1 — U
(2f7 3f; 63) - [F(vu’),c:v,si,o,l]i+l = [F(’U’u.’),ZRNP,Si,o’l]iJ,-% = [F(vu’),szc,si,o,l]i+l = D) Az (7)

2 2

which is widely used in many solvers [§].

2.6 Comparison on S; 33

A first computational verification of the 3 schemes was performed (Fig. 2), on the stencil s;33 = {i —
3, ,i+ 3}, for 2 sets of functions, v(x) and u(z), studied in Shen et al. [17], szcl (§2.8.1) and szc2
(§2.8.2). Discretization was performed on a uniform grid of N; points (N. = N; —1 intervals), using Npn = 3
phantom nodes to compute (vu’) at the boundary points, without reverting to biased stencils. The Lo,
norm of the error for these test-cases is defined by the unscaled error

Epo (Vo) = max 100 Y = (00 e (s2)

and the associated rate-of-convergence, between 2 consecutive levels of grid refinement, N. and N.,, by

_logyg Ep (Ne) —logyg Ep (Ne,)

ToNVRGL o (Nc) = N
logy (NC )

(8b)

All of the 3 schemes achieve their theoretical order-of-accuracy (Fig. 2), O(Ax*) for Zingg et al. [14]
and Shen et al. [17], and O(Az5) for the present method, already at the coarsest grid of N; = 21 points



Table 1: Rational constants a(yu cv,s—1,s),, ‘= OéRl,sfl,s,p(%) a7 s_1.44(P) € Q (6b) appearing in the expres-
sion of the numerical flux [Flyu)cv,s; . 1. Jirs = Az~1 Z;:_SH Vitp ZZ:—sH Aow,6v,5—1,5)p, Uitq (6a) OF
the present scheme for the computation of (vu’); (4a) (s € {1,---,6}).

7= -5 -1 =3 ) 1 0 +1 +2 +3 +4 +5 +6
P
5 83711 = 5 —5 5 1 1 —5 5 5 i —1
153679680 504 1008 504 336 60 72 588 1344 4536 5040 60984
4 —67 —325687 67 —67 67 —67 67 —67 67 —67 67 —67
304920 69854400 5544 3696 2772 2640 3300 5544 12936 44352 249480 3049200
-3 —107 107 358343 —107 107 —107 107 =107 107 —107 107 —107
762300 34650 17463600 2310 2310 3300 5775 13860 48510 277200 3430350
_2 —443 443 —443 —329149 443 443 —443 443 —443 443 —443
3430350 207900 20790 5821200 3465 7425 13860 34650 124740 727650 9147600
71 —5653 5653 —5653 5653 604871 5. 5653 —5653 5653 —5653 5653 —5653
36590400 2494800 332640 55440 5821200 19800 39600 83160 221760 831600 4989600 64033200
0 —18107 18107 —18107 18107 —18107 —18107 18107 —18107 18107 —18107 18107 —18107
64033200 698544 155232 38808 166320 27720 77616 232848 931392 5821200 76839840
+1 18107 18107 —18107 18107 —18107 18107 18107 —18107 18107 —18107 18107
76839840 931392 232848 77616 27720 166320 38808 155232 698544 4656960 64033200
+2 5653 5653 —5653 5653 —5653 5653 —604871 —5653 5653 —5653 5653
64033200 831600 221760 83160 39600 19800 5821200 55440 332640 2494800 36590400
+3 44 443 —443 443 —443 443 —443 329149 443 —443 44
9147600 124740 34650 13860 7425 4950 3465 5821200 20790 207900 3430350
+4 107 107 —107 107 —107 107 —107 107 —358343 —107 107
3430350 48510 13860 5775 3300 2475 2310 2310 17463600 34650 762300
+5 67 67 —67 67 —67 67 —67 67 —67 325687 67
3049200 44352 12936 5544 3300 2640 2772 3696 5544 69854400 304920
16 1 5 —5 5 1 1 —5 5 —5 1 Z83711
60984 4536 1344 588 72 60 336 504 504 153679680
5 _4 1 ) 1 -1 1 1 1 1
140 70 45 40 50 90 245 11340
_3 11063 —23 23 —23 23 —23 23 23
705600 630 540 540 720 1350 3780 181440
_2 —127 —2159 127 —127 127 —127 127 127
10080 39200 1080 1440 2160 4320 12600 635040
1 —473 473 17501 —473 473 —473 473 473
47040 5880 151200 1680 3360 7560 23520 1270080
0 —1627 1627 —1627 —1627 1627 —1627 1627 627
105840 17640 3780 12600 2520 7560 26460 1587600
+1 1627 —1627 1627 —1627 1627 1627 —1627 —1627
141120 26460 7560 2520 12600 3780 17640 1270080
+2 473 —473 473 —473 473 —17501 —473 —47:
117600 23520 7560 3360 1680 151200 5880 635040
+3 127 —127 127 —127 127 —127 2159 —127
60480 12600 4320 2160 1440 1080 39200 181440
+4 23 —23 23 —23 23 —23 23 —23
17640 3780 1350 720 540 540 630 22680
15 1 T 21 T 1 1 7129
1120 245 90 50 40 45 70 3175200
4 —3 363 -1 3 21 1 -3 1
39200 40 80 24 32 200 240
_9 —29 —841 29 —29 29 ~29 29
5880 16800 280 336 504 1120 4200
-1 —139 139 6533 —139 139 —139 139
35280 2520 50400 504 1008 2520 10080
0 —533 533 —533 —533 533 —533 533
88200 8400 1400 3360 840 2800 12600
+1 533 —533 533 —533 533 533 —533
117600 12600 2800 840 3360 1400 8400
+2 139 —139 139 —139 139 —6533 —139
88200 10080 2520 1008 504 50400 2520
+3 29 —29 29 —29 29 =29 841
35280 4200 1120 504 336 280 16800
14 1 3 1 1 =3 1
1960 240 200 32 24 80 40
3 _9 —137 1 1 1 -1 1
3600 12 12 18 48 300
1 13 4 2 —2 1
75 90 15 15 45 150
0 37 —37 —37 37 —37 37
1200 120 180 60 240 1800
11 —37 57 —37 37 37 —37
1800 240 60 180 120 1200
192 -1 2 —2 4 ~13 )
150 45 15 15 90 75
13 -1 1 -1 T -1 137
300 48 18 12 12 3600
2 1 11 =1 1 et §
72 4 8 36
0 .y 7 7 Z7
376 24’17 172 772
+1 7 5V) 21 35
1 =1 1 =11
+2 36 81 41 72
= +
2 0 7 E
= +1
+1 Fl T

(Fig. 2). More interestingly, the present scheme systematically has a lower error, even on the coarsest grid.
Improvement by the present method is higher for the szc2 (§2.8.2) test-case (Fig. 2), for which u(z) is a
wavy function.

To obtain an O(Axz?*) accuracy, the stencil width increases linearly with s, and the computational
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complexity increases quadratically with s (Tab. 2). If the 3 methods are compared, for the same order-of-
accuracy (Tab. 2), it is seen that, for large s, the present method obtains the same accuracy as the previously
published approaches [14, 17], on an asymptotically twice more compact stencil, and with roughly half the
computational complexity.

Table 2: Number of numerical constants (cooefficients) appearing in the schemes of Zingg et al. [14] (2f), of
Shen et al. [17] (3f), and in the present method (6), computational complexity (number of both additions
and multiplications), and discretization stencil-width, at interior points.

scheme order number of coefficients complexity stencil-width
ZNRP [14]  O(Ax?%) 6s—1 1652 — 1 4s — 2
szc [17] O(Az*) 4s% — 25 +1 245% — 185+ 3 4s — 2
present O(Az?) 452 8s2 +2s—1 2s

2.7 Near-boundary points

When ¢ < s —1 ori > N;_, there are not enough points in the computational domain to compute the flux
[F('Uu,)quysi,s—l,s]i-‘r% (6) and one must use biased stencils. The near-boundary interfaces, in the neighbour-
hood of the boundary ¢ = 1, requiring biased stencils, are

{0+3,1+%, -, (s—1)+3t={s—lp+3; b=s,-,1} (9a)
N——

1
1-3

For these interfaces (9a), we use the stencils

O+i=1-4  { 1, ,-, 2s+1 } =S0,-1,2s+1 (9b)
=0—(-1) =0+(2s+1)
143 {1 ,--,254+1} =S1,0,2s (9¢)
=1-0 =1+4(2s)
241 {1 ,--+, 2641 } =S91,25—1 (9d)
=2-1 =2+4(2s—1)
s—1+3% + { 1 vy 25+ 1 }=Seq 50540 (9e)
=(s—1)—(s-2) =(s—1)+(s+2)
ie the same set of points, {1,---,2s+ 1}, to compute the flux. The stencil {1,---,2s+ 1} includes one more

cell in the stencil with compared to internal points (§2.4.2). Symmetrically, the set {N;_os, -+, N;} is used
for the interfaces

1
{Ni+%7Ni_1+§;Ni_2+%7"'aNi_(S_1>+%}:{Ni_(5_éb)+%;gbzsa"'al} (9f)

near the boundary ¢ = N;. For both boundaries (9a, 9f), ¢, = s corresponds to completely extrapolated
interfaces (outside of the computational domain).
2.8 Computational examples

To demonstrate that the proposed scheme achieves its theoretical order-of-accuracy, we first examine the nu-
I
merical computation of (v(x)u’ (x)) for several test-functions (§2.8.1-§2.8.2). Then, we apply the proposed

scheme to the computation of laminar Couette flow of air (§2.8.3).

11



(v(z)w (x))/ discretization-error

| Shen et al. (2009) test cases|
v(@) = qge [s=3 ¢ Non=s] v(@) = g5e**
1— 67201' .
u(zx) = =20 u(zx) := sin(10z)
1 T T T 0.01
~—— U
f 4 0.009
0 L% e
4 0.008
T -1+ 4 0.007 T
S < 0.006 =
\ﬁ _2 -
) N 4 0.005
g g [0 1 0.004
; v 4 0.003
4 E
T 4 0.002
-5 L L L L 0.001
0 0.2 04 06 08 1
O T T T O T
log. E Zingg et al.; s =3 s |logoE Zingg et al.; s =3
g l—————— Shen et al.; s =3 Sy e Shen et al.; s =3
—— present; s=3 s, —— present; s=3
5 | - 5 L _
-10 - -10 | -
15 . -15 | .
Ay~ N
-20 - -20 | -
25 . 25 | .
Az=6
Azx~6
N.= Az ' — N, =Azx~! —-
-30 L P L P ol L P L -30 Ll L P o L o L
10 100 1000 10000 100000 10 100 1000 10000 100000
Figure 2: L.-norm error E;_ (8a), as a function of the number of grid-cells N, = N; — 1, of the

numerical approximation of (vu')’ on the stencil S;33
(4a, 6), for the test-cases (10, 11) of Shen et al. [17], using progressively refined computational grids
(N; = 21,41,81,161,321, 641, 1281, 2561, 5121, 10241, 20481, 40961, 81921 points) with Np, = 3 phantom
nodes, and comparison with the previous approaches of Zingg et al. [14] (2a, 2f) and of Shen et al. [17] (3a,

31).
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2.8.1 w(z) = mge 2, u(x) == (1—e )11 —e20%); 2 € [0,1]
This test-case studied by Shen et al. [17]

= sin 10x _ 9922z
e TR b = e @) = (10)

The proposed scheme either Ny, = s phantom nodes to the mesh to avaoid the use of biased stencils or
Ny = 1 phantom node, achieves the theoretical order-of-accuracy for s € {1,---,9} (Fig. 3).

2.8.2 v(z) := 75¢**, u(x) :=sin10z; z € [0,1]

This test-case studied by Shen et al. [17]

(@) i= o %Bx } = (v(x)u'(z)) = —2e**(5sin 10x — cos 10z) (11)
v(x) == {ge
Again the scheme achieves its theoretical order-of-accuracy for s € {1,---,9} (Fig. 4).

2.8.3 Laminar compressible Couette flow

For laminar compressible fully developed Couette flow [27, pp. 190-192] between a fixed adiabatic wall at
y = 0 and a moving isothermal wall at y = J, the compressible Navier-Stokes equations [27, pp. 190-192]
simplify (under the assumption of fully developed unidirectional flow parallel to the 2 plates, V= u(y)€x,
which satisfies automatically the steady continuity equation) to

p =const (12a)
d du

0—1 <M(T)a—y> (12b)

0=u(T) (j—Z) + diy (A(T)Z—Z;) (12¢)

where y is the coordinate normal to the plates and to the flow, u is the z-wise velocity-component, T is the
temperature, p(7") is the dynamic coefficient of viscosity depending on T' [28], A(T') is the coefficient of heat
conductivity depending on T' [28]. We consider flow of air, with

28] T2 8, +T,,
T) 2 2Tt
W)= o {T ] Sy +T

Ho

po = (Tyy) = 1711 x 10 Pas; Ty, =273.15K; S, =1104K
(12d)

T
AT) 28] AO%U +ANT = Tu)] 5 Xo=MNT,) =00242Wm 'K A, =0.00023K™";  (12e)
0

Under the assumption that p (12d) and A (12e) are functions of T only, (12) is a system of 2 ODEs (12b,
12¢) for the 2 variables v and T', with boundary-conditions

u(0) =0 (13a)
ar
d_y(o) =0 (13Db)
u(d) =ue >0 (13c)
T(8) =T, > 0 (13d)

The derivatives dy (11(T")dyu) in (12b) and dy(A(T")d,T) in (12c¢) are discretized using the present method
on the stencil 8; 5 := {i —s,---,i + s} for interior points (§2.4), which provides O(Az?*) accuracy, and
appropriately biased stencils at near-boundary points (§2.7), reducing the theoretical order-of-accuracy to

13



N L A s )
O R N WAMOUG O N ® O O

O P N W OO N 0 ©

Figure 3: Loo-norm error Er_, (8a) and rate-of-convergence rewvre, . (8b), as a function of the number of
grid-cells N, = N; — 1, of the numerical approximation of (vu')’ by the present method (6, 9) with s €
{1,---,9}, for the szc1 test-case (10) of Shen et al. [17], using Npn € {1, s} phantom nodes on progressively
refined computational grids (N; = 21, 41,81, 161, 321, 641, 1281, 2561, 5121, 10241, 20481, 40961, 81921 points

(v(m)u'(m))/ discretization-error: SzC1
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depending on the value of the order-parameter s).
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(v(m)u'(m))/ discretization-error: SzC2
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Figure 4: Lo.-norm error Er_, (8a) and rate-of-convergence rewvre, . (8b), as a function of the number of
grid-cells N, = N; — 1, of the numerical approximation of (vu')’ by the present method (6, 9) with s €
{1,---,9}, for the szc2 test-case (11) of Shen et al. [17], using Npn € {1, s} phantom nodes on progressively
refined computational grids (N; = 21, 41,81, 161, 321, 641, 1281, 2561, 5121, 10241, 20481, 40961, 81921 points
depending on the value of s).
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| Couette-flow numerical solution error
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Figure 5: Lo.-norm error Ez_, (15) and rate-of-convergence royvre, (8b), as a function of the number
of grid-cells N, = N; — 1, for the difference from the analytical solution of numerical computations of
compressible laminar Couette flow, using the present method (14) for s = 1,---,9, on progressively refined
computational grids (N, = 21,41,81,161, 321,641, 1281, 2561, 5121 points).

O(Axz?*71). The derivative d,u appearing in the source-term u(7)(d,u)?, representing heating due to viscous
friction in (12c), is discretized using standard centered O(Ay?*) finite-differences [29] on the stencil s; 5 5 :=
{i—s,--- i+ s} for interior points, and using O(Ay?*) biased finite-differences at the near-boundary-points.
The adiabatic-wall boundary-condition (13a) is also discretized using biased O(Ay?®) finite-differences. The
global accuracy is therefore O(Ay?s~1) for s > 2, and O(Ay?) for s = 1 for which all points, except at the
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walls where BCs are applied instead, are internal points.
A homogeneous grid of N; points (j = 1 is the lower fixed adiabatic wall, j = N; is the upper isothermal
wall, (N; — 1)Ay = §). The flow is initialized by

Uo,j :%ue (14a)
To.; =T, (14b)

and the nonlinear algebraic system of equations

[F(,Uﬂdyu)quysi,s—l,s]’L'Jr% - [F(deu)quysi,sfl,s]i*% —0 (14c)
Ay

du}2 [F(Ady:r),cv,si,s,l,s]wr% - [F(Ady:r),cv,si,sfl,s]if-

Thi) | — é:0 14d
w0 | 5] - (149)

are solved using quasi-Newton iteration based on an O(Az?) approximate Jacobian, corresponding to an
O(Ax?) discretization on the restricted stencil s; 1.1 [30].

Numerical results were obtained for s € {1, -- ,9}, on progressively finer grids (Fig. 5), and their accuracy
was assessed by comparison with the semi-analytical solution of (12, 13), which was determined with a
precision better than 30 significant digits. Since the problem (12, 13) involves 2 variables (u and T'), we used
the nondimensional error-norm

|unum uexact| | num — Texact|
B, (N,) = , 15
Lm( ) je{lxr'r'l'?lj)\?c'i‘l} ( Ue T, ( )

function of the number of grid-cells N, = N; — 1. This norm (15) was then used in (8b) to compute the
rate-of-convergence (Fig. 5).

For all of the studied values of the order-parameter s € {1,---,9}, the scheme reaches its theoretical order-
of-accuracy (Fig. 5), the s = 9 scheme reaching numerical noise after N. = 2560 cells, where Tenvear (N, =
2560, s = 9) & 17. It appears indeed that, for this particular problem, and for the range of grids used, the
method is superconvergent, reaching and exceeding O(Az?*) order-of-accuracy (Fig. 5), whereas O(Aw25—1)
order-of-accuracy is expected, because of the biased stencils used at the near-boundary-points.

3 Multidimensional extension

3.1 Viscous stresses in the Navier-Stokes equations

For a standard Newtonian constitutive relation, the viscous stress tensor 7 is of the form
T =2uS+ (us — 2p) tr(S)I3 (16a)
where S := 3 (gradv + (gradV)T) is the rate-of-strain tensor, u = u(p,T) is the dynamic viscosity, us =

ws(p, T) is the bulk viscosity, I3 is the identity tensor in the Euclidian 3-D space E?, p is the fluid density and
T the static temperature. As a consequence, the viscous force per unit volume divr reads, by straightforward

computation,
= [ 2 (e 4 20) 6 2 (12) 1 2 (22
VT o or ) "oy \Fay ) T . \Maz

_|_3 ( _Z) @_Fa_w +g @ +2 a_w e
gz \ \He T3k Oy 0z Oy oy 92 \Nor *

cross-derivatives
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4 2 @ +g ( +é)@ +£ @
oz \Mox Oy He T3l Oy 92 \N'oz

_|_3 % +§ ( _2) 8_w+% +£ 8_10 e
Oz u@y Oy He =31\ 02 ™ Be 0z “ay Y

cross-derivatives

4 2 8_’(0 +£ 8_’(0 +2 ( +é)8_w
oz \M oz Oy “ay 52 \ (e TR 5

0 ou 0 ov o0 9 ou Ov .
5 (05) t o 5) 3 (- 30 (54 7)) ] - (16

cross-derivatives

and contains both terms which can be discretized using the previously developed scheme for (v(x)u(z))’

and cross-derivatives, eg 0(10yu), which require a different method. It turns out that the discretization
of cross-derivatives is simpler than the method (§ 2.4) required to discretize the linewise derivatives x, eg
Oy (10 1).

For a fluid with a Newtonian constitutive relation (16a) and following a linear Fourier heat-flux law

qd=—Xp,T)gradT (16¢)

where ¢ is the heat-flux vector, the power per unit volume due to friction and heat conduction reads, by
straightforward differentiation

ou 0 1o} oT
{(MB+3M)U—+AW—U+ wss A—}

div (‘7'7 - ‘7) - F] d or Oz

4+ = _( _2 ) @ + 8_11) 4 8_ 4 Ou
ox | He = 3H oy 0z Ho oy e
cross-derivatives

—I—g-u@—i-( +é)v@+ 8—w—/\a—T

+g:u@+( —2u)v u 99 4 2
dy _M or ek or = 0z H,

cross-derivatives

+ 2 [ % + @ 4 ( 4 4 ) a_w Aa_T
0z _Huaz e R R L A P
o[ ow ow 5 ou  Ov
+ & _,LLU% + ,U/Ua—y + (,LLB - §,LL) w (& + a—y)] (16d)

cross-derivatives

3.2 Numerical fluxes for cross-derivatives (0,(v0,u))

The approach followed for the discretization of cross-derivatives is a generalization to higher-order of accu-
rarcy of the method used by Zingg et al. [14] and Shen et al. [17]. First, the derivative dyu is approximated
at the points of the computational grid® using standard centered O(Ax?®) finite-differencing (equivalently
differentiation of the Lagrange interpolating polynomial on the stencil

+s

. (1g) 1 (1th) Ou s
(0] ooy R D 0l Ougies "2 OBy (17a)
() =

6the direction i, j, k of the homogeneous Cartesian grid used, are aligned with the z,y, z directions of the Cartesian system
of coordinates.
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on the stencil

,0,0 L.

J’SS _{ a"' a(Za.]_FSak)} (17b)
where, as usual, the O(Ay?*~1) accuracy of the derivative of the Lagrange interpolating polynomial becomes
O(Ay??) at the point ijk, because the stencil is centered with respect to this point [26, (7.6), p. 297|. Then,
the Lagrange interpolating polynomial

[v&ﬂ] <i,s—1,s> ‘k(xmt{Ax : Z ars—1,s,0(8) Vigejk [[8;u] <i+f,0,0>:|.+ejk
3]s s 15,7,

\15 % (==s+1 A
f, s— s
(1f, 162) [vOyulj), (i +EAZ) + O(Az** ™1 Ay?s) (17¢)

is reconstructed to obtain the required flux

F i,s—1,s '=DPRy,s—1,s | Ti + %AI, T, AI, [’Uavyu} i,s—1,s
(vayu),s(j.,s ,s) S<j>5 75>>j7k
k,0 ,0 +1 5k k,0
(11,77 o
i, 77 ~
=0 anris1s0(3) vivegn [[c%u] i+£,0,0 } o
P s .ss |Jitlik
=—s+l k 0,0
(1f, 16a) —
[R(1;80) (00yw) ik ] (Ti1/2) + O(AZ* 1, Ay>) (17d)

where by [24, (8b), p. 2767] O(Az?*) accuracy is recovered, in (17d) for the particular value £ = i. Finally

F 1,5—1,s - |F 1—1,5—1,s
(vOyu),s| 7,8 s (vOyu),s| J .8 ,s
k,0 ,0 i+%,j,k k ,0 ,0 i—%,j,k B ﬂ U@
Az ox \ Oy

Similar relations apply for the different cross-derivatives appearing in (16b, 16d). At near-boundary points,
we use biased stencils, in analogy with (§2.7).

+ O(AZ*, Ay**)  (17e)
ijk

3.3 Accuracy test

To check that the application of the proposed scheme for the line-derivatives (§2.4), coupled with the usual
approach for the cross-derivatives (§3.2), returns the theoritical order-of-accuracy numerical results for divr

(16b) and div (\71’ - tj) (16d) corresponding to the hypothetical field

u(z,y, z) :=sindrx sin 2wy sin3nz
v(x,y,z) :=sindrz sindny sin3rz
w(z,y, z) :=sinbrx sin 3wy sin 7wz
T(z,y,z) :=sinbrz sin8ry sin9rz + 2
p(w,y, z) =e
Az, y, z) :=e"Y?
g =0 (18)

are compared (Fig. 6) with the analytical solution obtained by straightforward differenciation in (16b, 16d).
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Figure 6: Lo.-norm error Ez (19) and rate-of-convergence royvre, . (8b), as a function of the number
of grid-cells N. = N; —1 = N; —1 = N — 1, of the numerical approximation of divr and divr by the
present method (6, 9) with s € {1,---,9}, for the test-case (18), using Npn € {0,1, s} phantom nodes on
progressively refined computational grids (N, = 21,41,81,161,321 points depending on the value of the
order-parameter s).
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The fields (18) and the coordinates (x, y, z) are assumed to be nondimensional quantities, so that the
norm (19) is used.

)

Er_(N.) := max{ [(divT)z]num — [(divT)z]exact

.5,k

[(divT)ylnum — [(divT)ylexact

[(diVT)z]num - [(diVT)z]cxact

)

3

—

[div(V - 7) = @lnum — [div(V - T — Q)] exact

4 Conclusions

The present work defines numerical fluxes for very-high-order finite-volume conservative discretization of
(uu'), applicable to the viscous terms of the Navier-Stokes equations. Future work includes the development
of WENO discretizations of these terms for flows with discontinuities.

The present scheme is almost twice more accurate on a given stencil s; s s than previous approaches [14, 17]
based on finite differencing (equivalently yields the same accuracy as previous approaches on almost twice
more compact, for large s, stencils). It is also conceptually simpler, in that it simply uses polynomial
interpolation and reconstruction on the entire stencil in lieu of 2 levels of finite differencing on substencils.

The extension of the method to unstructured finite-volume meshes is straightforward, by using edge-based
reconstruction.
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