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Abstract: The aim of this study is to estimate the wind power that can be extracted by an
horizontal-axis wind turbine (HAWT) as a function of upstream wind. The incompressible Navier-
Stokes equations are solved on a fixed cartesian mesh via a second-order accurate scheme in space
and time. The turning blades and the mast are modeled by a penalization term in the governing
equations within a collocated Chorin-Temam fractional time integration algorithm. This numerical
procedure allows massive parallelization by using existing distributed linear-algebra libraries. The
test case under consideration is the two blades (S809 airfoil) NREL ametest wind turbine for which
wind tunnel data exists.
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1 Introduction

The aerodynamic optimization of an horizontal-axis wind turbine (HAWT) is a real challenge for renewable
energy purposes. The challenge is to find efficient blade shapes for a large spectrum of tip speed ratio (ratio
between the velocity at the blade tip to the wind velocity). Hence, it is important to estimate the extracted
power as a function of incoming wind. Several simple models exist in the literature for this purpose. For
example, the model introduced by Sorensen and Myken [1] is based on an actuator disk model. Despite
its simplicity (steady, axisymmetric), this model gives reasonable results in terms of integral quantities. Of
course, it does not take into account three-dimensional effects that can significantly affect the flow, especially
near the wing tip and the hub. A full three-dimensional model can significantly improve the prediction of such
phenomena. In this sense, we have developed a fully three-dimensional model based on the incompressible
Navier-Stokes equations (§2). The numerical difficulty is to compute the solution past moving interfaces (the
blades) and in this context, to conveniently model turbulence.

To our knowledge there exist very few numerical models able to overcome difficulties linked to both
moving interfaces and turbulence. The existing methods are usually based on body fitted meshes. For those
methods it is necessary to regularly remesh for moving blades. For meshes with several millions of nodes,
this can be very expensive or even unfeasible. To avoid this step, a fixed mesh method is then used in this
study. The three-dimensional incompressible Navier-Stokes equation are discretized on a cartesian mesh.
The fluid/structure interface, represented by the zero level set functions, is computed thanks to a second
order penalization [2] similar to immersed boundary methods [3]. The turbulence is modeled using a LES
SubGrid Scale Smagorinsky-Lilly model.
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Figure 1: Blade profile and twist θ.

2 Modeling and numerical approach

2.1 Windturbine modeling

The windturbine under consideration is the NREL 10-m Wind Turbine, tested in NASA Ames 80’x120’ Wind
Tunnel (see http://wind.nrel.gov/amestest/). The blade profile (S809 airfoil) is presented in figure 1
where the twist angle θ varies between 30˚ near the hub to −2.5˚ at the end. The whole blade is presented
in figure 2. Note that the blade shape near the hub is circular. In this study we will consider the 2 blades
windturbine. Figure 3 shows the whole windturbine with the 2 blade, the hub and the mast. The rotation
of the 2 blades is fixed to be at 72 rpm. The position of the blades is determined via a level set, which is
advected in a Lagrangian way on each mesh point (see figure 2 for mesh). The velocity of the a point x of
the blade at time t is noted ub(x, t). This velocity is the one used to model the flow around the windturbine
(see next section).

2.2 Flow modeling

The domain under consideration is a 3D box Ω = Ωf ∪Ωb, where Ωf is the domain filled by fluid, and Ωb is
the domain defined by the windturbine (see figure 3). The box boundaries and the windturbine boundary are
respectively denoted by ∂Ωf and ∂Ωb. The flow around moving bodies is modeled using the incompressible
Navier-Stokes equations:

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ µ∆u+ ρg in Ωf , (1a)

∇ · u = 0 in Ωf , (1b)

with initial conditions u(x, 0) = u0(x) in Ωf , and boundaries conditions on ∂Ωf and u(x, t) = ub(x, t) on ∂Ωb.
Since we aim at using a cartesian mesh we want to avoid imposing explicitly the boundary conditions

u(x, t) = us(x, t) on ∂Ωb onto the body. The boundary condition can be imposed implicitly using an
external force depending of the blade velocity ub, denoted f(ub), and so that we have to solve

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p+ µ∆u+ ρg + ρf(ub) in Ω, (2a)

∇ · u = 0 in Ω. (2b)
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Figure 2: Blade geometry and mesh.

Figure 3: NREL turbine. Left, real turbine (http://www.nrel.gov/data/pix/Jpegs/17305.jpg). Right: Model
of the windturbine.
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In that study, the external force, f(ub), will be computed by a hybrid method, using both penalization [4, 2]
and immersed boundary techniques [3, 5].

2.3 Numerical approach

Equations (2) are spatially discretized on a fixed cartesian mesh with space step ∆x = (∆x, ∆y, ∆z). All
the derivative are computed using a central finite difference scheme with second order accuracy except the
convective terms that are computed using an third order upwind scheme. The temporal discretization is
performed thanks to a second order projection method [6] originally based on fractional steps methods [7, 8]

The projection method used is the following:

1. The projection step;

u∗ − un

∆t
+∇q = − [(u · ∇)u]n+1/2 +

ν

2
(∆u∗ +∆un) + λχ(ub − u∗) (3a)

with boundary conditions. the term q is an approximation of the pressure fields pn+1/2, λ = 108 is a
penalty term, χ is the windturbine characteristic function, i.e. χ = 1 in Ωb and χ = 0 elsewhere. The
velocity ub is the rigid velocity of the windturbine. The convective term at time n + 1/2 is obtained
thanks to an Adams Bashforth scheme. The penalty term is introduced to limit the mass variation
when body moves. The fresh cells that are created in the fluid have a velocity that is consistent with
the neighbors in the fluid.

2. Poisson step;
∆φ = ∇ · u∗ (3b)

3. Projection step (correction);
un+1 = u∗ −∇φ (3c)

pn+1/2 = q + φ−
ν∆t

2
∆φ (3d)

4. Body motion and immersed boundary correction.

The windturbine is displaced thanks to the rotation velocity. Since the windturbine boundary ∂Ωs

does not fit the cartesian mesh, the boundary conditions u(x, t) = ub(x, t) on ∂Ωb are imposed using
immersed boundary method [3, 5]. The velocity of a mesh point x ∈ Ωb with at least one neighbor
x±∆x in Ωf is imposed to obtain the desired velocity value ub(x

∗, t) on the nearest fish boundary
point x∗. This velocity is denoted uibm This point x∗ can easily be found after computing the level
function φ(x, t) associated to the windturbine. The immersed boundary method allows to keep the
second order accuracy in scpace near the windturbine boundaries.

The numerical scheme is globally second order accuracy in both space and time. A simple Smagorinsky-
Lilly turbulence model is also used.

3 Results

Figure 4 presents a numerical simulation of the real NREL ametest HAWT (blades length ℓ = 5m, ν = 10−6,
incoming wind= 10m/s and rpm= 72). The vorticity obtained is physically consistent. Indeed, the tip
vortices, the interactions with ground as well as vortices generated by the mast are clearly visible.

In what follows we will compare the thrust and the mechanical power generated by the windturbine
obtained with our numerical solver to those obtained experimentally [9]. In order to increase the resolution,
the computational domain will only consider the 2 blades with the hub, excluding the mast. The hub is
centered onto the point (xG, yG, zG) = (0, 0, 0) (the center of mass of the 2 blades) and the domain is
−2m ≤ x ≤ 3m, −8m ≤ y ≤ 8m and −8m ≤ z ≤ 8m. The associated mesh is 600 × 400 × 400 ≈ 100
millions nodes. The leading grid steps are ∆y = ∆z = 4 cm and ∆x = 0.8 cm. Since the blade length,
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Figure 4: Vorticity representation of the flow generated by the NREL ametest HAWT with 72 rpm and
incoming wind with 10m.s−1

maximal width and maximal thickness are 5.03m, 0.737m and 0.153 cm, there are 125 points on the blade
span, 20 points on the blade chord and also 20 on the blade thickness. Previous simulations around cylinder
and ellipses show that 20 points in each direction are enough to simulate with good accuracy laminar flows.
The question of turbulence modeling and simulation remains open. As mentioned before we used a simple
LES Smagorinsky Lilly model. Even if the domain is quite small in the wind direction, we did not observe
any spurious pressure reflection at the outflow. Indeed, the prediction equation (3a) is solved using non
reflecting outflow boundary conditions [10].

Introducing the dimensionless stress tensor T(u, p) = −pI + 1

Re (∇u + ∇uT ) and n the unit outward
vector to ∂Ωb, the forces and the torques exerted by the fluid onto the bodies are:

Fb =−

∫

∂Ωb

T(u, p)n dx, (4a)

Mb =−

∫

∂Ωb

rG ∧ (T(u, p)n) dx, (4b)

where rG = (x − xG, y − yG, z − zG)
T = (x, y, z)T . Since the boundary ∂Ωb does not fit the fluid mesh,

the forces and the torques are numerically integrated onto the blade mesh (see fig. 2) where ∇u and p are
obtained thanks to Lagrange interpolation on the fluid cells containing each blade mesh point.

The mechanical power can be obtained from P = Mb ·Ω, where Ω = (1.2, 0, 0)T is the angular velocity.
The actual angular velocity is 72 rpm that is 1.2 rotation per second.

Figure 5 shows the evolution of the thrust for several wind velocities experimentally obtained and with
our numerical method. The two curves show good agreements. The windturbine acts as a (not efficient)
propeller for wind velocities below 3m/s . For wind velocities greater than that threshold the turbine creates
drag. The mechanical power, however, does not show the same degree of accuracy as it can seen in figure 6.
The mechanical power computed numerically is approximatively two times lower than the experimental one.
It is however interesting to notice that the variations are similar, i.e. both values and gradients have the
same sign. These differences can be explained by the domain confinement and by the fact that the boundary
layers may not been computed accurately (turbulence modeling).
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Figure 5: Evolution of the thrust versus the wind velocity. Comparison between experimental (NREL) and
our numerical results.

Figure 6: Evolution of the mechanical power versus the wind velocity. Comparison between experimental
(NREL) and our numerical results.
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4 Conclusion and Future Work

A method to model and simulate the flow over a windturbine is presented. This method is based on
cartesian mesh where the bodies are modeled thanks to both penalization and immersed boundary. The
windturbine under consideration is the 2 blades (S809 airfoil) NREL ametest that have been intensively
studied experimentally in wind tunnel. Our numerical results show the same tendencies of experimental
results, but the accuracy need to be increased. While the thrust generated by the blades is computed
with high accuracy, the mechanical power extracted by the windturbine does not show the same accuracy.
However, the numerical power show the same tendency than the experimental one. The main drawback of
using cartesian mesh is that the boundary layers may not be computed the enough accuracy. One solution
is to refine the mesh around the blades. Another solution is to compute numerical zoom closely around the
windturbine using boundary conditions obtained from simulation on a larger domain with coarser grid. We
will explore those paths in next future.
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and IMB and other entities: Conseil Régional d’Aquitaine, FeDER, Université de Bordeaux and CNRS (see
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