
Seventh International Conference on
Computational Fluid Dynamics (ICCFD7),
Big Island, Hawaii, July 9-13, 2012

ICCFD7-2012-3404

A Numerical Study of Chaotic Dynamics in Thermal Ignition and

Chemically Reactive Swirling Flow

W. E. Tavernetti∗, M. M. Hafez∗

Corresponding author: etavernetti@math.ucdavis.edu

∗ University of California Davis, USA.

Abstract: Nonlinear dynamical phenonomena in combustion processes is an active
area of experimental and theoretical research. This is in large part due to increasingly
strict environmental pressures to make gas turbine engines and industrial burners
more e�cient. Using numerical methods, this study examines chaotic dynamics in a
thermal ignition framework as well as axisymmetric swirling �ow leading to enhanced
mixing with vortex breakdown. The incompressible and compressible, reactive Navier-
Stokes equations in terms of stream function, vorticity, circulation are used. Results,
details of the numerical algorithms, as well as numerical veri�cation techniques and
validation with sources from the literature will be presented. Understanding how
instabilities are a�ected by modeling reactant consumption are the main goals of this
study.
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1 Introduction

Combustion is an interdisciplinary �eld combining elements from �uid dynamics, chemical kinetics and
transport phenomena. The general problem is governed by the reactive, time dependent, compressible
Navier−Stokes equations for several chemical species. Di�culties that will be addressed are multiple time
scales, non-linearity (both in the advection and chemical source terms) and combustion instabilities in tran-
sitions to unsteady oscillatory and aperiodic solutions. The �uid mechanics foundation is the compressible
Navier−Stokes equations. The chemical kinetics foundations are dynamics and chemical process rate govern-
ing laws, such as the Arrhenius law. The transport phenomena foundations are momentum dissipation, heat
conduction and mass di�usion. A continuum approximation is assumed for the density, pressure, velocity,
and temperature by requiring these quantities are at least weakly di�erentiable. In the reactive case, in
contrast to the cold case, where it is sometimes a good approximation, the �ow cannot be assumed isother-
mal, or isentropic (where shocks are present in transonic �ow or choked nozzle �ows). Conservation of mass,
momentum, energy and the perfect gas law, P = ρRT , must be satis�ed. The non-dimensional reactive, time
dependent, compressible Navier−Stokes equations in non-conservative form for i = 1,...,N chemical species
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are given by Kuo, [17]:

∂ρ

∂t
+∇ · (ρV ) = 0
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γ

(1)

Where V is the velocity vector, p, ρ,H, Yi are the scalar pressure, density, total enthalpy and chemical species
functions respectively. Body forces, such as gravity, are denoted by f . Here, the total enthalpy, H, is given
in the energy equation as:

H =
∑
i

hiYi, hi =

∫ T

T0

CpidT̃ + h0
i (2)

and τi,j is given by:

τi,j = λ
δuk
δxk

δi,j + µ

(
δui
δxj

+
δuj
δxi

)
, λ =

2

3
µ (3)

γ is the speci�c heat ratio. Pr,Re, Sc are all dimensionless parameters. Pr =
µCp
k is the Prandtl number

which is de�ned as the ratio of viscous dissipation rate over thermal di�usion rate, where k is the thermal
conductivity, µ is the dynamic viscosity, and Cp is the speci�c heat. Re = ρV L

µ is the Reynolds number which
is de�ned as the ratio of inertial over viscous stress. Sc = µ

ρDm
is the Schmidt number which is de�ned as

the ratio of the viscous dissipation rate over the mass di�usion rate. To de�ne Ωi, which is given by the rate
of production of the species Yi, consider the chemistry governed by an arbitrary non-elementary reversible
R-reactions in N-species, where for r = 1, ..., R and stoichiometric coe�cients ν:(

N∑
i=1

ν
′

riYi

)

Kf

r

Kb
r

(
N∑
i=1

ν
′′

riYi

)
(4)

We consider the case of an irreversible reaction law: reagents ⇀ products. By the law of mass action, the
rate chemical species are produced is proportional to the product of the concentrations of reacting species
raised to their respective stoichiometric coe�cient ν. The reaction spec�c rate of production is given by
the reaction rate times the reagent-product stoichiometric balance, where for each reaction Ci ∈ [0, 1] is the
concentration of species Yi. One elementary approach to include the physical e�ect of chemical kinetics is to
assume a one-step reaction model. This idea can be further reduced to a premixed model, which consists of a
single fuel species reacting to form products. The chemical coupling is governed by an Arrhenius heat release
law. The chemistry obeys Arrhenius kinetics when the chemical rate and temperature forcing functions are of
the form: Da exp(−θ/T ). This proportionality between reaction rate and temperature is chosen speci�cally
because it is experimentally validated. There are tuning parameters: the pre-exponential collision frequency
factor Da and θ which is proportional to the activation energy. Da is called the Dahmkoler number which
is typically the ratio of the characteristic �uid time over the characteristic chemical reaction time:

K := DaT
αe
−θ
T (5)

where θ = Ea
Rgas

. These quantities are determined experimentally in applications. For an ideal gas:

Ci =

(
pi
RuT

)
=

ρi
Wi

=
Yiρ

Wi
(6)
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where Ru is the universal gas constant, pi is the partial pressure of the i-th species, ρi, ρ are densities for
each species and the �uid mixture respectively, and Wi is the molecular weight of the i-th species. From this
and the de�nitions:

Ωi = ρ
∂Yi
∂t

= Wi
∂Ci
∂t

(7)

it follows that species production term in the governing equations is:

Ωi = Wi

R∑
r=1

Kf
r

(
ν
′′

ri − ν
′

ri

)
ρmf
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(
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)ν′ri
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r

(
ν
′′

ri − ν
′

ri

)
ρmb

N∏
i=1

(
Yi
Wi

)ν′′ri (8)

where mf =
∑N
i=1 ν

′

i and mb =
∑N
i=1 ν

′′

i . The case of a single fuel species reacting in one-step with an excess
of oxidizer in an elementary irreversible reaction is a special case of the form:

fuel −→ products (9)

This approach can be used in place of detailed chemical kinetics to emphasize the e�ect of heat release on
the �ow [?]. In this case the reaction is one-step (R = 1) irreversible (Kb = 0) involving a single premixed
fuel (N = 2) and an excess of oxidizer (νfuel = 1) with constant pre-exponential frequency factor (α = 0):

Ω = Daρe
−θ/TY (10)

where Y = Yfuel and forW = 1 for simplicity. Increasing temperature increases the reaction rate, potentially
extremely slowly, until a critical temperature range is reached and then the Arrhenius function explodes ap-
proaching unity very rapidly by comparison. The Arrhenius rate law contributes not only to the sti�ness of
the problem, but also to the interesting structure of the solution space.

2 Thermal Ignition Theory

The goals of this study are to (1) to treat the thermal ignition problems, (2) consider the issues related to
bifurcations and chaotic dynamics, and (3) implement a robust numerical method for these sti�, nonlinear,
problems.

2.1 Unsteady and Steady Thermal Ignition Theory

One important starting point is simply freezing the �uid mechanics and studying chemical coupling. However,
historically the problem was reduced further to an energy equation for temperature. If the chemistry is frozen,
this produces the simplest possible case of the combustion problem: a 1D, viscous, constant pressure, reaction
di�usion equation, or semilinear heat equation, known as the Frank-Kamenetskii solid fuel ignition model
for a temperature T (r, t):

cσTt = κ∇2
rT +QσAe−

E
RT (11)

where: ∇2
r = ∂2

∂r2 + n−1
r

∂
∂r with n = 1,2,3 depending on the geometry (slab, cylinder and sphere respectively)

[16]. The exponential temperature source term is known as an Arrhenius law, which relates equilibrium rate
constants to heat of reaction. Typical initial and boundary conditions are:

T = T0 for r = a0 ∈ R,
∂T

∂r
= 0 at r = 0, and, T = T0 at t = 0 (12)

Through a non-dimensionalization this equation can be rewritten as:

θt = ∇2
rθ + δe

θ
1+εθ (13)
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Figure 1: θ(r = 0.18), for dimension n = 1, unsteady solutions for a range of δ values.

Figure 2: ||u(r)||∞ vs. δ steady state loci (left) and the δ − β curves (right)

This equation, which is a perturbed Gelfand equation, is sometimes called the small losses solid fuel ignition
model [1]. Note that t = τ, r = r̄ have been non-dimensionalized as well, but for convenience we them as r
and t. In this form θ(r̄, τ) gives the temperature excess and ε = Rθambient

E is the dimensionless measure of
activation energy, which is typically small (i.e. about 1/50) [16]. For small ε, this model can be approximated
as:

θt = ∇2
rθ + δeθ (14)

In Figure 1, for dimension n = 1, this probem is integrated for a range of δ values using θ(ri) = sin(πri)
for r ∈ [0, 1] as an initial condition, and θ at r = 0.18 is plotted. This result is in agreement with published
results in [30]. The transition from slow reaction to explosive (or thermal runaway) behavior is shown as δ
is increased. There is a critical value of δ whereby solutions above that value tend to in�nity in �nite time
while below that they eventually approach a steady state. This δ de�nes the transition point between stable
and unstable solution branches. The steady state theory is governed by the radially symmetric semilinear
elliptic ODE and boundary conditions:

∇2
rθ = −δeθ, r ∈ Ω

θ = 0, r ∈ ∂Ω
(15)

The values along the steady state loci, de�ned by the parameter δ, were produced using two di�erent meth-
ods: (1) linear shooting with a 4th order Runge-Kutta solver (RK-4) and a bisection correction, and (2) a
Newton residual corrector method. The loci and δ − β curves, where β = ur(−1), were produced using a
parameter continuation method on δ. The results, shown in Figure 2, are in excellent quantitative agreement
with published results, see for example [1], [16]. In this equation, c is the material speci�c heat capacity, Q
is the reaction exothermicity, R is the gas constant, E is the activation energy, σ is the density, A is a rate
constant, and κ is the thermal conductivity. This law de�nes the rate of change of temperature at spatial
points in an exothermically reacting mass. In this model chemical consumption of reactants is neglected.
The key results concern dynamical issues related to geometry dependent bifurcations in the solution space.
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Figure 3: 1D Kuramoto-Sivashinsky choatic solution.

The behavior of these problems can somewhat surprisingly be considered to produce a set of important ef-
fects that are native to reactive �uid mechanics. Most important results achieved by classical studies of this
problem concerns the e�ect of geometry. For example, in the case n=3, it is possible to produce, for a unique
set of parameters, in�nitely many solutions, some of which are stable, and some that exhibit the phenomenon
often called thermal runaway or, mathematically, �nite time blow-up. These Gelfand type problems are at-
tributed to many celebrated investigators: Barenblatt, Bratu, Emden, Fowler, Frank-Kamenetskii, Gelfand
and Liouville [3]. There has been some notable recent interest in Gelfand type problems associated with
thermal ignition theory. These problems are also associated with chemical reaction theory, radiative heat
transfer, geometric and relativistic considerations in the Chandrasekhar model for an expanding universe and
nanotechnology applications [2]. There are some good existence and uniqueness results as well as analytic
solutions in special cases, see [1], [3], [4].

2.2 Alternate Formulations and an Example Problem

At present we are speci�cally examining the e�ect of coupling on chaos in the chemistry and �uid components.
The Kuramoto-Sivashinsky equation is one important example of a di�erent kind of model that applies for
combustion among other physical problems. Sivashinksy developed the equation for modeling �ame front
instabilities and Kuramoto independently did so for the study of chemical turbulence. In su�ciently large
domains, solutions have chaotic, or weakly turbulent, behavior [22]. Following [27], a classical 1D example
is reproduced in Figure 3.

ut = −
(

1

2
u2

)
x

− uxx − uxxxx, u(x, 0) = cos
( x

16

)(
1 + sin

( x
16

))
(16)

The 2D formulation of this problem in rectagular geometry:

ut = ν |∇u|2 − αu−∆u−∆2u (17)

Or equivalently:

ut = ν
(
u2
x + 2uxuy + u2

y

)
− αu− uxx − uyy − uxxxx − 2uxxyy − uyyyy (18)

Our calculation is done using a straightforward implicit Crank-Nicolson scheme with central di�erences for
all derivatives. A direct solve is performed at each time step, lagging the nonlinearity in uux resulting in
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Figure 4: Reproduction of the example result presented in [8].

a penta-diagonal linear system. For historical references and the current state of the art on this problem,
including simulations of chaotic solutions in 3D geometry, see [11].

2.3 Thermal Ignition and Chemical Coupling

If we assume a single chemical species, Y (~x, t), freeze the main�ow such that ~V (~x, t) = 0 and assume
constant density, ρ(~x, t) := constant, then we have the nonlinear advection-reaction-di�usion model with
one-step irreversible Arrhenius chemical kinetics :

∂Y

∂t
= D∇2Y − φ2Y e−θ/T ,

∂T

∂t
= κ∇2T + βφ2Y e−θ/T (19)

with constant parameters: κ,D, δ, A, θ. First we consider this problem in one spatial dimension following
[8]. It is extended to an axisymmetric geometry and the periodic and aperiodic solutions are discovered. In
this problem, the Lewis number (Le) is the non-dimensional ratio of mass to thermal di�usivity (k/D) and
is known to signi�cantly impact the numerical and physical results [24].

A direct comparison is made with [8], it is in excellent quantitative agreement with published results, showing
(left) in the fast-reaction regime for θ = 10 and (right) the slow-reaction regime for θ = 13.6 in Figure 4.
These are cases with steady state solutions that bound from above and below a reaction regime containing
periodic and aperiodic solutions. In the 1D formulation ∇2 := ∂2/∂x2 and the parameter regime of study is
given by:

β = 4.287, Le = 0.233, θ ∈ (12, 13), φ2 = 70000 (20)

subject to boundary conditions on the unit interval:

T (0) = 1, T (1) = 1, Y (0) = 1,
∂Y (1)

∂x
= 0, x = [0, 1] (21)

Of particular importance. the bifurcation parameter, θ is the chemical activation energy. Note also that
the maximum temperature in the �eld increases linearly with β. Examples are computed for θ = 12.61
(left) and θ = 12.65 (right) in Figure 5. Additionally a representative slice of the Y-T attractor space taken
across the θ range is given in Figure 6. A uni�ed picture of the Y-T attractor space which is a composite of
representative θ locations produces the diagram in Figure 7. To extend the ignition problem, in the absence
of �uid mechanics, to a 3D axisymmetric geometry we consider extensions of the same model given above to
cylindrical coordinates:

∂Y

∂t
= D

(
1

r

∂

∂r

(
r
∂Y

∂r

)
+
∂2Y

∂z2

)
− φ2Y e−θ/T ,

∂T

∂t
= κ

(
1

r

∂

∂r

(
r
∂T

∂r

)
+
∂2T

∂z2

)
+ βφ2Y e−θ/T (22)

For the boundary conditions, two representative models are considered, an insulated adiabatic wall model
approximating submersion in a thermal bath, and a heated wall model approximating the spontaneous
application of a heat source to one end of the experimental apparatus. The �rst model is a natural extension
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Figure 5: Premixed thermal ignition model periodic and aperiodic solutions.

Figure 6: Bifurcation diagram of an attractor for a range of θ extracted from Eulerian point time series for
heated wall (left) and thermal bath (right).

of the 1D model studied in [8], the second is chosen for similarity with [12], [18], [26]. In both cases we
will use a line source of fuel along the axis of symmetry. The boundary conditions respectively are for
z ∈ [0, H/R], r ∈ [0, 1] in the thermal bath model:

T (z = 0, r) = 1, T (z = H/R, r) = 1, T (z, r = 1) = 1,
∂T (z, r = 0)

∂r
= 0, (23)

Y (z, r = 0) = 1,
∂Y (z = 0, r)

∂z
= 0,

∂Y (z, r = 1)

∂r
= 0,

∂Y (z = H/R, r)

∂r
= 0 (24)

And, in the heated wall model:

T (z = 0, r) = 0, T (z = H/R, r) = 1,
∂T (z, r = 1)

∂r
= 0,

∂T (z, r = 0)

∂r
= 0, (25)

Y (z, r = 0) = 1,
∂Y (z = 0, r)

∂z
= 0,

∂Y (z, r = 1)

∂r
= 0,

∂Y (z = H/R, r)

∂r
= 0 (26)

Steady state examples of fast reaction pro�les are computed for both the thermal bath case (left) and the
heated wall case (right) in Figure 8.

3 Axisymmetric Swirling Incompressible Flow

Swirling the �ow is a control technique whose main e�ects include considerably enhancing stability of most
�ames by creating toroidal recirculation zones facilitating mixing, decreasing combustion length through
�uid entrainment, and even reducing maintenance costs on equipment [6]. A strongly swirling �ow, su�cient
to induce recirculation by vortex breakdown is needed to achieve these bene�ts. Vortex breakdown as a �uid
mechanics problem has received extensive research attention [15]. Benchmarks for the steady cases and known
chaotic dynamics in closely related problems will be studied for validation. The �ow is axisymmetric which
is a good assumption for many laminar �ow cases [15]. There are three velocity components: radial (vr),
circumferential (wθ), axial (uz). First, assume ρ is time invariant and normalized to unity. Computing the
standard coordinate transformation of the governing equations gives incompressible axisymmetric swirling
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Figure 7: Period diagram extracted from the Y,T attractor space.

Figure 8: Thermal bath case (left) and the heated wall case (right) showing example steady state solutions
for H/R = 2.

�ow. De�ned in non-conservative form in terms of stream function, vorticity and circulation as:

r

(
ψr
r

)
r

+ (ψ)zz = −rω

ωt + uωr + wωz − 2
vvz
r

=
1

Re

(
ωrr +

ωr
r

+ ωzz −
ω

r2

)
vt + uvr + wvz +

uv

r
=

1

Re

(
vrr +

vr
r

+ vzz −
v

r2

) (27)

For the con�ned case we study a �xed cylinder with a rotating lid following the experimental apparatus of
Escudier [9]. For the uncon�ned case, �ow through a cylindrical domain is uncon�ned in the sense that
there is a free stream boundary condition at r = R. The assumption of axisymmetry has been the subject of
much debate. Some of the known issues outside the scope of this model include: asymmetric spiraling before
vortex breakdown, asymmetric folding at downstream end of bubbles, and dye penetrating bubble interiors
in experiments. Eulerian �ow measures con�rm that these inconsistencies have a small impact, except for
studies involving Lagrangian particle dynamics, which should be modeled in 3D [28]. Following [21] the
boundary conditions are:

ψ = v = ω = 0 (r = 0, 0 ≤ z ≤ H/R)

ψ = v = 0, ω = −1

r

∂2ψ

∂r2
(r = 1, 0 ≤ z ≤ H/R)

ψ = 0, v = r, ω = −1

r

∂2ψ

∂z2
(z = 0, 0 ≤ r ≤ 1)

ψ = v = 0, ω = −1

r

∂2ψ

∂z2
(z = H/R, 0 ≤ r ≤ 1)

(28)
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Figure 9: Direct comparison of numerical results with experiment data.

This problem has both periodic and aperiodic solutions depending, in particular, on the aspect ratio

(Height/Radius) of the cylinder and the Reynolds number
(

ΩR2

v

)
where Ω is the angular velocity, R is the

radius and v is the kinematic velocity. In order to validate the code we make qualitative and quantitative
comparisons following [9],[10]. For a qualitative comparison, in Figure 9, we compare with several experi-
mental results for the set of Reynolds numbers of {1918, 1944, 1994, 2126, 2494, 2965}. Note that Re = 2765
is unsteady, and thus what is plotted is a time average of the stream function, in this case from time 750 to
1000. Qualitatively the agreement seems quite reasonable with particular emphasis placed on the location of
vortex breakdown. We also make a comparison with [10] in Figure 10. One feature not shown at this level
of resolution are the corner Mo�att eddies. This phenomena is well known for con�ned �ows of this type
[19]. To make the comparison more rigorous, following the example set forth in [10], we make the following
quantitative analysis detailing the nondimensional location of the stagnation points along the z-axis for r = 0
in Figure 11. Here the coarsest mesh is 21x41 and the �nest mesh is 151x301. In all cases ∆x = ∆r, although
this is not necessary. One observes that the qualitative behavior of the solutions does not appear particularly
sensitive to the grid, although the precise location of the breakdown, at least in this is example, can vary by
15% or more from a reasonably coarse mesh to a �ner one. Measuring the photographs from [9] which gave
this result for only the uppermost stagnation point, as well as using the graphs in [10], it is estimated the
steady-state location of the vortex breakdown in the case Re = 1854, H/R = 2, should be xs1 ≈ 0.21124.
Fitting a fourth degree polynomial to the last four points in our data set our estimate would be xs1 ≈ 0.2109
for an error of 0.16%. Another quantitative comparison is available from [21] which reports maximum and
minimum values for the stream function, circulation and vorticity �elds. This is reported here:

Present Lopez (1990)
Re min(ψ) max(ψ) min(ω) max(ω) min(ψ) max(ψ) min(ω) max(ω)
1918 -8.00E-03 4.54E-06 -3.76 15.9 -7.90E-03 1.00E-06 -3.80 15.6
1942 -7.98E-03 7.85E-06 -3.77 16.0 -7.90E-03 2.80E-06 -3.80 15.7
1994 -7.92E-03 1.58E-05 -3.81 16.2 -7.80E-03 8.80E-06 -3.80 15.8
2126 -7.78E-03 3.80E-05 -3.90 16.6 -7.60E-03 3.00E-05 -3.90 18.2
2494 -7.42E-03 2.63E-05 -4.11 17.7 -7.30E-03 7.40E-05 -4.40 17.2
2765 -7.68E-03 2.61E-04 -4.36 18.5 -7.00E-03 8.60E-05 -4.70 17.8
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Figure 10: Steady state, Re = 1854, H/R = 2.

Figure 11: Location of onset points where z-axial velocity changes sign. In this case there are 4 with s1

closest to the lid in order to s4 which is farthest.

The agreement is not perfect, but they are quantitatively similar. Our table is generated using a grid reso-
lution of 61x151, where H/R = 2.5. The unsteady case of Re = 2765 is generated using a time average this
time from 1000 to 1500.

It is found by numerical experiment that the �ow solutions are numerically stable up to Reynolds num-
bers as high as 14,750 (in the case of H/R = 2) for several thousand time steps. A more detailed analysis
has been conducted for Reynolds numbers in the range of 2000 to 6000 in increments of 100 using a grid
with ∆x ≈ ∆r ≈ 0.02. The largest Lyapunov exponent (LLE) is computed from the ||ψ||2 time series by
a modi�ed method similar to that given in [29]. The main di�erences being that at each iteration a new
�ducial point is selected at random from the attractor, and instead of choosing a single point near this base
point, then a cloud of nearby points is selected and evolved in time to better estimate the local attractor
expansion. The results are summarized in Figure 12 showing plots of the LLE's generated from the time
history of ‖ψ‖2 for time from 1000 to 2000, allowing 1000 time units for transients to decay between samples.
Rather than starting each new Reynolds number case from the quiescent initial conditions, the input for
the next Reynolds number is taken as the solution at time t = 2000 from the previous Reynolds number
case. It is remarked that this method of generating the time series might a�ect the results if insu�cient
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Figure 12: Largest Lyapunov Exponent for H/R = 1.58, 2, 2.5 , 3, 3.5 from left to right, top to bottom.
Transient chaos is labeled.

time was given to let transient solutions decay, or multiple solutions exist. Also, in cases where the ||ψ(t)||2
by ||ψ(t+ ∆t)||2 attractor has a high number of folds calculation of the Lyapunov exponent is questionable.
In this case, comparison with a Poincare section as well as the power spectral analysis are used to overrule
this prediction. A vortex pinch-o� as well as some irregular breakdown structures have been observed, these
are reported in Figure 13. In addition to this, several vortex shapes were observed beyond the classical
experimentally produced con�gurations. These are shown in Figure 14.

Numerical methods and Initial conditions For the case without temperature and chemical e�ects im-
pulsive start is used for most simulations. The exception is that the high Reynolds number simulations ran
one case into the next without resetting the initial condition. The main aspects of the numerical procedure for
a problem of this type are the time stepping scheme, treatment of the nonlinear terms and the discretization of
the advection terms. A long time, high resolution, integration is desirable. For this task an explicit Arakawa
method is used. To study unsteady behavior, the output is desired at many intermediate time values, hence
the bene�t of a large time step from an implicit method is lost. In addition, the conservation properties of
the Arakawa method are important. Recall, as proved in [20], the Arakawa method is equivalent to a �nite
element method and preserves conservation laws for mean vorticity, mean square vorticity and kinetic energy.

Arakawa's scheme for the advection terms is given by:

J(ζ) =
−1

12∆x∆r
[(ψi,j−1 + ψi+1,j−1 − ψi,j+1 − ψi+1,j+1)(ζi+1,j − ζi,j)...

+ (ψi−1,j−1 + ψi,j−1 − ψi−1,j+1 − ψi,j+1)(ζi,j − ζi−1,j)...

+ (ψi+1,j + ψi+1,j+1 − ψi−1,j − ψi−1,j+1)(ζi,j+1 − ζi,j)...
+ (ψi+1,j−1 + ψi+1,j − ψi−1,j−1 − ψi−1,j)(ζi,j − ζi,j−1)...

+ (ψi+1,j − ψi,j+1)(ζi+1,j+1 − ζi,j) + (ψi,j−1 − ψi−1,j)(ζi,j − ζi−1,j−1)...

+ (ψi,j+1 − ψi−1,j)(ζi−1,j+1 − ζi,j) + (ψi+1,j − ψi,j−1)(ζi,j − ζi+1,j−1)]

(29)
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Figure 13: Pinch-o� phenomena observed in unsteady simulation at H/R = 2.5, Re = 6000.

Figure 14: Examples of other observed phenomena at H/R = 2.5, Re = 6000.

Here, the operator J is de�ned as:

J =
∂ψ

∂z

∂

∂r
− ∂ψ

∂r

∂

∂z
(30)

The advection terms in the ω, v equations are discretized according to:

ωt − J
(ω
r

)
− 2

vvz
r

=
1

Re

(
ωrr +

ωr
r

+ ωzz −
ω

r2

)
vt −

1

r
J (v) +

uv

r
=

1

Re

(
vrr +

vr
r

+ vzz −
v

r2

) (31)

With temperature e�ects and chemical species, the advection transport terms in the T, Y equations respec-
tively will be in the same form as the equation for v above. The explicit predictor-corrector algorithm
is:

ū− un

∆t
= f(un),

un+1 − un

∆t
=

1

2
f(un) +

1

2
f(ū) (32)

This method is similar to that used by Lopez in [21].
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Figure 15: Steady state, Re = 1350, H/R = 1.58, Ec = 0.1 (left), Ec = 4.0 (right), and for both Pr = 0.7,
Ra = -0.05.

3.1 Incompressible �ow with and without chemical coupling using Boussinesq

approximation

The dimensionless initial boundary value problem is given in terms of the Prandtl Number (Pr), Rayleigh
number (Ra), Eckert number (Ec) and Reynolds number (Re), see [18], [26]:

r

(
ψr
r

)
r

+ ψxx = rω

ωt + uωr + wωz − 2
vvz
r

= −Ra Tr +
1

Re

(
ωrr +

ωr
r

+ ωzz −
ω

r2

)
vt + uvr + wvz +

uv

r
=

1

Re

(
vrr +

vr
r

+ vzz −
v

r2

)
Tt + uTr + wTz =

1

Pr ·Re

(
Trr +

Tr
r

+ Tzz

)
...

...+
Ec

Re

(
2

(
u2
r +

u2

r2
+ w2

z

)
+
(
vr −

v

r

)2

+ (uz + wr)
2

)
(33)

A heated wall model boundary condition on temperature is �rst used to compare with published results:

T (z = 0, r) = 1, T (z = H/R, r) = 0,
∂T (z, r = 1)

∂r
= 0,

∂T (z, r = 0)

∂r
= 0 (34)

Note that this model forces a thermal gradient. In contrast to this, in the thermal bath model, where
quiescent uniformly T (x, r) = 1 initial condition is used, the case where Da = 0 produces �ow solutions
equivalent to Ra = 0. For the heated wall model, our results are in qualitative agreement with [18] and [26]
as shown in Figure 15. It is found the Eckeret number, governing the viscous dissipation, diminishes vortex
breakdown e�ects as shown in Figure 16. Note also in 16 the corner Mo�att eddies are large and their size is
shown to depend on the Eckert number. When studying chaotic solutions, and in light of using a Boussinesq
approximation, including Ec > 0 is found to provide a stabilizing e�ect that has a tendency to reduce the
sensitivity of the main�ow to Tr. In this model several e�ects are observable. It is observed that decreasing
the Rayleigh number enhances the vortex breakdown e�ect as shown in Figure 17. Note the direction of
the temperature gradient is from bottom, at z = 0, to top, at z = H/R, in the heated wall model. If the
direction is reversed, then increasing the Rayleigh number will have a similar e�ect. Through varying only
the Prandtl number for example to 7.1, with Ra = -0.05, Ec = 0, H/R = 2, Re = 1854, Da = 0, this model
can produce persistant chaotic oscillations. An example showing ||ψ||2 time series is shown up to t = 5000
in Figure 18. Here the largest Lyapunov exponent is approximately 0.657. In this case when Ra = -0.01 a
steady state solution is reached with a chaotic transient largely decayed by t ≈ 500. When Pr = 0.7 and
Ra = -0.05 a steady state solution exists, but it takes until t ≈ 2000 for the regular periodic oscillations to
largely decay. These results are shown in Figure 19.
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Figure 16: ||ψ||2 steady state for Ra = -0.05, Pr = 7.1, dependence on Ec = 0.1,1,2,3, H/R = 2, Re = 1854.

Figure 17: Swirling �ow with temperature e�ect coupled through Ra for H/R = 2, Re = 1854, Pr = 0.7, Ec
= 0, and heated wall boundary conditions for T.

We extend this model to include a chemical reaction. The Boussinesq approximation is used coupling the
�uid mechanics and chemistry proportional to a gradient of temperature in the radial direction. According
to the Boussinesq approximation, the density is not constant, but the underlying cause is temperature, not
pressure. In this case there is weak coupling between the �uid dynamics and chemistry, but the temperature
e�ect is decoupled from the pressure e�ect. The non-dimensional governing equations are:

r

(
ψr
r

)
r

+ (ψ)zz = −rω

ωt + uωr + wωz − 2
vvz
r

=
1

Re

(
ωrr +

ωr
r

+ ωzz −
ω

r2

)
vt + uvr + wvz +

uv

r
= −RaTr +

1

Re

(
vrr +

vr
r

+ vzz −
v

r2

)
Yt + uYr + wYz =

1

Sc ·Re

(
Yrr +

Yr
r

+ Yzz

)
−DaY e

−θ/T

Tt + uTr + wTz =
1

Pr ·Re

(
Trr +

Tr
r

+ Tzz

)
+ βDaY e

−θ/T

(35)

where:

u =
ψr
r
, v = −ψx

r
(36)

In the limit where Ra = 0, the �uid mechanics and the chemical thermodynamics are completely decoupled.
Note that in all cases we will take Sc = 1. In addition, we will now introduce species and thermal bath
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Figure 18: Sustained chaotic ||ψ||2 oscillations for Ra = -0.05, Pr = 7.1, Ec = 0, H/R = 2, Re = 1854, Da
= 0. The Poincare section on the right is produced using t ∈ [2500, 5000].

Figure 19: Steady state ||ψ||2 achieved with H/R = 2, Re = 1854, Ec = 0, Da = 0 for Ra = -0.01, Pr = 7.1
(left) and Ra = -0.05, Pr = 0.7 (right).

boundary conditions:

T (z = 0, r) = 1, T (z = H/R, r) = 1, T (z, r = 1) = 1,
∂T (z, r = 0)

∂r
= 0, (37)

Y (z, r = 0) = 1,
∂Y (z = 0, r)

∂z
= 0,

∂Y (z, r = 1)

∂r
= 0,

∂Y (z = H/R, r)

∂r
= 0 (38)

Note that Da = 0 is equivalent to Ra = 0 in this case. The combustion can have a variety of e�ects, both
stabilizing and destabilizing. For example, a strong reaction process can cause the solution to quickly ap-
proach a steady state as shown in Figure 20. In this �gure, the rightmost plots are of the case where Ra =
0 and are a time average of the periodic solution from t = 1000 to 1500. In this case, with �xed H/R =
2.5, Re = 2765, and thermal bath B.C. for T with Ra = 0.05, it is seen that varying the Prandtl number
and the combustion variables, Da, θ, and β, the non-reactive �ow transitions from unsteady to steady. The
steady state is also shown to depend on the Prandtl number and reaction strength. The Rayleigh number,
Ra, plays an important role in the Boussinesq approximation. In Figures 21 and 22, which are di�erent
plots of the same �ow simulation, the Rayleigh number e�ect is speci�cally investigated for reactive �ow
with thermal bath boundary conditions. In all these cases: H/R = 2, Re = 1854, Pr = 0.01, Ec = 0, Sc =
1, Da = 1, β = 4, θ = 3 and Ra = [−0.1,−0.05, 0, 0.05, 0.1]. It is observed that vortex breakdown stucture
and temperature and species concentration maxima are sensitive to varying Ra.

Another important e�ect is that combustion alone is enough to induce strong periodic and aperiodic behavior
from an otherwise steady state solution as shown in Figure 23. This �gure also shows how Da can a�ect
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Figure 20: H/R = 2.5, Re = 2765, showing stabilizing e�ect on main�ow for several combustion processes.

the oscillatory behavior. Here, at a relatively low Reynolds number, Re = 1854, there is a steady solution
for Da = 0, Ra = -0.05 and it is very similar to that shown in Figure 17 for Ra = -0.04. Note ||ψ||2 ≈ 0.5
at steady state. In this case, the base is H/R = 2, Re = 1854, Ec = 0, Ra = -0.05, using the heated wall
boundary conditions for temperature produces a periodic oscillatory solution. Further increase of Da results
in a chaotic solution. Ec > 0 damps the aperiodicity out of the solutions, however, further increasing Da
can bring about aperiodic solutions even with the viscous dissipation e�ect.

Combustion can also dramatically change the startup transient behavior as shown in Figure 24. The
long time periodic behavior of the two solutions are also shown side-by-side for comparison in segments
of t ∈ {[0, 1000], [1000, 2500], [2500, 4000]} in Figure 24. In these plots H/R = 2, Re = 4500, Ec = 0, Pr
= 0.7, Ra = 0.1, with thermal bath B.C. for T, showing ||ψ||2 for Da = 8, β = 1, θ = 1. In one case the
solution very quickly approaches a periodic solution, while in the other transient chaos persists for many
time steps.

In fully chaotic cases, where aperiodicity is not destroyed by the chemical coupling, combustion can cause
a �ner time scale to present. This phenomena is shown in Figure 25 for a case with heated wall boundary
conditions. In one case Da = 0, in the other Da = 1 while all other parameters are given by: H/R = 2, Re
= 4500, Pr = 0.7, Ra = -0.05, Da = 1, Θ = 1, β = 1, Ec = 0.1. The case with combustion, the Lyapunov
exponent for the ‖ψ‖2 time series is LLE ≈ 0.596, and without where Da = 0, LLE ≈ 0.480. In addition,
the power spectra for ‖ψ‖2 is shown in Figure 25 with Da = 0 on the left and Da = 1 on the right. As
expected, the presence of a second �ner time scale shows a denser high frequency response. Extending what
was shown above, it is also observed that the Raleigh number e�ect can change the amplitude of oscillations
in a chaotic time series as well as the long term mean values. These phenomena are shown in Figure 26 for
||ψ||2 and ||T ||2 time series. All cases are proven chaotic by calculation of the largest Lyapunov exponent
(LLE). Ra = 0 and Ra = 0.1 have similar LLE ≈ 0.64, 0.63 respectively, while the case of Ra = -0.1 has
slightly high LLE ≈ 0.802.
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Figure 21: Streamlines showing location of vortex breakdown for variable Ra = [-0.1, -0.05, 0, 0.05, 0.1]
for H/R = 2, Re = 1854, Pr = 0.01, Ec = 0, Sc = 1, Da = 1, β = 4, θ = 3 with thermal bath boundary
conditions.

Most importantly perhaps, the presence of combustion, even weak combustion, can change the periodic-
ity of the solution. For example, as shown in Figure 27 a periodic solution without combustion becomes
aperiodic with combustion. In this �gure, H/R = 2, Re = 5500, Ec = 0, Pr = 0.7, Da = 1, θ = 3, β = 4
along with thermal bath boundary conditions for temperature. In one case Ra = 0 and, in the other, Ra =
-0.05.

Numerical methods and Initial conditions This problem can be sti� for certain parameter range.
Rather than using one �ne time scale, a two-timing procedure is used. The time scale of the temperature
and species equation, ∆tchem, is determined by trial and error necessarily �ner than the �uid dynamics prob-
lem alone. The numerical procedure is to advance the stream function, velocity �elds, swirl and vorticity
∆t. Note that a direct solver is used to advance the stream function. Hereafter the temperature and species
equations are advanced ∆t on a �ner time scale ∆tchem = ∆t

k , k ∈ Z. Then the process is repeated. In our
simulations these values ranged from k = 1 to k = 1000. The numerical stability constraint on ∆tchem was
determined by trial and error.

3.2 Compressible �ow with chemical coupling

At present we consider only steady state cases of the compressible reactive �ow. In this case, transient
solutions achieved during numerical convergence are nonphysical, however, the steady state results should
be valid. Note that the stream function-vorticity-circulation model, as written, could not be adapted without
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Figure 22: T at r = 0 (left), Y at r = ∆t (center) and w at r = 0 right) in the region of vortex breakdown
for Ra = [-0.1, -0.05, 0, 0.05, 0.1] for H/R = 2, Re = 1854, Pr = 0.01, Ec = 0, Sc = 1, Da = 1, β = 4, θ = 3
with thermal bath boundary conditions.

modi�cations to the unsteady case. The unsteady non-dimensional model is:

1

r
(rρφr)r + (ρφz)z = −ρt, r
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1
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)
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ψ

ρ
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zz
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∇2V +

1

3
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(39)

where by a Helmholtz type decomposition:

w = φz +
ψr
rρ
, u = φr −

ψx
rρ

(40)
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Figure 23: H/R = 2, Re = 1854, Ec = 0, Ra = -0.05, Θ = 1, β = 1, heated wall B.C. for T, we see ||ψ||2
time series (Left) Da = 1.0, LLE ≈ −0.79, (Left middle) Da = 2, LLE ≈ 0.41, (Right middle) Da = 4,
LLE ≈ 0.52, (Right) Da = 8, LLE ≈ 0.49.

For modeling purposes it might be useful to make a constant pressure assumption. In general a Poisson
equation for the pressure will need to be solved. For the steady �ow results we take φ = 0. A code has been
developed and validated for the non-reactive case following [13]. The problem considered is axisymmetric
�ow in a cylindrical geometry with a steady, continuous, vortex generated at the inlet. Comprehensive
results, in the absence of combustion, have been reproduced quantitatively matching those reported in [13].
The model has been extended to include combustion in the compressible reactive case. A preliminary test
case for small heat release with constant pressure has been calculated and is shown in Figure 28. In addition
to producing a larger bubble, vortex breakdown develops sooner with the presence of this weak combustion
process, which matches the conclusions presented in [7], as shown in Figure 29. Additionally, it is observed
that the mixing due to vortex breakdown greatly a�ects the temperature such that a local temperature
maximum is coincident with a vortex bubble center. Extension to unsteady �ow with chaotic dynmics will
be the subject of future research. Some recent work in this area has been undertaken in [14].

4 Conclusions

Present chaotic behavior of the solution of the thermal ignition problem is in agreement with published
results [8]. Present incompressible �uid mechanics results for the case of con�ned �ow and compressible
results for uncon�ned �ow are in agreement with published results [18],[13],[26]. In this study chaotic
dynamics in reactive swirling has been investigated. It has been found that combustion can be a stabilizing
and destabilizing force. Reactions can introduce �ne time scales that can change the solution dramatically.
Coupling through the Ra and combustion parameters are very in�uential. Reactive processes can greatly
a�ect the startup conditions as well as persistant behavior of the system. It is also found that the �ow solution
is very sensitive to changes in temperature as demonstrated by the very strong in�uence of the Rayleigh
number through the Boussinesq approximation. Chemical reaction a�ects the results qualitatively and
quantitatively. The axisymmetric model used in the present calculations is su�cient for many applications
however, one criticism of the current approach is that symmetry might be broken by the microscale introduced
in the chemical reaction, hence a 3D approach would be necessary [28]. Advanced computational resources
are also required for the turbulent �ow calculations.
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Figure 24: H/R = 2, Re = 4500, Ec = 0, Pr = 0.7, Ra = 0.1, with thermal bath B.C. for T, showing ||ψ||2
for Da = 8, β = 1, θ = 1 (top) and (bottom) Da = 0.
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Figure 29: ψ, ω, Y, T for a steady compressible �ow with small heat release.
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