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Abstract: By using all speed numerical flux schemes, such as SLAU [Simple Low 
Dissipation AUSM (Advection Upstream Splitting Method)], in MUSCL 
(Monotone Upwind Scheme for Conservation Laws) approach for compressible 
CFD, low Mach number flows can be computed without loss of accuracy nor 
parameter tuning. For an efficient computation, this paper deals with a new 
approach of implicit time integration method. In this approach, the large sparse 
matrix system, which consists of flux Jacobian of numerical flux function, has to be 
solved in each time step. In this study, we tried to use FGMRES(k) (Flexible 
Generalized Minimum Residual Method) to solve the non-diagonal dominant linear 
system arising from Jacobian of flux function SLAU. 
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Nomenclature 
c  = sound speed 
e  = total energy per unit volume 

RE ˆ,ˆ   =Inviscid and viscous flux outward normal to face 

RE
~

,
~   =Numerical inviscid and viscous flux outward normal to cell face 
h  = total enthalpy 
L  = reference length scale 
l  = wave length 
M  = Mach number  
M  = Transforming matrix from conservative to entropy variable  
p  = pressure  
P  = preconditioning matrix for linear system 
Q  = vector of conservative variables, (ρ, ρu, ρv, ρw,e)T 
Re  = Reynolds number 
s  = area of cell-interface 
S  = vector of stored field variable 
T  = period of wave 
t  = physical time 
u, v, w  = Cartesian velocity components 
Vn  = velocity component normal to cell-interface 
V  = volume of cell 
W  = vector of working variables 
xn,yn, zn  = outward normal of cell-interface 
x,y, z  = Cartesian coordinates 



τ  = pseudo time 
ρ  = density 
μ  = molecular viscosity 
μT  = turbulent viscosity 
σ  = spectral radius 
 
Subscript 
∞  =freestream value 
 

1     Introduction 
 
When compressible CFD methods are applied to low Mach number flows, cares must be taken to 
excessive numerical dissipation and stiffness due to the large condition number, which is the ratio of 
maximum and minimum characteristic speeds. Round off error due to very small changes of scalar 
variables may be another problem, but this can be rather easily avoided by separately storing variables 
of their reference and variation values as p=p∞+p’. 
The authors proposed all speed numerical flux schemes of AUSM (Advection Upstream Splitting 
Method) family named SLAU [1] (Simple Low-dissipation AUSM) and showed this scheme can 
compute from very low to very high Mach number without tuning of parameters, such as the cutoff 
Mach number. It was also shown that the combination with Weiss-Smith[2] time derivative pre-
conditioning is effective and the stiffness can be avoided at least for steady state flows. 
SLAU is a compressible flow CFD algorithm that can compute very low Mach number flows, thus, 
they can be a good choice for the direct solver of aero-acoustic problems in low speed flow, i.e., for 
solving flow and sound at the same time. 
Incompressible flow is thought as low Mach number limit. In incompressible CFD methods pressure 
wave is neglected, thus acoustics must be treated separately from flow dynamics. If potential methods 
are used for acoustics, for example, effects of non-uniform velocity field cannot be included easily. 
As another option, the effect of flow can be reflected by the use of LEE (linearized Euler equation), 
but still it is difficult when the average flow is hard to be set up. And also the computational cost for 
LEE is roughly the same as for Euler or laminar Navier-Stokes equation, so the benefit of LEE is not 
so significant. These are the reasons why we chose the direct solver approach here. 
By using explicit time integration, it has been proven in previous research that sound propagation can 
be computed. However, the usage of explicit schemes is impractical for low Mach number flows since 
time step determined by sound speed is too restrictive for convection.  
A Lager time step can be used with implicit time integration. In implicit method, a large sparse matrix 
system, which consists of flux Jacobian of numerical flux function, has to be solved in each time step 
[1, 2]. In our previous work, we introduced Time-Consistent Preconditioned Gauss-Seidel (TC-PGS) 
[3], a version of preconditioned Gauss-Seidel (GS) 1   implicit time integrations using entropy 
variables, and demonstrated its accuracy and efficiency over a conventional GS method in solving 
flow dynamics and aero-acoustics both in low speed flows (see Fig. 1). 
Through the derivation of TC-PGS, we realized that the essential point of the preconditioned 
implicit algorithm is to design the implicit numerical dissipation which is matched to the 
R.H.S with keeping the positive definiteness of the numerical flux Jacobian, which is a 
necessary and sufficient condition of the diagonal dominance of the linear system. In this 
study, SLAU is applied as the R.H.S. numerical flux function, thus the apparent choice is to 
use the implicit dissipation close to that of SLAU. However, the linear system for 
approximate Jacobian of SLAU turned out to be non-diagonal dominant, as will be explained 
later in this paper. Traditional iterative linear solvers such as a Gauss-Seidel method are 

                                                 
1 The term GS (Gauss-Seidel) is referred to as a GS scheme or a single sweep within a pair of 
symmetric sweeps in SGS (Symmetric Gauss-Seidel) in this paper. 



unstable without the diagonal dominance. Since only an approximate linear solution is 
required for this purpose, one choice is nevertheless to use diagonal dominant approximation 
on linear system. This leads to a simpler method named TC-PGS1, which has less 
dependence on a user-specified parameter, and this will be introduced in this paper first. Then, 
as another approach, we will solve the non-diagonal dominant system directly by a more 
sophisticated method. In this study, FGMRES(k) by Saad [4] is employed in which we can 
use different matrix preconditioners at each GMRES step: The SGS matrix borrowed from 
TC-PGS1 is used as a matrix preconditioner, along with different numbers of iterations at 
each step. 

 

2     Governing equation and basic numerical scheme 
 
Compressible Navier-Stokes equation is written in integral form as;  

0)ˆˆ(   dsdvt REQ        (2.1) 

By using polyhedrons (polygons in 2 dimensions) as control volumes, the basic equation for FVM 
(Finite Volume Method) is written as; 
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Here subscript i,j means ‘j’th face of the cell ‘i’ , n and n+1 are physical time steps. Our expression 
here is based on an unstructured grid formulation, but structured grids can be treated as only a special 
case. 
For unsteady computations, the dual time stepping and 3-point backward Euler scheme are 
introduced;  
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Here, k and k+1 denote pseudo time steps. For the second order temporal accuracy with time step 
variation, coefficients θk are given b; 
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where r=1 in this study as usual; for the first order method, they are given by; 
)1,1(),( 21           (2.6) 

 

Figure 1. Time integration methods. 

Conventional GS (LU-SGS type schemes): 

Jameson & Turkel’s LU-SGS 

MFGS Preconditioning
, e.g., Weiss-
Smith [2] 

Another approach: 

FGMRES(k,m) [4] FGMRES(k,m) with TC-PGS1 matrix (Method 2) 

Matrix borrowed [this work] 

Preconditioned GS: 

Preconditioned LU-SGS [2] 

Preconditioned MFGS [1] 

Use of entropy variables 

TC-PGS [3] 

TC-PGS1 (Method 1) 

Less parameter dependency[this work] 



The pseudo time τ can be chosen independently from physical time t, and correct time evolution is 
recovered for any choice of τ when the equation is converged about τ. If non-factored implicit 
schemes, such as Gauss-Seidel iteration or FGMRES in this paper, are used, faster convergence is 
obtained by bigger Δτ. Thus we take Δτ to be infinitely large, and then, obtained the following 
equation; 
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3     Implicit time integration algorithm in delta form 
 
Using first order upwind difference and approximate linearization for L.H.S., implicit time integration 
scheme of Eq.(2.7) is written as; 
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A  is the Jacobian matrix of flux at cell interface. The flux Jacobian and dissipation matrix can be 

simplified by introducing the entropy variable vector which is defined as follows; 

 Tcpwvup ),,,, 2 W       (3.5) 
By mapping this variable vector on Eq.(3.1), an implicit method using the entropy variable is written 
as; 
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Here ~  is a viscous component of the spectral radius defined by; 
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where Δ’/2 is the implicit dissipation matrix stated later. B̂ is the unmodified , i.e. not upwind, flux 
Jacobian of Euler equation in entropy variable defined as; 
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M is the transformation matrix between conservative and entropy variable defined by; 
QMW           (3.10) 

Finally, the solution procedure for Eq.(3.7) is summarized as follows. Note that conservation is 
recovered if non-linear Newton iteration (2.) is converged. It also indicates that the exact solution of a 
large linear system Eq.(3.6) is not necessary, because Newton iteration approximates the exact 
solution even if it is obtained. Therefore, some compromise between accuracy and computational 
efficiency is possible. In the following sections, we will give detailed explanations of solution 
procedure of Eq.(3.6) in step 2.2. 



 
 
4    Definition of the dissipation matrix 
 
Considering computational efficiency, the implicit dissipation matrix is assumed to be diagonal which 
is defined by; 

 suuupdiag  ,,,,'Δ       (4.1)

 

The numerical dissipation corresponding to SLAU (see Appendix. A) is approximately given by; 
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On the other hand, for the dissipation matrix to satisfy semi-positivedefiniteness of flux Jacobian 
 'ΔB 


 (which is a necessary and sufficient condition for diagonal dominance), the following 
formulation is proposed for the dissipation coefficients; 
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 0  
Apparently the spectral radius of the Euler flux defined as follows satisfies the diagonal dominant 
condition; 

cVnSup         (4.10)

 It is also indicated that the matrix system consisting of the dissipation matrix given by SLAU 
[Eqs.(4.2-5)] is not diagonal dominant unless χ=0. Therefore, the matrix system with dissipation 
matrix of Eqs.(4.2-5) cannot be solved by a traditional iterative method such as SGS (Symmetric 
Gauss-Seidel) method. On the other hand, the implicit dissipation coefficients should be close to that 
of R.H.S. for faster convergence of the Newton iteration(2.). Note that the dissipation of Eq.(4.10) is 
much larger than that of Eq.(4.3), when low Mach number flows (M<<1) is of interest. Also let us 
remind the readers that, only approximate solution of the linear system is required, thus the linear 
system with the dissipation Eqs.(4.8-9) is acceptable as far as the Newton iteration (2.) is converged. 
Therefore, we have the following two choices for the linear system solver as; 

(Method 1): Use approximate dissipation defined by Eqs.(4.8-4.9) and simple iterative method 
such as G-S. 

(Method 2): Use more accurate dissipation defined by Eqs.(4.2-5) with a better linear solver. 
Both options will be considered in the next section. Relations of those methods and other prior 
developments are summarized in Fig. 1. 
 

5     Solution Method 1: TC-PGS1 - Approximate dissipation and use of 
SGS 
5.1  Formulation 
With keeping low dissipation for velocity equation of Eq.(4.3), the diagonal dominant dissipation is 
derived as; 

1. At n–th physical time step, set k:=0, Qk:=Qn 
2. Repeat the following Newton iteration until prescribed 

convergence level or iteration count is achieved; 
2.1. Compute RHS= k

ii HM 1  using Qk 

2.2. Solve Eq.(3.6) approximately to obtain ΔW 
2.3. Compute Qk+1:=Qk+M-1ΔW 
2.4. Set k=k+1 

3. Next Time Step, Qn+1:=Qk+1, n:=n+1 
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Here Mc (>0) is the cutoff Mach number to avoid zero division and zero dissipation at the 
stagnation, i.e. u=v=w=0. Note that this dissipation is closely related to the low Mach number 
preconditioning method of Weiss & Smith. (Also Note that “low Mach number preconditioning” is 
different idea from “matrix preconditioning” stated later.) The dissipation of Eq(5.2) is close to 
Eq.(4.3) as far as scale of Mc is the convective Mach number. It has been found from the authors’ 
experience that Mc=M∞ gives best convergence for wide range of flows. Also note that, the 
dissipation of Eq.(4.10) is recovered if Mc=1 is chosen. One G-S sweep can be written as; 
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As Δ’ is a diagonal matrix, no block matrix operation is necessary. This procedure is summarized as 
follows; 

 
It is also found that approximately 10 symmetric sweep is best to reduce overall computational time. 
This method is named as TC-PGS1 (Time Consistent Pre-conditioned Gauss-Seidel 1), since this has 
close relation to the time derivative pre-conditioning matrix method as will be mentioned in the next 
subsection. TC-PGS1 can be written in a LU-SGS type form (See Appendix.D), if only one pair of 
symmetric sweep is applied, although it is not the best in overall efficiency. 
 
5.2  Correspondence of TC-PGS1 to time derivative preconditioning matrix method 

(TC-PGS) 
Implicit time integration scheme with time derivative preconditioning matrix leads following system 
of linear equation. (see Appendix B) 
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Hear Γ is the time derivative preconditioning matrix. And  jii ,

~
AΓ  is the Jacobian matrix of 

preconditioned flux at cell interface that has only positive eigenvalues in direction from “i” to “j”. The 
preconditioned upwind flux Jacobian including viscous term is formulated as follows, using the 
spectral radius σ following the LU-SGS of Jameson & Turkel; 
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By using these definitions, Eq.(3.1) can be rewritten as; 
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This G-S iteration can be rewritten using the working variable as; 
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2.2 Linear solver using SGS 
2.2.1 SetΔWi:=0 
2.22 Repeat until prescribed convergence level or iteration count; 
 2.2.2.1 Forward sweep of Eq.(5.5) 
 2.2.2.1 Backward sweep of Eq.(5.5) 



This is what we called original “TC-PGS” in our previous work. Comparing Eq.(5.5) and Eq.(5.11), 
we can see difference between both schemes just in choice of implicit dissipation matrix. If we use the 
preconditioning matrix of Weiss&Smith[2] which is a variation of Turkel’s matrix, the preconditioning 
matrix and the spectral radius σ are given by; 
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With this formulation, the dissipation matrix is written as; 
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On the other hand, the numerical dissipation of TC-PGS1 is written as; 
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Comparing Eq.(5.15) with Eq.(5.16), two major differences are found; 
(1) Viscous component in the pressure equation was magnified by 1/ε in the preconditioning 

approach (TC-PGS). It is natural consequence of the time derivative preconditioning which gave 
effects on all the components. As a consequence, the viscous term became too large in low 
Reynolds number flows, and it led to slow convergence, as shown in Appendix C. 

(2) Inviscid dissipations also look different, however, it can be shown that these components in 
Eq.(5.15) and Eq.(5.16) become almost equivalent, if the following condition is satisfied; 
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Since ≈M under definition of Eqs.(5.3,4) at low Mach number and ε have a scale of M2, it is 
concluded that both approaches are very similar. However, TC-PGS1 cannot be expressed in the 
framework of the preconditioning approach perfectly, since the ε given by Eq.(5.19) differs face by 
face. The benefits of the definition of inviscid component of Eq.(5.16) over Eq.(5.15) are i) simplicity 
of definition and ii) less dependency on cutoff Mach number for optimum convergence efficiency: 
Our preliminary numerical tests showed that the recommended Mc would be Mc=M∞ for general use 
of TC-PGS1. 
 
5.3  Variations on working variables 
Entropy variables are used as working variables to lead TC-PGS1 since the flux Jacobian of Eq.(3.8) 
becomes simplest in this variable space, however, other variables can be used as well. The essential 
point is to keep pressure and velocities in working variables. By keeping this, exactly same solution 
algorithm and a set of implicit numerical dissipation defined by Eq.(5.1-4) can be used. Two 
examples are shown bellow for variable sets and flux Jacobian in that variable space. 

 
(Example.1)  Viscous variables 
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where Cp and T denote the specific heat at constant pressure and temperature. 
 
(Example.2)  Primitive variables 
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If these variables are used instead of the entropy variables and exact conservation in unsteady 
computation is omitted, the following simplified form, where variable transformation between the 
conservative and the working variables in every time step is not needed, can be used. 
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The conservative variables are only used in evaluation of flux balance and rest of whole computation 
is done in the working variables in this form. It corresponds to variable transformation often used in 
the time derivative preconditioning methods. It indicate that TC-PGS1 can be easily applied in 
computer code based the primitive or viscous variables. 
 

6     Solution Method2: More accurate dissipation and use of FGMRES 
We apply FGMRES(k) (Flexible Generalized Minimum Residual method ) of Saad [4] to solve non-
diagonal dominant matrix system. In order to avoid zero dissipation at the stagnation, the following 
dissipation is used; 

cVnp  ||  
       (6.1)

 

cVnsu )'1(||        (6.2) 

As mentioned before, merely approximate linear solution is required. Thus only several times of 
restarts are used for FGMRES(k). Here, FGMRES(k) with m times restarts is denoted as 
FGMRES(k,m).This procedure is summarized as follows; 



 
The use of matrix pre-conditioner Pj 

-1 is effective for faster convergence. Note that matrix pre-
conditioner and time derivative, and low Mach number in this study, pre-conditioning is a quite 
different idea. Here we use TC-PGS1 defined in the previous section as matrix pre-conditioners in the 
step 2.2.1. The flexibility of FGMRES allows us to use different number of SGS sweeps in each step. 
FGMRES(k) with small k sometimes stalls, meaning that solution drops to the local minimum within 
the specific search space. This can be avoided in this study by simply changing coefficients of each 
search vector and switches to SGS if stall is detected. Since SGS is used already in FGMRES, this 
procedure is very simple and needs negligible CPU increase. 
 

7     Numerical Examples 
7.1  Computational efficiency for steady problem and optimum parameters for 
FGMRES(k,m) 
  For an example of the application to steady flow, inviscid flow around NACA0015 airfoil at M=0.01, 
that means uniform convective velocity is 1% of sound speed, is computed. FGMRES parameters 
tested are (1,1), (2,1), (4,1), (8,1), (16,1) and (4,4).  
Convergence histories in the physical time step for the residual of momentum are shown in Fig.2. As 
shown in this figure, convergence becomes faster as FGMRES parameter or restarts increase, 
however, it almost is saturated at (8,1). 
For practical computations, the reduction of overall computational cost is important, therefore, 
convergence histories in CPU time are then considered. Convergence histories of momentum and 
density, i.e. continuum equation, in CPU time are shown in Fig.3(a) and 3(b), respectively. Although 
the convergence characteristics are different between these variables, FGMRES(4,1) or 
FGMRES(2,1) is the fastest or close to the fastest in convergence. Therefore FGMRES(4,1) is chosen 
as a standard method. The need for more storage for Kryrov sub-space is disadvantage of 
GMRES(k,m) for large scale problem, however, this is greatly reduced by use of smaller GMRES 
parameter. 
The comparisons between FGMRES(4,1) and TC-PGS1, that is SGS with modified numerical 
dissipation discussed in the section V, are shown in Fig.4. TC-PGS1 is the fastest in convergence for 
momentum residual and FGMRES(4.1) is slightly faster in the convergence of aerodynamic drag. It is 
mainly because computational cost for one physical time step of TC-PGS1 is under 1/4 of 
FGMRES(4,1). Thus it can be said that TC-PGS1 is as good as FGMRES(4,1) for this kind of 
applications. Also note that the case labeled as “TC-PGS1 – Mc =1,” which is TC-PGS1 with Mc set 
as unity, showed much slower convergence compared with “TC-PGS1,” in which Mc=M∞ as stated 
earlier. 

2.2 Linear solver using FGMRES(k,m) 
2.2.1  Define

 
 b≡[-MiHi],  x≡[ΔWi] 
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2.2.2  x0:=0 
2.2.3  For l=1,…,m do 
 2.2.3.1  r0=b-Ax0, β:=|| r0||2 v1 := r0 /β 
 2.2.3.2  For j=1,…,k do; 

 zj:= Pj
-1vj 

 w:=Azj 
 For i=1,…j do {hi,j:=(w,vi), w:=w-hi,jvi} 
 hj+1,j=|| w ||2, vj+1=w/hj+1,j 

 2.2.3.3  Define Zm:=[ z1…, zk] 
2.2.3.4  x=x0+Zmym where ym=argminy||βe1-Hmy||2 ,  e1=[1,0,…,0]T and Hm is the 
Hessenberg matrix consisting of h 
2.2.3.5  x0:=x 



 

 

 
Figure 2. Convergence history of momentum in physical time step for steady inviscid flow around 

NACA0015 at M=0.01. 

a) b) 

Figure 3. Convergence history of a) momentum and b) density in CPU time for steady inviscid flow around 
NACA0015 at M=0.01. 
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7.2 Accuracy and efficiency for unsteady viscous separated flow around a circular 
cylinder 
For time accurate computations of unsteady flows, non-linear iteration in a physical time step must 
converge to enough accuracy. The nature of the linear solver gives significant influence to this 
convergence. The performance of FGMRES(4.1) and TC-PGS1 are compared in low Mach number 
using 2-dimensional flows around a circular cylinder of Re=100, in which periodic Karman vortex 
shedding is found, for an example of low Mach number flows. O-type mesh that has 100 cells in 
azimuthal and 150 cells in radial directions is used. Minimum mesh spacing in radial direction is 10-

2R and size of outer radius is 10000R in order to avoid the influence from outer boundary. Free flow 
Mach numbers is 0.01 and temporal step size is set so that Courant number based on convective 
velocity is about one. As a result, Courant number based on sound speed become approximately 700. 
Time integration method is second order, 3-point backward Euler scheme and spatial accuracy is 
nominally third order using piecewise parabolic reconstruction. In order to give the same initial 
disturbance, the result after 500 steps is commonly used as initial conditions for all cases. 
Cases, number of non-linear iterations and relative CPU time are summarized in Table 1. Time 
histories of aerodynamic lift coefficients of cases achieving acceptable accuracy are shown in Fig.5(a), 
and the others are in Fig.5(b). The reference solution is computed by TC-PGS1 with over 30 non-
linear iterations. If time accuracy is good enough, the flow should respond very similarly with the 
reference. It can be said from the results, FGMRES(4.1) over 2 non-linear iterations and TC-PGS1 
with 4 non-linear iterations give acceptable accuracy. TC-PGS1 with 2 iteration might be acceptable 
except for small overshoot before T<100. Although TC-PGS1 is slightly better, it can be said both 
have comparable performance. 

 

a) b) 

Figure 4.  Comparison between FGMRES(4.1) and TC-PGS1: The history of a) momentum and b) 
aerodynamic drag in CPU time for steady inviscid flow around NACA0015 at M=0.01. 

Table 1. Table of cases for effect of outer iteration convergence criteria to time accuracy 
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CASE METHOD Non-linear Iteration Relative CPU Time

TCPGS 1 TCPGS1 1 0.21
TCPGS 2 TCPGS1 2 0.44
TCPGS 3 TCPGS1 4 1.10
FGMRES 1 FGMRES(4,1) 1 1.00
FGMRES 2 FGMRES(4,1) 2 1.71
FGMRES 3 FGMRES(4,1) 4 3.53



 
7.3  1D sound propagation by implicit time integration with large Courant number 
and small cutoff Mach number 
It is necessary to use the large Courant number based on sound speed for efficient computation of low 
Mach number flows. According to simple theoretical analysis, sound propagation can be numerically 
computed by an ideal implicit time integration method with the large Courant number, when temporal 
and spatial discretization size (Δt and Δx) are smaller enough than the characteristic scales of sound 
wave (T and l): It has been shown in the previous study [3] that the condition T/Δt≥40 and l/Δx≥40 
gives enough accuracy for second order scheme in both time and space. It indicates that all speed 
compressible CFD method with implicit time integration method have a potential to compute low 
Mach number flow and sound propagation at the same time as long as the above condition is satisfied. 
In order to realize an ideal implicit method, the convergence of the nonlinear iteration is necessary. 
Thus, as closer the approximation of linear system is to the non-linear system, as faster the 
convergence becomes. 
Accuracy of implicit scheme on sound propagation is numerically tested by one dimensional 
computation. The computational conditions are as follows; 

- TC-PGS1 and FGMRES(4,1) implicit scheme 
- Second order 3-point backward Euler method 
- Mc=0.01 
- Courant number = 10 
- 400 PPW (point per wave) 
- T/Δt=40 and l/Δx=40 

   Considering the computation with low Mach number flows, small Mc is used. The other parameters 
are summarized in Table 2 for each case. The pressure distributions in x axis computed by FGMRES 
are shown in Fig.6(a) and those by TC-PGS1 are shown Fig.6(b). From the results, it can be said 4 
iterations give acceptable accuracy and 8 iterations are enough for FGMRES, on the other hand, 200 
iterations are acceptable and 300 iterations are enough for TC-PGS1. Therefore, FGMRES(4.1) is 
over 10 times more efficient for this kind of computations. The poor performance of TC-PGS1 comes 
from excessive numerical dissipation due to small cutoff number in pressure variable field expressed 
in Eq.(5.1). 
 

a) b) 

Figure 5. Time histories of aerodynamic lift of a circular cylinder in flow at M=0.01 and Re=100: a) the 
results with acceptable accuracy, and b) others. 
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8.     Conclusion and Future Works 
The contents of this paper are summarized as follows; 
(1) Implicit time integration method for low Mach number compressible flows using all speed 

numerical flux scheme SLAU (Simple Low-dissipation AUSM) has been investigated to compute 
sound propagation at the same time in the framework of MUSCL (Monotone Upstream Scheme 
for Conservation Laws). 

(2) The matrix system for implicit time integration derived using the approximate Jacobian of SLAU 
was found to be non-diagonal dominant, thus, traditional iterative method such as SGS 
(Symmetirc Gauss-Seidel) could not be used. 

(3) One remedy was to modify the implicit numerical dissipation in order to recover diagonal 
dominance. A simple SGS iteration which does not need block matrix inversion has been derived 
by using numerical viscosity in diagonal form. This scheme, named TC-PGS1 (Time Consistent 
Pre-conditioned GS1), has a similarity with the time derivative preconditioning method of Weiss 
& Smith, in spite of simpler formulation and less dependency upon the cut off number in 
convergence efficiency. 

(4) Another method was to use a modern iterative solver with keeping non-diagonal dominant matrix 
system. FGMRES of Saad was used as a matrix solver in this study. FGMRES with k restart 
parameter and m inner iteration was expressed as FGMRES(k,m) in this study. TC-PGS1 was used 
as the matrix pre-conditioner for FGMRES. The flexibility of FGMRES was utilized to use 
different iteration of TC-PGS1 in each pre-conditioning procedure. Note that “time derivative or 
low Mach number pre-conditioning” and “matrix pre-conditioning” are quite different ideas. 

(5) FGMRES needs additional memory space for storing searching direction in Krylov subspace and 
this can be too large for large scale CFD computations in general. However, the optimum number 
of the restart parameter, which is equivalent to the number of Krylov vectors, was found to be 

Table 2. Table of cases for effect of outer iteration and time integration methods 

 
 

a) b) 

Figure 6. Pressure distribution in one dimensional sound propagation: a) FGMRES(4.1) and b) TC-PGS1. 

CASE METHOD Non-linear Iteration Relative CPU Time

TCPGS 1 TCPGS1 8 1.28
TCPGS 2 TCPGS1 100 16.66
TCPGS 3 TCPGS1 200 33.69
TCPGS 4 TCPGS1 300 50.89
FGMRES 1 FGMRES(4,1) 2 1.00
FGMRES 2 FGMRES(4,1) 4 1.95
FGMRES 3 FGMRES(4,1) 8 3.91
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around 4 in this study. Therefore, the increment of memory was reasonable. 
(6) FGMRES(4,1) is about 10 times faster than TC-PGS1 in the (unsteady acoustic) computation of 

1D sound propagation when cutoff Mach number was set as 0.01, which is free stream Mach 
number in this low Mach number flow computation. 

(7) When only steady or unsteady flow field is of interest (i.e., acoustics is not), FGMRES and 
simpler TC-PGS1 gave similar efficiency. 

(8) Therefore, it can be said that FGMRES(4,1) will be significantly faster than TC-PGS1 when a low 
Mach number flow and sound propagation both are computed at the same time, whereas TC-
PGS1 is good enough for computing the flow field only. 
 
Followings are listed as future works; 

(1) Further improvement of efficiency may be possible by using other iterative linear solver than 
FGMRES. 

(2) Although TC-PGS1 worked well as the matrix pre-conditioner, a better choice may exist. 
(3) The performance with large scale parallel computing should be investigated. 
(4) These time integration methods can be applied to a variety of compressible flow solvers, although 

only the second order MUSCL along with SLAU was used here to compute R.H.S. The implicit 
method is applied after mapping conservative variables to entropy variables, therefore, even finite 
difference methods in another variable space, such as the primitive variables, can be used. 

(5) Aero-acoustic problems, especially flow induced by sound should be computed by the proposed 
methods. 
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Appendix 
Appendix A. Right hand side evaluation 
Viscous terms are computed by a central differencing manner. The evaluation of inviscid terms in 
MUSCL type schemes are described below. First, distribution of physical quantities in cell is 
reconstructed using the average value at the cell and the surrounding cells. Second, the values at each 
cell face are given by this reconstruction. Third, numerical inviscid flux function is calculated using 
face normal vector N and values at left(QL) and right(QR) side of the face; those are generally 
discontinuous. As a numerical flux function, SLAU, which is an all speed scheme of AUSM family, is 
used in this study. Numerical flux is given by; 

 NQQEE ,,
~~ RL         (A.1)  

Numerical flux function of AUSM family can be written as; 
    NΦΦE pmmmm RL ~2/2/
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Here u, v are the velocity components, e, p, and  are total energy, pressure and density. Then, choice 
of mass flux function m  and average pressure p~  gives unique formulation of AUSM family schemes. 
Mass flux of SLAU is given by; 
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The function g above is a remedy for strong expansion, thus it can be simply set to be zero for low 
Mach number flows. The average pressure of SLAU is given by; 
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Appendix B. Derivation of time accurate preconditioning implicit method 
Time accurate implicit scheme for FVM can be written as follows using dual time stepping method 
and time derivative preconditioning matrix Γ; 
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By introducing first order upwind difference and approximate linearization, implicit time integration 
scheme of Eq.(B.1) is written as; 
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Here,  jii ,

~
AΓ  is the Jacobian matrix of preconditioned flux at cell interface that has only positive 

eigenvalues in direction of “i” to “j”. The pseudo time step τ can be chosen independently from 
physical time t, and correct time evolution is recovered for any choice of when the equation is 
converged about τ. If non-factored implicit schemes such as Gauss-Seidel iteration are used, faster 
convergence is obtained by bigger Δτ. Thus, we take Δτ to be infinitely large, and then, obtained the 
following equation; 
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Appendix C. Comparison with time derivative pre-conditioning method for steady 
flows 
As stated before, physical time evolution can be consistently computed by TC-PGS. On the other 
hand, the preconditioned equation shown below, in which proper physical evolution is neglected, is 
often used to obtain steady states of low Mach number flows rapidly. 
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Two examples of steady flows in low Mach number are shown. First, flows around cylinder, using the 
same mesh used in Sec. VII.B at M=0.01, Re=1 and Re=40, are computed. Since only fast 
convergence is of interest, first order Euler implicit scheme and one Newton iteration is used. 
Histories of L2-norm of momentum are shown in Fig.C1, where the method based on Eq.(C.1) is 
denoted as “Preconditioning”. It is clearly seen that TC-PGS converges faster than the conventional 
preconditioning method in both conditions. In the conventional preconditioning method, excessive 
implicit dissipation of the viscous component mentioned in Section VI seemed to slow down the 
convergence. 
The other example is an inviscid flow around NACA0012 airfoil. Convergence histories of L2-norms 
of moment and drag coefficient are shown in Fig.C2. It is found that those convergence histories are 
different each other; however, converged solutions are obtained in approximately the same time steps.  
Therefore, it is concluded that TC-PGS gives faster convergence for low Reynolds number flows and 
is at least as good as the preconditioning method even for inviscid steady flow problems. 
 

 
Figure C1.  Convergence of residual of flow around a cylinder at M=0.01 and Re=1 & 40. 

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  500  1000  1500  2000

R
E

S
ID

U
A

L 
O

F
 M

O
M

E
N

T
U

M
(L

O
G

)

STEP

CONVERGENCE OF FLOW AROUND CYLINDER RE=1&40

TC-PGS Re=40
TC-PGS Re=1

Preconditioning Re=40
Preconditioning Re=1



 

 
Appendix D. Application of TC-PGS1 to LU-SGS 
The proposed TC-PGS1 can be easily formulated as a LU-SGS type scheme, since LU-SGS is 
essensially a pair of symmetric Gauss-Seidel sweep. One step in the Newton iteration using the LU-
SGS type scheme can be written as follows. 
 
Step 1: Setting R.H.S and Converting to the working variable 
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Step 2: Forward sweep 












































 


 





k
ij

ij

Lowerj
ji

ij ji
ji

i
i s

V
s

Vt
'~

2

'1~
2

'1 *,
,

1

,
,

1* HWI
ΔB

I
ΔI

W 


  (D.2)

 
Step 3: Backward sweep 
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Step 4: Increment to next step 
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a) 

 

b) 

 

Figure C2.  Convergence of a) residual and b) drag coefficient of inviscid flow around a NACA0012 at 
M=0.01. 
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