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1 Introduction

The use of Computational Fluids Dynamics (CFD) for industrial applications often implies the capability of
dealing with geometries which are large with respect to the characteristic dimensions of the involved physical
phenomena. Such situations arise for instance when computing the pressure loads generated by a hydrogen-
air combustion occurring in a nuclear reactor containment during a postulated Loss of Coolant Accident. The
free volume of the European Pressurized Reactor building is about 75000 m3 while the characteristic physical
lengths of the combustion flame are much smaller: the reaction zone in a laminar deflagration at atmospheric
condition can vary from about 1 mm to 10 mm; consequently, the “direct simulation” of flame propagation
and deflagration-to-detonation transition (DDT) in such a large-scale geometry requires prohibitively large
mesh sizes. Alternatively, the direct simulation can be avoided by considering the flame as infinitely thin
and by modeling the diffusion effects through phenomenological laws for the flame speed. The combustion-
induced pressure loads can then be correctly predicted provided the flame speed is correctly estimated. In [6],
a combustion algorithm called CREBCOM is proposed to study fast deflagrations and detonations in large
geometries. In this algorithm the species diffusion and the thermal diffusivity are neglected and replaced by
the introduction of a burning rate constant, which has the dimensions of a speed and plays the same role as
the fundamental flame speed. The CREBCOM algorithm is very simple to implement in a CFD code, which
resolves the non-reactive Euler equations: the reactive contribution is added by simply introducing a source
term. It has been successfully implemented in several industrial purpose CFD codes, such as TONUS [7], to
investigate turbulent combustion flows. The main drawback of the CREBCOM algorithm is that it involves
a binary criterion function that specifies whether the control volume is burnt or not. Numerical experiments
[8] have shown this criterion function can create numerical oscillations in the pressure which strongly affect
the flow when the flame speed is low with respect to the sound speed (low Mach number regime). When
looking for a combustion model which keeps the simplicity of CREBCOM (no flame surface reconstruction)
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while not involving combustion criterion, the Reactive Discrete Equations Method (RDEM) appears as an
attractive strategy. Initially proposed in [3] to model evaporation fronts, the RDEM method extends to the
reactive Euler equations the Discrete Equations Method (DEM) introduced in [2] for two-phase mixtures
and interface problems. The DEM approach consists in the integration of interface problems solutions over
a two-phase control volume where the solutions are provided by Riemann solvers. DEM has been initially
developed to study multiphase mixtures in which the global averaging of a variable in a control cell would lead
to unacceptable numerical errors. The RDEM approach displays several interesting features for computing
combustion problems: it does not involve flame surface reconstruction and can be used both for deflagration
and denotation; it is also conservative, which means that total mass and energy are conserved in a closed
and isolated system (this property is fundamental when computing the combustion in large geometry if the
AICC state is to be recovered at the end of the combustion process). The price to pay however is the need
to solve a reactive Riemann problem between the burnt and unburnt regions. Such a reactive Riemann
solver has been proposed in [1] for thermally perfect gases and used to design an “all shock” approximate
Riemann solver which is eventually combined with the RDEM approach to successfully compute high speed
deflagrations and denotations. Keeping in mind the large scale of the geometry in the targeted applications,
the use of rather coarse meshes is hardly avoidable. As expected, the numerical results obtained in [1] with
a first order version of the RDEM approach do not yield a sufficient accuracy of the flame profile, especially
for fast deflagration and denotation configuration. Following the initial proposal made in [2], a second order
(limited) MUSCL approach could be used. As a further accuracy improvement, the downwind-controlled
(anti-diffusive) reconstruction method recently proposed in [4, 9] was coupled with the RDEM approach and
compared with the conventional second order MUSCL reconstruction approach. The downwind-controlled
method coupled with the RDEM approach was found to be very accurate for computing detonation fronts
but unstable for deflagration fronts [5]. In order to better understand the coupling between the RDEM
approach and the downwind-controlled method for combustion simulation, it was decided to investigate
impermeable interface problems (non-reacting flows) using DEM and the downwind-controlled method. The
computation of gas-liquid flows, where each phase is described by the stiffened gas equation of state, led
to the development of an original upwind downwind-controlled splitting (UDCS) method with attractive
accuracy and robustness properties when coupled with the DEM approach; this UDCS strategy was also
successfully inserted into RDEM. The improvement brought by the present work with respect to [9] where
an anti-diffusive numerical scheme is introduced for the simulation of interfaces between compressible fluids
lies in the capacity of the newly developed method to solve non-reacting and reacting flows, including flame
fronts at all combustion regimes, on general multi-dimensional unstructured meshes.
The present paper is devoted to the description of this newly developed numerical strategy, both for non-
reacting and reacting flows, and is organized as follows: Section 2 briefly reviews the physical modeling
ingredients involved in the study, such as the local and averaged conservation laws governing the evolution of
each phase (liquid/gas for non-reacting flows, unburnt/burnt mixture phase for reacting flows), the equations
of state and the phase characteristic function; Section 3 describes the (Reactive) Discrete Equations Method
applied to the two-phase model; Section 4 introduces the proposed upwind downwind-controlled splitting for
an accurate and robust computation of the interface. Numerical results obtained by combining DEM/RDEM
with UDCS are displayed and analyzed in Section 5. Conclusions are eventually drawn and some perspectives
are outlined. Technical details regarding the mathematical description of the upwind downwind-controlled
splitting in multiple space dimensions are reported in Appendix A.

2 Physical model

2.1 Local conservation equations inside each phase

In view of the two-phase flow involved in our applications, the two-fluid model [10, 11] is particularly
interesting, which considers each phase separately and thus includes two sets of conservation equations.
Neglecting the body force, the fluid viscosity and any heat transfer phenomena, the exact equations of
motion, valid inside phase Σk, are the Euler equations of gas dynamics:
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(1)

where ρ is the density, v is the vector of velocity, p is the pressure, ẽ is the internal energy containing the
sensible energy e and the enthalpy of formation h0 useful in case of reactions.

2.2 Equations of state

The reacting or non-reacting flow problem here considered is described by the two-fluid model which involves
two phases with their own thermodynamic variables. A physical mixture is not involved in the modeling of
the interface problems considered in this study, but a numerical mixture is unavoidable from a numerical
viewpoint. However, as will be detailed in Section 3, it is not necessary to define the mixture EOS within
the numerical mixture when using the two-fluid model along with the Discrete Equations Method (DEM).
Thus, the EOS involved in present work are only related to each single phase.

2.2.1 Non-reacting case

A popular EOS for describing in a unified way a liquid and a gaseous phase is the stiffened gas EOS [12]:

pk = (γk − 1)ρk(ẽk − h0,k) − γkp∞,k, (2)

where the enthalpy of formation h0 can be set to zero for applications dealing with impermeable interfaces,
since no such energy, due to the reaction process or phase change, is released. The constant coefficients
γ, p∞ are set to γ = 4.4 and p∞ = 6 × 108 for water. The gases considered in the study of non-reacting
interfaces are governed by the polytropic gas EOS with p∞ = 0 in (2) (see [13] for further investigation of
stiffened gases). Note that negative pressure p can arise for liquids in the stiffened gas model (2) when strong
rarefaction waves occur, which can create numerical difficulties. No specific treatment concerning negative
pressure is done in this work since system (1) remains hyperbolic and mathematically well-posed as long as
the square of sound speed c2 = γ(p+p∞)

ρ remains positive. Alternatively, [3] proposes an evaporation solver
for (2) in which liquid is transformed into vapor or liquid-vapor mixture when its pressure is inferior to the
saturated one.

2.2.2 Reacting case

The EOS of thermally perfect gases is used to describe the unburnt and burnt gas mixtures [1]:

pk = ρkRkTk,

ẽk = h0,k +

∫ Tk

0

cv,k(τ) dτ,

where R is the gas constant, T is the temperature, and cv(T ) is the specific heat at constant volume which
depends on the temperature. In the reaction problem, the enthalpy of formation of the unburnt gas is
released and transformed into the heat of reaction and the sensible energy of the burnt gas.

2.3 Phase characteristic function Xk

When simulating the interface evolution between two phases, it is useful to determine the position of the
interface. In [14], the characteristic function Xk(x, t; Σk) of phase Σk is defined to this purpose:

Xk(x, t; Σk) =

{

1, if x lies in phase Σk at t;

0, otherwise.
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Figure 1: Characteristic function X . The phase Σ1 is shaded, and characterized by X1 = 1 whereas the
phase Σ2 is in white, and characterized by X2 = 1. The interface between the phases is represented by the
curve C , and DI is its velocity at point P. ∇X1 and ∇X2 are both perpendicular to the interface curve C

at P.

The function Xk (see Fig. 1) indicates the phase Σk and ignores all other phases and interfaces. The interface
is thus characterized by the discontinuity of the characteristic function Xk. According to [14], the topological
equation for Xk follows,

∂Xk

∂t
+ DI · ∇Xk = 0, (3)

where DI is the propagation velocity of the non-reacting or reacting interface. Since (3) means the material
derivative of Xk following the interface vanishes, this topological equation describes the geometrical evolution
of the interface.

2.4 The averaged equations of two-fluid model for interfaces

Applying an averaging procedure (not detailed here) to the Euler equations (1) and the characteristic function
equation yields the two-fluid model for a two-phase flow [10, 11], which includes mass, momentum and energy
conservation equations (4), (5), and (6) for each phase Σk involved in the interface propagation.
Mass

∂αkρk

∂t
+ ∇ · αkρkvk = ρk,I

(

vk,I − DI

)

· ∇αk; (4)

Momentum

∂αkρkvk

∂t
+ ∇ · αk

(

ρkvk ⊗ vk + pkI

)

=

[

ρk,Ivk,I ⊗
(

vk,I − DI

)

+ pk,II

]

· ∇αk; (5)

Energy

∂

∂t
αkρk

(
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The variable αk appearing in this two-fluid model is the averaged value of characteristic function Xk, and is
often called the volume fraction. The above governing equations involve non-conservative phase interaction
terms. It will be seen in the next Section how the DEM/RDEM approach allows to overcome the difficult
task of physically modeling the interface variables. The system is coupled with the averaged transport equa-
tion (7) derived from the topological equation (3):
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Volume fraction

∂αk

∂t
+ DI · ∇αk = 0, (7)

The variables involved in the interface problem to solve are the volume fraction αk of phase Σk, and its corre-
sponding averaged phase variables αkuk, where u is the vector of average conservative variables representing
the mass, momentum, and total energy in the one-phase system (1).

3 (Reactive) Discrete Equations Method for two-fluid model

3.1 General principles

The (Reactive) Discrete Equations Method (DEM/RDEM) [2, 3] is retained in this work to deal with the
reacting and non-reacting interfaces. The description provided here is focused on operational issues (how to
implement DEM/RDEM); see [2, 3] for more detailed explanations. The DEM/RDEM used in the present
work is an Eulerian approach (fixed space grid); an extension of DEM/RDEM to the Arbitrary Lagrangian-
Eulerian approach (ALE) can be found in [15, 16].
The two-phase flow here considered is characterized by the volume fraction of each phase. Even though only
the interfaces (permeable or impermeable) separating the pure fluids should be involved in the problem,
non-zero volume fractions must be defined at each location to preserve the hyperbolicity of the two-fluid
model with two pressures and two velocities [17, 18]. Due to numerical dissipation, the volume fraction at
the interface is diffused, which artificially creates numerical mixture. In Fig. 2, the diffused volume fractions
illustrate the numerical mixture of material interface in one space dimension.
As in the Godunov’s scheme for the single phase compressible Euler equations, local Riemann problems are
considered in the DEM/RDEM method for the averaging of conservative variables, or more practically for
the intercell numerical flux functions. At each cell boundary in the interface diffusion zone for the volume
fraction model in Fig. 3, the unitary surface can be divided into three parts, depending upon the phase
configuration across the intercell boundary. This intercell boundary partition results in three different local
Riemann problems at each intercell location, for instance at the position xi− 1

2
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n
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)
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n
1,i−1,U

n
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)
, and RP22

(
U

n
2,i−1,U

n
2,i

)
. Let us emphasize

that, with the DEM/RDEM approach, the Riemann problem RP21
(
U

n
2,i−1,U

n
1,i

)
is not taken into account

in the specific case shown in Fig. 3. Firstly, from a physical viewpoint, the interface considered in the
present work can not involve RP12 and RP21 at the same time and the same location. Secondly, from a
numerical viewpoint, when the two phases are separated in the two-phase control volumes (as in Fig. 3 in
DEM/RDEM approach for α1,i−1 > α1,i), there is no such contact surface at the intercell boundary xi− 1

2

which has phase Σ2 as left state and phase Σ1 as right state.
As far as the one-phase local Riemann problems RP11 and RP22 are concerned, the conventional Godunov
flux for the Euler equations (1) F

GOD(U
(11)

i− 1
2

) and F
GOD(U

(22)

i− 1
2

) ([19] for stiffened gases, [1] for thermally

perfect gases) can be used for the updating of the phase variables. Alternatively, any suitable approximate
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Figure 2: Numerically diffused volume fractions. The phase Σ1 is shaded, and characterized by the volume
fraction α1 whereas the phase Σ2 is in white, and characterized by α2. α1 + α2 = 1.
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Figure 3: Three Riemann problems at the intercell boundary i − 1
2 . The phase Σ1 is shaded whereas the

phase Σ2 is in white.

Riemann solver [20] can be employed for RP11 and RP22.
The two-phase local Riemann problem RP12 requires a specific treatment for the discretization of the non-
conservative transport equation for volume fractions (7) and the updating of the corresponding phase vari-
ables. The two-phase Riemann problem structure for non-reacting stiffened gas is presented in Section 3.2,
and that of reacting thermally perfect gases is described in Section 3.3. The treatment for the two-phase
local Riemann problem RP12 depends on whether the interface velocity DI is positive or negative. If DI > 0,
the phase Σ1 enters into the cell i with the velocity DI ; otherwise, the phase Σ2 enters into the cell i−1 with
the velocity DI . In the following description, focused on cell i, DI is supposed to be positive at xi− 1

2
and

xi+ 1
2

with α1,i−1 > α1,i > α1,i+1. The situation of overall two-phase control volumes at time tn+1 = tn +∆t

is sketched in Fig. 4. The two-phase interface (Σ1, Σ2) represented by BC at xi− 1
2

at time tn moves to the

right with velocity DI and reaches position B′C′ (x = xi− 1
2

+ DI∆t) at tn+1. The sub-volume of BCC′B′

initially occupied by phase Σ2 (Fig. 3) is now occupied by Σ1 (Fig. 4). Thus, the variations of phase volume
fraction in cell element i can be quantified as:

∆αn
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∆αn
2,i = −S

(12)
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(8)

where S
(12)

i− 1
2

denotes the surface of Riemann problem RP12 at the intercell boundary xi− 1
2

(see Fig. 3) and

can be defined as:
S

(12)

i− 1
2

def
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{

0, α1,i−1 − α1,i

}
or
= max

{

0, α2,i − α2,i−1

}

.

Indeed, the formulation (8) corresponds to the discretization of the volume fraction equation (7), which can
be interpreted by the volume BCC′B′ in Fig. 4. To explain the averaging procedure of phase variables in
the DEM/RDEM approach, the Riemann problems for surface segment BC at location xi− 1

2
and for DE

at location xi+ 1
2

are illustrated in Fig. 5 in the case of non-reacting stiffened gas flows, where the interface
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Figure 4: Two-phase control volumes at time tn + ∆t. The interface represented by BC at xi− 1
2

at time tn

moves to the right with the velocity of DI and arrives at position B′C′ (x = xi− 1
2
+DI∆t) at tn+1 = tn +∆t.
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Figure 5: Two-phase local Riemann problem RP12 at intercell position xi− 1
2

linked to the surface segment
BC in Fig. 4, and the corresponding one-phase local Riemann problem RP22 at intercell position xi+ 1

2

linked to the surface segment DE in Fig. 4. At tn, the sub-volume BCDE of element i (Fig. 4) is
entirely occupied by the phase Σ2 (in white). DI corresponds to the interface velocity. At tn+1, one part
of [xi− 1

2
, xi− 1

2
+ DI∆t] in the sub-volume BCDE is occupied by the phase Σ1 (shaded). So Σ1 is averaged

aver [xi− 1
2
, xi− 1

2
+ DI∆t] × tn+1, and Σ2 is averaged aver [xi− 1

2
+ DI∆t, xi+ 1

2
] × tn+1.

velocity DI is equal to the velocity of contact discontinuity. It is worthwhile to notice that in order to
perform the variables averaging for both phases in DEM/RDEM method, it is first needed to assume that
no wave interaction occurs within computational cells. This is satisfied by the CFL restriction of CFL ≤ 1

2 .
Thus, the averaging of conservative variables for each phase concerning the sub-cell BCDE in Fig. 4 inside
the element i can be expressed, by integrating over the line segment [xi− 1

2
, xi+ 1

2
] × tn+1 in Fig. 5, as
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∣
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where U
(12)

i− 1
2

is the solution of local Riemann problem RP12 at xi− 1
2
, and U

(22)

i+ 1
2

is the solution of local

Riemann problem RP22 at xi+ 1
2

(surface area DE in Fig. 4 is covered by RP22 at xi+ 1
2
). The conservative

variables in the volume ABEF in Fig. 4 for phase Σ1 are updated by the conventional Godunov’s flux
(or with approximated solver) at the surface areas AB and EF . Concluding for the cell element i, the
volumes BCC′B′ and ABEF in Fig. 4 are responsible for the averaging of conservative variables for the
phase Σ1, and in the same manner, the remaining volume inside cell i is linked to the averaging for the
phase Σ2. In other words, the averaging of conservative variables is realized separately for the two phases,
which, consequently, also avoids averaging the thermodynamic properties. This characteristic property of the
DEM/RDEM method prevents the occurrence of non-physical pressure oscillations at the material interface
[21].
However, it is difficult to handle the averaging of conservative variables, when a more efficient time-marching
scheme is required. Indeed, due to the non-linear wave interactions in case of CFL > 1

2 , the determination of
phase variables at the next time step is no longer obvious. On the other hand, as for the conservative form
of the Godunov’s method, the DEM/RDEM method can be written in terms of numerical flux for practical
computations (see [2, 3]). Since a moving interface is involved in the two-phase Riemann problem RP12, a
so-called Lagrangian flux is required. It can be understood as a flux function across a moving boundary of
the corresponding phase, representing the phase interactions. By applying the DEM/RDEM method with
the numerical flux for two-phase Riemann problems (Eulerian one and Lagrangian one), the CFL restriction
of CFL ≤ 1

2 can be extended to CFL ≤ 1, provided that no wave acceleration takes place as a consequence
of wave interaction [20]. Note however that, within the framework of DEM/RDEM approach, additional
restriction for time step ∆t must be respected for the volume fraction (see condition (17)).
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Figure 6: Local Riemann problems in case of non-reacting stiffened gas flows at intercell position xi− 1
2
. (a)

is the solution structure of one-phase Riemann problem RP22(Un
2,i−1,U

n
2,i) which contains a left genuinely

non-linear wave (Lgnl), a contact discontinuity (CD), and a right genuinely non-linear wave (Rgnl); (b) is
the two-phase Riemann problem RP12(Un

1,i−1,U
n
2,i) with the same structure as the one-phase problem (a).

The velocity of the contact discontinuity in (b) is the interface velocity DI .

3.2 Local Riemann problem in non-reacting case

The solution of the local Riemann problem is the essential ingredient in numerical methods for compress-
ible flows. For the stiffened gas problem in the non-reacting case within the DEM approach, any suitable
approximated Riemann solver [20, 19] can be used to evaluate the numerical flux. The numerical results pre-
sented in this work are obtained with the exact Riemann solver [19]. The one-phase local Riemann problems
RP11 and RP22 have the same solution structure as the two-phase ones RP12 or RP21. For instance, the
typical solutions of RP22 and RP12 are illustrated in Fig. 6. The velocity of contact discontinuity v∗ in the
two-phase Riemann problem (e.g. Fig. 6(b)) is inserted into the volume fraction transport equation (7) as
the average interface velocity DI in one space dimension. On the other hand, the pressure p∗ inside the star
region in the two-phase Riemann problem is set as the interface pressure pI when calculating the moving flux
(Lagrangian flux) across the interface. Consequently, the difficult physical modeling for interface conditions
(DI and pI) in two-phase flow is avoided by using numerical data [22, 2].
Regarding the general multi-dimensional case, rotational invariance is valid for the governing equations of
two-fluid model (4)-(7). Thus, one-dimensional Riemann problem can be used for computing the multi-
dimensional numerical flux. At each intercell boundary of a general mesh, the solution of a local one-
dimensional two-phase Riemann problem gives the propagation speed of the volume fraction in the normal
direction of the intercell boundary. This kind of approximation reflects the averaged interface velocity DI

in transport equation (7) within the framework of DEM/RDEM approach.

3.3 Local Riemann problem in reacting case

The reacting interface problem also involves the local Riemann problems RP11, RP22, and RP12 or RP21
within the RDEM approach. As far as the one-phase non-reacting problems (RP11, RP22) are concerned,
any approximated Riemann solver [20] or exact Riemann solver [23] can be applied for thermally perfect
gases with temperature-dependent specific heats. The exact wave structure of RP11 or RP22 is similar to
the one of non-reacting stiffened gas (Fig. 6(a)). The wave structure of the two-phase reactive Riemann
problem RP12 or RP21 is fully studied in [1] at all combustion regimes. The general case is shown in Fig.
7 for RP12. The phase Σ1 is the burnt gas mixture (shaded in Fig. 7), and Σ2 is the unburnt one (in
white). The velocity of reacting shock wave (RS) is the average interface velocity DI in Equation (7) of one
space dimension. In deflagrations for which the flame visible velocity is calculated by adding the unburnt
gas velocity to the imposed fundamental flame speed K0 , the right genuinely non-linear wave (Rgnl) is the
precursor shock wave of the flame (RS), while in detonations (K0 is not needed), the Rgnl is caught up by
the RS, and these two waves overlap in x−t plane. In case of Chapman-Jouguet deflagrations or detonations,
a Taylor expansion wave appears behind the reacting shock where the flow is sonic. According to [1] for
multi-dimensional case, the velocity of reacting interface is modelled as a function of the fundamental flame
speed K0 and the unburnt gas velocity v

u:
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DI = v
u + K0n (9)

where n is the normal to the reacting interface going from the burnt gas mixture to the unburnt one.
For a multi-dimensional general mesh, as done for the non-reacting case, the average interface velocity in
Equation (7) is approximated by the reacting shock velocity normal to each intercell boundary (see [1] for
more details).

4 Upwind downwind-controlled splitting

4.1 Considerations for high resolution of interfaces

A predictor-corrector scheme is proposed in [2] in which a second order limited reconstruction is applied
to the volume fraction with the aim of improving the interface accuracy. The reconstruction is shown in
Fig. 8(a), with the dashed line representing the gradient of the volume fractions. In the DEM approach,
it is equivalent to solve the discontinuous representation of the volume fraction inside the computational
cell (with full line in Fig. 8(a)). Therefore, a supplementary two-phase Riemann problem is required to be
solved inside the cell element as long as its gradient of volume fraction is non-zero. For this reason, when
the first order time discretization is concerned, the CFL value should not be larger than 1

2 . However, this
time step restriction can be extended up to CFL ≤ 1, if a predictor-corrector type scheme is employed, such
as the one proposed in [2, 5]. Thanks to this internal reconstruction of the volume fractions, the interface
is numerically less diffused since one part of the generated volume at xi+ 1

2
remains inside the element i,

while with a first order method, the entire volume generated at xi+ 1
2

is accumulated inside the element i+1,
graphically translating the numerical dissipation for the transport equation (7).
A further extension of this MUSCL-type approach has been performed in [5]. An anti-diffusive (downwind-
controlled) reconstruction is coupled with the RDEM method with the aim of simulating reacting interface
at all combustion regimes. This coupling works well for detonations, however fails for deflagrations. The
reconstruction proposed in [5] is illustrated in Fig. 8(b): it also requires the solution of an internal Riemann
problem. The difficulty in that case is that the internal discontinuity must be situated “very close” to the
intercell boundary, according to the anti-diffusive strategy [4]. In case of deflagrations, the precursor shock
wave generated by the internal reactive Riemann problem [1] travels across the intercell boundary, which is
not taken into account in [5] . This is the reason why this coupling of an anti-diffusive approach with RDEM
is unstable for deflagrations. On the other hand, as far as the detonation is concerned, the reacting interface
travels at the same speed as the precursor shock wave, and the stability condition is therefore respected.
To solve this robustness issue when coupling RDEM with an anti-diffusive method, an original upwind
downwind-controlled splitting (UDCS) approach is now proposed.

{

x

t
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U
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1,L

U
∗∗∗

1,R U
∗∗

1,R
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Taylor
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i − 1 ii − 1
2

Figure 7: General case of two-phase reactive local Riemann problem RP12(Un
1,i−1,U

n
2,i; K0) at intercell

position xi− 1
2

[1]. The left side is the burnt phase Σ1, and the right side is the unburnt phase Σ2. The
solution structure contains a left genuinely non-linear wave (Lgnl), a contact discontinuity (CD), a Taylor
expansion wave in case of Chapman-Jouguet deflagration or detonation, a reacting shock wave (RS), and
a right genuinely non-linear wave (Rgnl). The velocity of reacting shock is the interface velocity DI in
transport equation (7).
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2
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Figure 8: Quasi second order reconstruction (a) for the volume fraction in [2]; anti-diffusive reconstruction
(b) in [5].

4.2 Description of the upwind downwind-controlled splitting approach

For the sake of simplicity, the upwind downwind-controlled splitting (UDCS) approach is qualitatively pre-
sented in this section for the one dimensional case. The full description for multi-dimensional unstructured
problem can be found in Appendix A. The phase index k is omitted in the following.
One of the key underlying idea in devising UDCS is to set robustness as a main priority in the solution
procedure. First of all, the first order upwind method is employed in the DEM/RDEM approach for the
discretization of the volume fractions (Fig. 9(a)). The separated averaging of conservative variables and
volume fraction for both phases is then carried out (Fig. 9(b)). Next, with the aim of improving the volume
fraction accuracy, the numerically diffused volumes are displaced back to the upwind cell elements (Fig.
9(c)), preserving the conservative properties of all conservative variables for both phases. Furthermore, this
displacement process of the phase volumes should, at the same time, respect the Local Extremum Dimin-
ishing (LED) property [24] of the numerical scheme. Additionally, the corresponding conservative variables
for these volumes should also be determined.
Let us assume for the sake of demonstration that the interface velocities at location xi− 1

2
and xi+ 1

2
are both

positive (the analysis for other cases is similar). Thus, the intercell boundary xi− 1
2

is an inlet for both phases
in cell i; on its other side, xi+ 1

2
is an outlet. According to the first order upwind method for (7), the inlet
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Figure 9: UDCS approach. (a) first order upwind DEM approach involving interface evolution according
to the two-phase Riemann problem solution. (b) separated averaging procedures for each phase. (c) phase
displacement of UDCS approach determined by the LED property.
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and the outlet interfaces at each time step globally “generate” the following volumes (Fig. 9(a)):

∆upn
i− 1

2

=
(

αn
i− 1

2

− αn
i

)

Dn
i− 1

2

∆t
upwind

=
(
αn

i−1 − αn
i

)
Dn

i− 1
2

∆t,

∆upn
i+ 1

2

=
(

αn
i − αn

i+ 1
2

)

Dn
i+ 1

2

∆t
upwind

=
(
αn

i − αn
i+1

)
Dn

i+ 1
2

∆t.
(10)

where Dn
i− 1

2

and Dn
i+ 1

2

are the interface velocity at time tn given by the local two-phase Riemann problem at

xi− 1
2

and xi+ 1
2
, respectively (Section 3.2 and 3.3). αn

i− 1
2

and αn
i+ 1

2

are interface values for volume fractions

at time tn, and within the framework of upwind method, they are given by values of the upwind cell elements
(formulation (10)). As mentioned above for considerations of displacement of phase volumes, in the high
order scheme here designed for (7), the quantity of volume kept inside the cell is imposed as follows,

αn+1
i = αn

i +
1 − λn

i− 1
2

∆x

(
αn

i−1 − αn
i

)
Dn

i− 1
2

∆t
︸ ︷︷ ︸

∆upn

i− 1
2

+
λn

i+ 1
2

∆x

(
αn

i − αn
i+1

)
Dn

i+ 1
2

∆t
︸ ︷︷ ︸

∆upn

i+ 1
2

, (11)

with 0 < λn
i− 1

2

, λn
i+ 1

2

< 1. Note that if setting λn
i− 1

2

= λn
i+ 1

2

= 0, formulation (11) degenerates to the upwind

scheme for (7), and if setting λn
i− 1

2

= λn
i+ 1

2

= 1 in (11), an unconditionally unstable downwind scheme is

recovered for (7). The UDCS for volume fraction transport equation (7) consists now in determining the
values of λn

i− 1
2

, λn
i+ 1

2

in (11) for a high resolution of the interface.

First of all, a second order reconstruction can be used to calculate λn; for instance, at the outlet boundary
xi+ 1

2
:

λn
i+ 1

2

=
αn

i − αn
i+ 1

2

αn
i − αn

i+1

, when αn
i 6= αn

i+1, (12)

with αn
i+ 1

2

the interface reconstructed value at xi+ 1
2

using TVD limiting within element i. It is emphasized

that (12) inserted into (11) is equivalent to the conventional second order limiting method for (7) (Fig. 8(a))
if the transport velocity DI is constant. However, when DI is obtained by resolving local Riemann problems,
these two quasi second order approaches differ from each other.
Alternatively, the downwind-controlled (anti-diffusive) approach [4] can be used to evaluate the values of λn

in (11) which are in general larger than the ones with TVD limiters. Using the inlet interfaces, one needs to
compute the minimum and maximum values of mn and Mn for each cell element, such that

mn
i = min

{

αn
i , αn

i−1

}

,

Mn
i = max

{

αn
i , αn

i−1

}

.

The LED property requires to ensure mn
i ≤ αn+1

i ≤ Mn
i , that is:

mn
i ≤ αn

i +
1 − λn

i− 1
2

∆x
∆upn

i− 1
2

+
λn

i+ 1
2

∆x
∆upn

i+ 1
2

≤ Mn
i . (13)

Formula (13) represents a difficult linear system of inequalities to solve since it globally involves all λn in the
computational domain. According to [4], tolerated values can be used as a sufficient condition to satisfy these
linear inequalities. A similar strategy is used in the present work to eliminate this difficulty. Details about
the tolerated values of λn used in this work can be found in Appendix A . In brief, one of the two λn in (13)
is replaced by a fixed value still guaranteeing these inequalities, which allows to simply determine the largest
value of λn. The values of λn thus obtained are certainly not the largest ones in the algebraic sense, but
this approach gives the practical possibility of determining the required values of λn locally. Furthermore,
its simplicity makes the UDCS method very easy to implement.
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4.3 Implementation into the DEM/RDEM

The numerical scheme developed in Section 4.2 for the volume fraction transport equation (7) in the two-
phase flow model can be easily implemented into the (Reactive) Discrete Equations Method. As already
mentioned in Section 4.1, in order to guarantee the method robustness, the first order upwind method for
the volume fraction is, first of all, processed in the DEM/RDEM approach (Fig. 9(a)). The conservative
variables of each phase are consequently updated after upwinding (state denoted U

n+1,up
k ) using separated

averaging procedure described in Section 3 (Fig. 9(b)). Then, following the strategy described in Section
4.2, the corresponding volumes of each phase are globally rearranged in the computational domain using
the formulae (11) and the appropriate values of λn (second order or downwind-controlled) at each intercell
boundary (Fig. 9(c)).
The only remaining issue in the upwind downwind-controlled splitting approach is to determine how assigning
the conservative variables to the corresponding moving volumes of each phase. A possible approach is to
associate the phase volumes being displaced and rearranged with the conservative variables U

n+1,up
k after

the upwind approach of DEM/RDEM. This numerical technique takes advantage of stability property of the
upwind scheme, and a wide range of numerical experiments involving both reacting and non-reacting flows
show that this simple association is numerically sufficient. Indeed, the corresponding results are oscillation
free and very accurate near the interface. The simplicity of this technique makes UDCS very convenient for
implementation in existing CFD codes.
A distinct difference between UDCS and a standard high resolution method is that UDCS works on the
system variables to achieve high accuracy instead of working on the numerical flux; this feature plays a key
role in preventing the occurrence of robustness issues for UDCS.

5 Numerical results

5.1 One dimensional non-reacting water gas shock tube problem

Let us consider the water-gas shock tube previously proposed in [25], with stiffened gases thermodynamic
closures. The main challenge of this test-case is to overcome the numerical robustness issue which usually
appear when computing the strong rarefaction wave created when the high pressurized water on the left is
put in contact with the gas at atmospheric pressure on the right.
At initial state, the high pressure (109 Pa) left chamber (0 ≤ x ≤ 0.7 m) contains nearly pure water and
a small volume of gas (volume fraction ε = 10−8) while the low pressure (105 Pa) right chamber contains
nearly pure gas with a small amount of water (volume fraction ε = 10−8). The gas density is 10 kg/m3 in the
whole domain, while the water density is 1000 kg/m3. Both fluids are initially at rest. The EOS parameters
are set equal to γ = 1.4, p∞ = 0 for the gas and γ = 4.4, p∞ = 6.0 × 108 Pa for water.
A 2-step Runge-Kutta method is used for the time discretization; density, velocity and pressure are recon-
structed using the minmod limiter in order to achieve (quasi) second order accuracy in space. As far as the
the phase volume fraction is concerned, “UDCS anti” combines DEM (usual formulation), UDCS and the
anti-diffusive approach; “2-nd minmod” makes use of the (quasi) second order DEM proposed in [2], with
minmod reconstruction. Numerical results obtained by combining DEM, UDCS and the minmod reconstruc-
tion for the phase volume fraction are not shown since they almost coincide with the ones obtained using
the second order DEM proposed in [2]. The computed results are compared to the available exact solution
of the problem.
The results displayed in Fig. 10 are obtained on a uniform mesh of 100 cells. With only one point in the
material interface zone, the anti-diffusive UDCS demonstrates its capacity to “exactly” capture the interface,
which makes it more accurate than the second order DEM scheme. Examining the Mach number results, it
is observed the supersonic part of flow is well resolved by the UDCS method while spurious subsonic results
are obtained using the second order DEM scheme. If using a uniform mesh with 1000 cells (Fig. 11) perfect
agreement is obtained between the numerical and exact solutions. The numerical results obtained using the
anti-diffusive UDCS method are more accurate at the interface than the ones in [25]. All the computed
variables are oscillation free, including the Mach number. The under-shoot in the pressure profile at the
end of the rarefaction wave is linked to the high pressure ratio in the rarefaction wave, which cause some
numerical approaches (but not the one proposed here) to fail in computing this test case.
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Figure 10: Water gas shock tube problem with interface separating two phases. DEM method is used. UDCS
anti-diffusive solutions compared with second order scheme in [2] with minmod limiter. A 100 cells mesh is
used. CFL = 0.9. Time t = 220 µs. The exact solutions are shown in dashed blue lines.
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Figure 11: Water gas shock tube problem with interface separating two phases. DEM method is used.
UDCS anti-diffusive solutions compared with exact solutions. A 1000 cells mesh is used. CFL = 0.9. Time
t = 220 µs. The exact solutions are shown in dashed blue lines.

5.2 One dimensional Chapman-Jouguet deflagration

Let us consider the Chapman-Jouguet deflagration shock tube already proposed in [1]. This test case is
interesting because it allows observing how the poor accuracy on the flame region can affect the accuracy
on the flame-generated shock wave. The 20 meter long shock tube involves on the right (10 m ≤ x ≤ 20 m)
a stoichiometric mixture of hydrogen-air, with pressure and temperature equal to 1.013 bar and 290 K
respectively. On the left, the burnt gas (due to the complete combustion of the stoichiometric mixture of
hydrogen-air) is found with pressure and temperature equal to 2.013 bar and 2800 K. The specific heats
are computed as fourth-degree polynomials of the temperature, obtained by interpolating data in JANAF
tables [26]. For the numerical reasons already explained in [2], the right part contains a very small volume
of burnt gas (volume fraction is ε = 10−8) and the left part contains a very small volume of unburnt gas
(volume fraction is ε = 10−8). The gases are initially at rest.
The exact solution of the reactive Euler equations and the numerical solutions obtained with the RDEM are
compared in Fig. 12. As in the non-reacting water gas shock tube problem case, the 2-step Runge-Kutta
method is used for the time discretization; density, velocity and pressure are reconstructed using the minmod
limiter. As far as the the phase volume fraction is concerned, the denominations “UDCS anti” and “2-nd
minmod” have the same meaning as in the previous test case. A uniform mesh of 100 cells is used and the
CFL is set equal to 0.75. As illustrated in Fig. 12, “2-no minmod” calculations yield a very diffused interface
which in turn exceedingly moderates the maximum over-pressure behind the non-reacting right-travelling
shock wave. On the other hand, as for the non-reacting case, the “UDCS anti” approach can “exactly” capture
the flame interface, which substantially improves the results on the maximum over-pressure following the
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Figure 12: Shock tube of Chapman-Jouguet deflagration. RDEM method is used. UDCS anti-diffusive
solutions compared with second order scheme with minmod limiter. A 100 cells mesh is used. CFL = 0.75.
Time t = 4.0 ms. The exact solutions [1] are shown in dashed blue lines.

non-reacting shock wave. This makes the “UDCS anti” approach a good candidate to perform investigations
of fluid-structure interaction problems involving combustion-generated pressure waves.
As in the non-reacting water gas shock tube problem, numerical results obtained by combining UDCS and
the minmod reconstruction for the phase volume fraction are not shown since they almost coincide with the
ones obtained using the second order DEM proposed in [2] (“2-nd minmod” in the figure). Nevertheless, it
should be emphasized that, for this test case, the former approach is more robust than the latter: indeed the
second order scheme proposed in [2] does not work for CFL close to unity, while the numerical approaches
involving UDCS does.

5.3 Two-dimensional gaseous non-reacting shock bubble interaction

This shock bubble test case is particularly interesting since it has been numerically investigated in several
previous works (see for instance [27, 28, 9]). Moreover, experimental results are also available [29].
The flow problem consists in simulating the impact of a Mach 1.22 shock travelling through air (light gas)
onto a cylinder of R22 gas (heavy gas). The configuration is shown in Fig. 13. A cylinder of R22 is
surrounded by air within a 445×89 mm2 rectangular domain. At t = 0, the cylinder is at rest and its center
is located at (x, y) = (225 mm, 44.5 mm). The initial radius of the cylinder is r = 25 mm. The planar shock
is initially located at x = 275 mm and moves from right to left towards the cylinder. The generated flow
illustrates the interaction of a material interface with a shock wave, coming from the light gas region into the
heavy gas region. The resulting waves, at the early stage of fluid interaction, include a transmitted shock
wave in air, a refracted shock wave in the R22 bubble, a material interface and a reflected shock wave in air.
Due to the smaller speed of sound in R22 gas, the refracted shock wave in R22 propagates more slowly than
the transmitted shock wave in air.
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Both fluids are described by polytropic EOS. Initial conditions and fluid properties are summarized in Table
1. The top and bottom boundary conditions are set as solid walls while constant state boundary conditions
are imposed on the left and right boundaries.

front side back side

air shock front

R22

275 mm

8
9

m
m

445 mm

r = 25 mm

x = 225 mm

y = 44.5 mm

Figure 13: Initial configuration of air-R22 shock problem.

Location Density (kg m−3) Pressure (Pa) ux (m s−1) uy (m s−1) γ
Air (back side) 1.686 1.59 × 105 -113.5 0 1.4
Air (front side) 1.225 1.01325× 105 0 0 1.4
R22 3.863 1.01325× 105 0 0 1.249

Table 1: Air-R22 shock/cylinder interaction test. EOS coefficients and initial data.

Figure 14: Air-R22 shock/cylinder interaction test. Numerical results of density profile. From left to right:
experimental results in [29], UDCS minmod method with 1000×200 Cartesian mesh, UDCS minmod method
with triangular mesh of 1000 × 200 × 2 cells, UDCS anti-diffusive method with 1000 × 200 Cartesian mesh,
and UDCS anti-diffusive method with triangular mesh of 1000×200×2 cells. Five instants are selected from
[29]: (b) t = 115 µs, (d) t = 187 µs, (g) t = 342 µs, (h) t = 417 µs, (i) t = 1020 µs.
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Figure 14: (continued)

In Fig. 14, experimental Schlieren images (column 1) taken from [29] are compared with the numerical
solutions provided by four different strategies, all relying on DEM but with distinct treatments for the
volume fraction equation:

1. UDCS with minmod reconstruction (quasi second order), on a 1000× 200 Cartesian mesh (column 2).

2. UDCS with minmod reconstruction, on a 1000× 200 × 2 triangular mesh (column 3).

3. UDCS and anti-diffusive approach, on a 1000 × 200 Cartesian mesh (column 4).

4. UDCS and anti-diffusive approach, on a 1000 × 200 × 2 triangular mesh (column 5).

In all cases, the Euler explicit scheme is used for time discretization, with a CFL value set to 0.4. No
reconstruction on the primitive variables is performed. As done in [29], the results are shown around the
R22 gas bubble at several different times (measured relative to the moment when the shock wave first interacts
with the bubble boundary at time t = 60 µs): (b) t = 115 µs, (d) t = 187 µs, (g) t = 342 µs, (h) t = 417 µs,
(i) t = 1020 µs. Qualitatively our numerical results, on both triangular and quadrangular meshes, are in
good agreement with the experimental data in [29], and also with previous numerical results in [27, 28, 9].
Moreover the interface resolution is significantly improved when the UDCS anti-diffusive method is employed.
It is interesting to notice that the UDCS anti-diffusive method works with unstructured triangular mesh.
However, a kind of “capillary” numerical phenomenon is observed in the vicinity of the fluid interface (the
dimension of which reduces with the mesh resolution).
The different numerical approaches are also compared by analyzing the volume fraction and the mixture
density at the final computational time. The results in Fig. 15 are plotted along the axis of symmetry
(+x direction), in the region occupied by the bubble. Three differently refined Cartesian meshes and three
differently refined triangular meshes are used for comparison. From a qualitative viewpoint, it can be said
that all approaches converge to the same result. More precisely now, one can notice that, on quadrangular
meshes, UDCS anti-diffusive approach with 500 × 100 Cartesian mesh produces more accurate results than
UDCS minmod approach with 1000× 200 cells. The triangular mesh used in this test is twice finer than the
corresponding Cartesian mesh. Results obtained with the triangular mesh are displayed in the third column.
The UDCS anti-diffusive approach yields again more accurate results than the UDCS minmod approach.
Further plots (Fig. 17 and Fig. 18) are drawn along the two lines perpendicular to the axis of symmetry
(y direction) whose location over the final time bubble shape is indicated in Fig. 16. The grid-convergence
of the results can be qualitatively observed and the UDCS anti-diffusive approach still proves to be more
accurate than the UDCS minmod approach. In line with the triangular mesh results shown in Fig. 14 for
the UDCS anti-diffusive approach, the “capillary” interface profile is visible in the third column of Fig. 17
and Fig. 18.
Finally, the pressure time-history is shown in Fig. 19 for the sake of comparison with [27, 28, 9, 29]. Three
locations are retained: xp = 3, 27, 67 mm, downstream of the R22 gas bubble along the axis of symmetry.
Time is measured from the first communication of the shock wave with the bubble at time t = 60 µs. UDCS
anti-diffusive results on triangular mesh of 250 × 50 × 2, 500 × 100 × 2, and 1000 × 200 × 2 elements are
presented so that grid convergence can be qualitatively checked. No noticeable difference is observed when
comparing the results obtained with the UDCS minmod method and the UDCS anti-diffusive method on the
same mesh. Note that pressure peaks are not resolved as accurately as in [9], where a more refined mesh was
used. Moreover, it is worthwhile to mention that, with a fixed CFL value, considerably more time steps are
required for computations with fully non-equilibrium model of two-fluid flow than with a sub-model, such
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as the one used in [9] (more information can be found in [18]). This can generally make results of two-fluid
model more diffused than the ones of a sub-model.

5.4 2D computation of 1D line-symmetric steady combustion

This test case has been previously considered in [1], Section 6.3, page 300. It consists in propagating
a 1D line-symmetric deflagration wave in a 2D domain, initially filled with a stoichiometric mixture of
(thermally perfect) hydrogen-air at rest. Its interest is linked to the fact that the analytical solution (see
for instance [30]) can be evaluated; alternatively, a reference solution can be obtained by performing a 1D
line-symmetric computation (as done here). It is emphasized that this solution for the multi-dimensional
Euler equations is, in reality, unstable (the stability of a cylindrical/spherical flame is guaranteed by the
competition between thermal and species diffusion, which is neglected in the Euler equations). Nonetheless,
this solution can be used as a comparison from a qualitative viewpoint. From now on, the 1D line-symmetric
solution will be referred to as the “reference solution”.
As far as initial conditions are concerned, initial pressure and temperature are assumed respectively equal
to 1.013 bar and 290 K. The fundamental speed is K0 = 45.2 m/s.
As shown in [1], when observing the solution obtained using the original RDEM on a quadrangular regular
mesh, it can be noticed that the flame propagates at different speeds on the diagonal and on the axis. In
our opinion, this is due to the fact that, when studying 1D reactive Riemann problems at the cell interfaces,
the cell interface normal (nf ) can be different from the flame surface normal (n)1. As shown in [1], if in
evaluating the solution of the 1D reactive Riemann problem, the fundamental flame speed is supposed to be

1Let us recall that the total flame velocity is DI = v
u

+ K0n, (see equation (9))
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Figure 15: Plottings of volume fraction and mixture density over the axis of symmetry (x direction) around
the R22 bubble. Anti stands for UDCS anti-diffusive approach. 2-nd stands for UDCS minmod approach
(which is quasi second order). tri stands for triangular mesh.
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Figure 16: Positions of y direction lines for plottings of volume fraction and mixture density in Fig. 17 and
Fig. 18. From left to right: UDCS anti-diffusive approach with Cartesian mesh of 250 × 50, 500 × 100, and
1000 × 200 cells. Left line is located at x = 136 mm, and right line at x = 155 mm (measured from the left
boundary of the whole domain).

given by K0|n · nf | (instead of K0), directional effects drastically reduce. This strategy will be adopted in
the following.
Let us now compute the solution on a regular grid of 400 × 400 elements and a CFL equal to 0.4. The
combustion is “numerically initiated” by supposing that in the closest element to the center of symmetry
(the left bottom corner in Fig. 20), the mixture is burnt (here initial pressure and temperature are equal to
2.013 bar and 2800 K but it must be emphasized that these values do not significantly affect the solution). In
Fig. 20 (first three lines) we represent the solution at 1.2 ms, obtained with different approaches: the RDEM
approach (explicit Euler scheme for time discretization), the RDEM approach with minmod reconstruction
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Figure 17: Plottings of volume fraction and mixture density over the line situated at x = 155 mm (Fig.
16). Anti stands for UDCS anti-diffusive approach. 2-nd stands for UDCS minmod approach (which is quasi
second order). tri stands for triangular mesh.
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Figure 18: Plottings of volume fraction and mixture density over the line situated at x = 136 mm (Fig.
16). Anti stands for UDCS anti-diffusive approach. 2-nd stands for UDCS minmod approach (which is quasi
second order). tri stands for triangular mesh.

on pressure, density, velocity and volume fraction (second order explicit Runge-Kutta scheme for time dis-
cretization), and the (RDEM) UDCS anti-diffusive approach (explicit Euler scheme for time discretization).
On the left we represent the volume fraction of the burnt gas and the pressure. On the right we plot the
results thus obtained on the axis and on the diagonal. As one can see, the results closest to the reference
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Figure 19: Time history of pressure in three locations: x = 3 mm, x = 27 mm, and x = 67 mm downstream
of the R22 gas bubble along the axis of symmetry. Anti stands for UDCS anti-diffusive approach. tri stands
for triangular mesh.
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Figure 20: Propagation of a 1D line-symmetric steady flame. On the top (first line), first order RDEM
(explicit Euler scheme for time discretization). On the second line quasi-second order UDCS, with minmod
reconstruction for all primitive variables (second order explicit Runge-Kutta scheme for time discretization).
On the third line, the UDCS anti-diffusive approach (explicit Euler scheme for time discretization). On the
fourth line, the UDCS anti-diffusive approach (explicit Euler scheme for time discretization), in which normals
at the flame interface are forced to be equal to the ones at the reference solution (namely n = (x/r, y/r)).
From left to right: the volume fraction of the burnt gas, the pressure, the plottings of pressure over axis and
diagonal, and that of density. The reference solution is obtained using a 1D line-symmetric solver and the
UDCS anti-diffusive approach.
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solution are the ones given by the first order RDEM (which present the highest numerical diffusion). The
results obtained using the minmod reconstruction are less diffused than the ones given by the first order
reconstruction. As observed, the propagation speed of the flame on the axis and on the diagonal is almost
the same. The flame interface shape is not circular; this is expected, since the reference solution is unstable.
Pressure and density are higher than the ones given by the first order approach. This is due to the fact
that as the flame surface wrinkles, the quantity of unburnt gas which burns per time unit increases. This
increases in turn the release of chemical energy per time unit and thus the pressure (as can be checked in
Fig. 20, pressure is slightly higher than the reference one). Finally, in the UDCS anti-diffusive solution it
is noticed that the volume fraction is less diffused than the other solutions but the flame is much faster on
the axis than on the diagonal. This point will be investigated in the future and it is maybe due to that the
flame interface normal evaluation with the formula ∇(α)/|∇(α)| creates problems when α is not smooth.
This assertion is confirmed by the results shown in the fourth line of Fig. 20, in which we have forced the
flame interface normal to be equal to the one of the 1D line-symmetric solution (namely n = (x/r, y/r)). In
this case, the propagation velocities are almost the same on all directions (and the solution is less diffused
than in the other approaches, as expected).

6 Conclusions & perspectives

This paper has described a new computational strategy with the aim of treating the interface problems,
based on the (Reactive) Discrete Equations Method (DEM/RDEM). When compared to the literature for
anti-diffusive type method [9], the proposed upwind downwind-controlled splitting (UDCS) strategy coupled
with DEM/RDEM is capable of dealing with permeable fronts, particularly all speed reacting fronts in our
applications. Both accuracy and robustness have been successfully ensured. Indeed, the UDCS approach
(either second order limited or anti-diffusive) is proved as stable as first order upwind method. Moreover,
higher computational efficiency is also achieved. Indeed, the internal Riemann problem calculated within
the classical second order limiting approach [2] is no longer needed when using UDCS method. The steeper
representation of the interface also reduces the zone where expensive two-phase Riemann problems have to
be computed with DEM/RDEM. This second point can lead to computations that become more efficient
than first order simulations.
It is emphasized that the limiting second order UDCS has already been combined with a second order explicit
Runge-Kutta approach for time discretization. This allows to work with acceptable CFL using a limiting
second order reconstruction on primitive variables (to be quasi-second order in space and time on the whole
variables). Unfortunately, it is not so easy to couple the anti-diffusive UDCS with the explicit second order
Runge-Kutta scheme; this point should be investigated in the future. Moreover, as already mentioned, it
should also be necessary, in the future, to change our approach to compute the normal at the flame interface.
Finally, although our approach of UDCS is proposed for the full non-equilibrium two-fluid model, we believe
that it is worthwhile to extend this concept to sub-models of two-phase flow for interface computations.
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Appendix A Multi-dimensional UDCS

For simplicity, two-dimensional case is presented here. the phase index k is omitted in this section. Indeed,
the scheme of UDCS is the same for both phases. It is emphasized here that only considerations for the
volume fraction α is shown below. The implementation into the DEM/RDEM approach is already explained
in Section 4.
An unstructured two-dimensional element Ci is shown in Fig. 21. Its boundaries {∂Ci,j} are divided into two
categories: inlet (noted as {∂Ci,in,j}) and outlet (noted as {∂Ci,out,j}) ones. An inlet boundary ∂Ci,in,j for
phase Σk is characterized by D

n
i,in,j · ni,in,j < 0, with ni,in,j the normal vector pointing toward the outside
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of Ci. That is, the interface enters inside Ci, which generates a (positive or negative) volume of Σk. On the
other hand, it is an outlet boundary ∂Ci,out,j , when D

n
i,out,j · ni,out,j > 0.

A classical upwind type scheme for the transport equation (7) can be written as

αn+1
i = αn

i +
∑

j

∆upn
i,in,j

|Ci|
, (14)

with |Ci| the volume of Ci and ∆upn
i,in,j the volume of Σk entering into Ci through the inlet boundary ∂Ci,in,j

and defined by

∆upn
i,in,j =

(
αn

i,in,j − αn
i

)
|∂Ci,in,j |

∣
∣D

n
i,in,j · ni,in,j

∣
∣ ∆t, (15)

with |∂Ci,in,j| the interfacial surface area of ∂Ci,in,j . The upwind formulation (14) can be rearranged as
follows:

αn+1
i = αn

i

(

1 −
∆t

|Ci|

∑

j

|∂Ci,in,j|
∣
∣D

n
i,in,j · ni,in,j

∣
∣

)

+
∑

j

αn
i,in,j

( ∆t

|Ci|
|∂Ci,in,j |

∣
∣D

n
i,in,j · ni,in,j

∣
∣

)

. (16)

When imposing, in practical computations, the time step ∆t like,

∆t ≤ min
i

|Ci|
∑

j

|∂Ci,in,j |
∣
∣D

n
i,in,j · ni,in,j

∣
∣
, (17)

αn+1
i in (16) can thus be viewed as an average value among αn

i and {αn
i,in,j} of its inlet neighbors {Ci,in,j},

which obviously respect the local Extremum Diminishing (LED) property [24]:

αn+1
i ∈ [mn

i , Mn
i ]. (18)

The local maximum and minimum values for Ci in (18) are computed as follows:

mn
i,in,j = min{αn

i , αn
i,in,j}, Mn

i,in,j = max{αn
i , αn

i,in,j},

mn
i = min

j
{mn

i,in,j}, Mn
i = max

j
{Mn

i,in,j}.

It is worthwhile to notice that, if only viewing the scalar equation (7), the time step restriction (17) is a

sufficient (but not necessary) condition to satisfy (18). Indeed, due to that
∣
∣
∣
∑

j ∆upn
i,in,j

∣
∣
∣ ≤

∑

j

∣
∣∆upn

i,in,j

∣
∣,

a bigger ∆t than in (17) could still be able to ensure the LED condition (18). Furthermore, it is emphasized
that, within the framework of the implementation into the DEM/RDEM approach, the time step ∆t is
additionally restricted by acoustic wave speeds.
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Figure 21: Two dimensional finite volume cell.
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Using the first order upwind scheme, the contribution of the outlet boundary ∂Ci,out,j to the neighboring cell
Ci,out,j is quantified by the exiting volume:

∆upn
i,out,j =

(
αn

i − αn
i,out,j

)
|∂Ci,out,j|D

n
i,out,j · ni,out,j∆t.

Following the idea introduced in Section 4, the high resolution scheme here designed for the multi-dimensional
case is of the formulation,

αn+1
i = αn

i +
∑

j

(1 − λn
i,in,j)

∆upn
i,in,j

|Ci|
+

∑

j

λn
i,out,j

∆upn
i,out,j

|Ci|
, (19)

with 0 ≤ λn
i,in,j, λ

n
i,out,j ≤ 1. (19) degenerates to the upwind scheme when setting λn

i,in,j , λ
n
i,out,j = 0 for all j.

On the other hand, an unstable downwind scheme is recovered if putting λn
i,in,j , λ

n
i,out,j = 1 for all j. (19) can

be understood as follows: among the volume ∆upn
j generated and transported across the boundary ∂Ci,j by

the first order upwind method, a part of it (the percentage is λn
j ) is returned back to its upwind cell. That

is, based on the upwind result in Ci, we return the amount of λn
i,in,j∆upn

i,in,j to its inlet neighbor Ci,in,j , and
on the other side, fetch the amount of λn

i,out,j∆upn
i,out,j from its outlet neighbor Ci,out,j . Obviously, with

bigger values of λn
i,in,j , λ

n
i,out,j, the scheme is more accurate. However, the local LED condition of (18) should

always be verified.
Above all, as done in Section 4, a second order accurate scheme can be obtained by using the slope limiting
strategy. In this framework, the value of λn

i,out,j is determined by

λn
i,out,j =

αn
i − αn

f,out,j

αn
i − αn

i,out,j

, when αn
i 6= αn

i,out,j . (20)

αn
f,out,j in (20) the reconstructed value at the boundary ∂Ci,out,j within cell Ci using slope limiter. λn

i,in,j is
determined in the same manner.
In the following we seek a higher accuracy of interface using algebraic techniques to (18) and (19). For
simplicity, a unique value of percentage λn

i,out is imposed for all outlet boundaries {∂Ci,out,j}. That is,

λn
i,out,j = λn

i,out, for any j.

Thus, by defining ∆upn
i,out =

∑

j ∆upn
i,out,j for cell Ci, (18) is rewritten as follows:

αn
i +

∑

j

(1 − λn
i,in,j)

∆upn
i,in,j

|Ci|
+ λn

i,out

∆upn
i,out

|Ci|
≥ mn

i , (21)

αn
i +

∑

j

(1 − λn
i,in,j)

∆upn
i,in,j

|Ci|
+ λn

i,out

∆upn
i,out

|Ci|
≤ Mn

i . (22)

It is easy to verify that, when putting λn
i,out = 0, both (21) and (22) are fulfilled for any value of λn

i,in,j ,
by writing αn+1

i in means of an average among αn
i and that of its inlet neighbors {αn

i,in,j} as done in (16).
This fact furthermore gives the following result: if ∆upn

i,out < 0, (22) is satisfied; on the other hand, if
∆upn

i,out > 0, (21) is satisfied. It follows the summary of restrictive conditions as below:







0 ≤ λn
i,out ≤ 1;

0 ≤ λn
i,in,j ≤ 1, ∀j;

λn
i,out ≤







1
∣
∣∆upn

i,out

∣
∣

[

|Ci| (α
n
i − mn

i ) +
∑

j

(1 − λn
i,in,j)∆upn

i,in,j

]

, if ∆upn
i,out < 0;

1
∣
∣∆upn

i,out

∣
∣

[

|Ci| (M
n
i − αn

i ) −
∑

j

(1 − λn
i,in,j)∆upn

i,in,j

]

, if ∆upn
i,out > 0.

(23)

It is certain that the system of inequalities (23) has its solution {λn
i,out} (for instance, λn

i,out = 0 is inside its
solution region for any λn

i,in,j). Unfortunately (23) involves almost all the intercell boundaries in the whole
domain considered, which gives serious algebraic difficulties to find the full region of solution for λn

i,out. As
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done for the one dimensional case in Section 4 (similar technique as in [4]), we use a sub-region of the solution
of (23) as follows:







0 ≤ λn
i,out ≤ 1;

λn
i,out ≤







1
∣
∣∆upn

i,out

∣
∣

[

|Ci| (α
n
i − mn

i ) +
∑

j

1

2

(

1 − sign(∆upn
i,in,j)

)

∆upn
i,in,j

]

, if ∆upn
i,out < 0;

1
∣
∣∆upn

i,out

∣
∣

[

|Ci| (M
n
i − αn

i ) −
∑

j

1

2

(

1 + sign(∆upn
i,in,j)

)

∆upn
i,in,j

]

, if ∆upn
i,out > 0.

(24)

Hence, the optimized value of λn
i,out can be determined locally.
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