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Abstract: In this study, a numerical method for the simulation of compressible two-phase flows
is presented. The multiscale approach consists of several components: a discontinuous Galerkin
(DG) solver for the macroscopic scales of the flow, a micro-scale solver at the interface, a level-set
interface tracking formalism as well as an adaptive mesh refinement near the phase interface. The
method is demonstrated for a droplet at equilibrium, a moving droplet as well as a shock-droplet
interaction. Thereby, the full Navier-Stokes equations are used to describe the problem. The
present approach for the multi-phase coupling is not suitable for phase change calculations as the
present micro-scale solver is not capable to resolve this. The chosen approach includes the sharp
resolution of the phase interface as well as surface tension.
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1 Introduction
In many technical applications, multiphase flows meet conditions such as high pressures and/or high velocities
that prohibit the popular assumption of incompressibility. The most important examples are fuel injection
systems of aeronautical, automotive and rocket engines. The numerical simulation of compressible multiphase
flow presents additional difficulties to the numerical approach, compared to the incompressible treatment
that is most often found in two-phase numerical solvers in practical use today.

Two elements of the numerical algorithm are crucial: A method that allows to define the geometry, the
temporal evolution of the interface between the two phases (in this study, we employ a level-set method)
as well as a numerical strategy to treat the discontinuous nature of the interface together with the related
physical processes such as surface tension or phase change. In the compressible case this includes different
equations of state (EOS) on both sides of the phase interface. In principle, the interface region can be
approximated by a smooth transition that can be handled by the numerical scheme (diffuse interface ap-
proach). As an alternative, we use a sharp interface multiscale approach, there the numerical scheme only
resolves the macroscopic scales of the flow and allows discontinuous states at the interface position, where
jump conditions have to be provided by an additional solver for the micro-scale. Many micro-scale solvers
are conceivable, in the present study, we rely on Riemann-type solvers [1, 2]. The approach is suitable for
general EOS. A well-known method of this type is the so-called ghost fluid formalism of Fedkiw et al. [3],
developed for finite volume schemes, where fictitious fluid states are introduced near the interface, similar
to the well-known concept of ghost-cells at boundaries. This method has been continuously refined, e.g. by
Liu et al. [4], Hu et al. [2] and Ferrari et al. [5].

In this paper we present a sharp interface method based on a discontinuous Galerkin spectral element
method (DGSEM) that allows for a high order of accuracy as well as efficient calculations. The discontinuous
Galerkin (DG) formulation allows for discontinuities at the element interfaces, which simplifies the imple-
mentation of the sharp interface approach as only numerical fluxes have to be adapted. A further advantage
is that it is straightforward to include the effects of surface tension into the algorithm as only the micro-scale
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solver has to be updated. The high-order approximation of the level-set allows for curvature calculation at
the phase boundary. This information is needed to include the effect of surface tension in the algorithm.
The native DG implementation is only capable to resolve the phase boundary at the nearest cell boundary.
This is related to the fact that solely at element boundaries discontinuous states are permitted due to the
use of Riemann solvers. Typically, such discontinuities occur at phase boundaries as e. g. a density jump is
present. The DG cells are comparatively large due to the in-cell resolution resulting in a coarse numerical
approximation of the phase boundary. One approach to improve the phase boundary resolution is to use an
Adaptive Mesh Refinement (AMR) at phase boundaries. In this case, one DG cell is replaced by multiple
finite-volume cells allowing for an improved resolution of the numerical phase boundary as in the finite-
volume context discontinuities between each DOF are allowed. This approach shows promising results for
future investigations combining the high-order resolution of the DG scheme as well as a fine resolution of the
phase boundary. The level-set variable is always treated with the high-order DG method to take advantage
of the low dispersion and dissipation properties.

The paper is organized as follows: in the first section, the numerical method is described followed by an
outline of the information transfer between macro- and micro-scale model. In the next section first results
of droplet simulations are presented and in the last section a summary and conclusion is drawn.

2 The numerical method
In this paper we present a novel multi-scale method for the calculation of compressible multiphase flows.
To be able to include interface phenomena such as surface tension into the algorithm, a heterogeneous
multiscale method (HMM) is chosen. We consider the compressible Navier-Stokes equations as macro-scale
model. The solution for the macro-scale model is provided by a discontinuous Galerkin spectral element
method (DGSEM) based explicit solver as developed by Kopriva [6]. The micro-scale solver may be based
on different concepts such as Riemann solvers or well-resolved 1D simulations. In the present study, we use
a HLLC-type Riemann solver as developed by Hu et al. [2]. The effect of the Young-Laplace equation

(ρ(v · n− s)v + p(ρ)n) = (d− 1)σκn, (1)

describing the surface tension at the phase boundary enters the HMM as micro-scale model. With κ we denote
the mean curvature of the level-set approximation associated with the orientation of the mean normal n.
The surface tension coefficient σ is assumed to be constant and positive. This problem can be handled in a
generalized Riemann problem with non-homogeneous jump conditions. An accurate polynominal description
of the phase interface is provided by the level-set dividing the cells such that a cell is either in the gaseous
or in the liquid phase. The physical interface is described by the root of the level-set polynom while the
computational interface is described by the surface dividing the cells that are predominately occupied by
either the gas or the liquid phase.

The macro-scale solver is independent of the used equation of state (EOS). Different EOS can be applied
for the different phases as a level-set based phase tracking algorithm is used. In the present case we use
different EOS for the liquid as well as the vapor phase of the fluid. For the gaseous part we applied the ideal
gas law whereas we use the weakly compressible Tait EOS to model the liquid phase. Note that the micro-
scale solver applied at the phase boundary is generally not independent of the EOS formulation. Multiphase
Riemann solver formulations that satisfy this property for the case without phase change are available [7].
In the following we will describe the basic steps of the HMM algorithm, that is visualized in figure 1.

Step 1: Computation of the discrete curvature at the faces of the computational interface using the level-set
solution. Furthermore, the calculation of the states at the element boundaries is done.

Step 2: Solution of the Riemann problem (micro-solver) at the element boundaries. For each surface integration
point at the numerical interface a generalized Riemann problem is solved that takes the local curvature
into account. The initial conditions are provided by the approximate solutions for the liquid and gas
phase. The solution of the micro-solver contains the phase boundary and is moving with the local
normal interface speed s.
For the bulk phases a standard one-phase Riemann solver is used that takes the corresponding EOS
into account. Due to the large computation effort, typically approximative Riemann solvers are used.

2



(1) Computation of curvature

(2) Solution of the generalized
Riemann problem

Macroscale Microscale

(3) Advancement of bulk flow

(5) Level-set calculation
[Advancement of sharp interface]

(4) Extension of velocity field
(from micro-solver)

tn
+

1
=

tn
+
Δ

t

ρ
R
*ρ

L
*

v*
p*

v*
p*

F
int,L
* F*

ρ
R
*ρ

L
*

v*
p*

v*
p*

F
j
*

int,R

Gas Gasxj

Gas Liquidxint xint
+ - x

x

t

t

mean curvature κ

(a) Single-phase RP:

(b) Two-phase RP:

Surface force

(6) AMR: Update refinement

Figure 1: HMM algorithm used for the simulation of compressible multiphase flows.

Step 3: The explicit DGSEM scheme is used to advance the bulk flow to the next time level tn+1. At the
computational interface the respective flux contributions for the different phases as determined in step
2 are used (ghost fluid approach).

Step 4: The local normal interface speed s defined at the computational interface is extended to a global
velocity field. This velocity field is used to advance the physical interface represented by the level-set
variable.

Step 5: The new position of level-set zero is used to determine the new physical and computational interfaces.
In case the interface has moved across a grid cell, the new state is extrapolated using the adjacent grid
cells.

Step 6: In case the adaptive mesh refinement (AMR) is used, the refinement indicator is calculated. According
to the indicator value a cell is refined using multiple finite-volume cells or coarsened to the DG grid.
In this step a conservative interpolation/projection method is used to ensure a conservative coupling
between the parts.

In the following sections the basic steps of the HMM algorithm are described in detail.

2.1 The Macro-Scale Solver: a Discontinuous Galerkin spectral element method
In this section we describe the the macro-scale solver used in Step 3 of the HMM Algorithm that is visualized
in figure 1. In both cases we rely on a DGSEM. The description of the method is kept brief, for more details,
we refer to [6, 8].
The key properties of the method are: the three-dimensional domain is divided into non-overlapping hexahe-
dral elements, each mapped onto a reference cube element E := (−1, 1)3 by a mapping x(ζ). The equations
are solved in the reference element. The weak solution vector U of a general system of conservation laws of
the type

U t + divF (U) = 0 (2)
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with a flux F (U) =
(
F 1(U),F 2(U),F 3(U)

)T
is approximated by a tensor-product basis

U(ζ) =

N∑
i,j,k=0

Û ijkψijk(ζ), ψijk(ζ) = li(ζ
1)lj(ζ

2)lk(ζ3) , (3)

where lj(ζ) are 1D Lagrange polynomials of degree N defined as:

lj(ζ) =

N∏
i=0
i6=j

ζ − ζi
ζj − ζi

, j = 0, ... , N . (4)

Multiplying (2) with a test function φ and integration by parts of the second term leads to three contributions:
a volume integral of the time derivative term (a), a surface integral term (b) and a volume integral term (c),
which now contains the gradient of the test function φ

∂

∂t

∫
E

JUφdζ︸ ︷︷ ︸
a

+

∫
∂E

(F ∗ ·N)φdS︸ ︷︷ ︸
b

−
∫
E

F (U) · grad(φ) dζ︸ ︷︷ ︸
c

= 0 . (5)

In this expression, J is the Jacobian of the transformation to the reference cube element.
Volume as well as surface integrals are approximated by Gauss-Legendre or Gauss-Legendre-Lobatto quadra-
ture. Quadrature points coincide with the interpolation points for the ansatz functions lj . As no continuity
constraint is enforced between the elements, the flux function F (U) at the cell boundaries is replaced by
a numerical flux function F ∗(U−,U+) depending on the left and right adjacent states U− and U+. The
approximation (3) is inserted into the weak form (5) and the test functions are chosen as the ansatz func-
tions φ = ψijk. Integrals are split in coordinate directions and approximated by Gauss-Legendre (-Lobatto)
quadrature, which introduces the integration weights ωi, i = 0, ... , N . As the quadrature points are the same
as the interpolation points of lj , the Lagrange property lj(ζi) = δij ; i, j = 0, ... , N can be exploited.
Plugging all the ansatz functions into the weak form, make use of the orthogonality of the ansatz functions
and introduction of numerical integration yields the final semi-discrete form of the DGSEM scheme:

(
Û ijk

)
t

= −(J ijk)
−1

[
−

N∑
λ=0

ωλ
ωi
DiλF

1
λjk −

N∑
µ=0

ωµ
ωj
DjµF

2
iµk −

N∑
ν=0

ων
ωk
DkνF

3
ijν

+

(
[F ∗ŝ]+ζ

1

jk

li(1)

ωi
− [F ∗ŝ]−ζ

1

jk

li(−1)

ωi

)
+

(
[F ∗ŝ]+ζ

2

ik

lj(1)

ωj
− [F ∗ŝ]−ζ

2

ik

lj(−1)

ωj

)
+

(
[F ∗ŝ]+ζ

3

ij

lk(1)

ωk
− [F ∗ŝ]−ζ

3

ij

lk(−1)

ωk

)]
.

The numerical fluxes F ∗ are evaluated at the reference element faces in each coordinate direction. These
terms are denoted by []−ζ

1

and []+ζ
1

for the left and right face in ζ1-direction and analogously for ζ2 and
ζ3. With Dij = dlj(ζ)/dζ|ζ=ζi a differentiation matrix is denoted, which is needed for the evaluation of
the volume integral. The numerical integration weights for the Gaussian integration are symbolized with ω.
Time integration relies on an explicit third-order Runge-Kutta scheme.

2.2 The Discontinuous Galerkin spectral element method for the 3D level-set
transport

The HMM approach used in this study relies on accurate geometrical information (position, curvature) of the
phase boundary, which necessitates a suitable interface tracking formalism. To obtain this information we
use a level-set formulation: an additional function Φ is initialized as a signed distance function with respect
to the interface. The level-set function is then advected by a velocity field s that is either determined from
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the micro-scale solver or from the fluid velocity. The level-set advection equation reads:

∂Φ

∂t
+ s · grad(Φ) = 0 in Ω× (0, T ) . (6)

Of course, this is only a conservation law as long as div(s) = 0, which will not hold in our case as in
the compressible case the divergence of the velocity is not equal to zero. To discretize (6) also with the
DGSEM scheme, equation (6) is re-cast as a conservation law with an additional right-hand-side containing
the divergence of the level-set advection speed s:

∂Φ

∂t
+ div (sΦ) = Φ div(s) . (7)

Note that the divergence term can be readily obtained in the DGSEM by evaluating the necessary derivatives
of the high-order ansatz polynomials.

The level-set advection speed s may be chosen equal to the fluid velocity in the absence of phase transi-
tion. In a more general framework, a smooth artificial velocity field that locally coincides with the normal
propagation speed of the interface at the level-set zero has to be generated. More information about the
reconstruction of the advection velocity field can be found in Jaegle et al. [9].

Upon initialization, the level-set is calculated as a signed distance function using an analytic sphere
geometry and in the next step cropped using a maximum and minimum level-set limit. A sine transfer
function is applied in the cropping process that retains the level-set gradient around level-set zero and
provides a smooth transition to the cropped level-set value. This approach avoids numerical difficulties
related to a sharp cropping and is numerically beneficial.

2.3 Reinitialization of the level-set variable
In order to keep the level-set function a signed distance function, a reinitialization step has to be introduced.
Due to the low dissipation and dispersion properties of the DGSEM scheme, the reinitialization procedure is
used infrequently. This is essential in case colliding or advecting bubbles are existing as the desired condition
div(Φ) = 1 next to level-set zero can not be guaranteed for all times. The reinitialization procedure as
introduced by Sussman et al. [10] can be written for the three-dimensional case in the following equation

Φt = S (Φ0)
(

1−
√

Φ2
x + Φ2

y + Φ2
z

)
, (8)

Φ (x, 0) = Φ0 (x) , (9)

where S represents a numerical sign function. This formulation avoids the explicit search for the root of the
level-set function and the reset of the level-set function close to the phase front, which requires O(N3

DOF)
operations. An additional smoothening of the numerical sign function is used in the following way

Sε (Φ0) =
Φ0√

Φ2
0 + |div(s)|ε

. (10)

In three-dimensions we chose the smoothening term ε according to the minimum grid length and use an
additional smoothing multiplier according to the divergence of the velocity at the position. Note that the
divergence information is already available as it is needed for the level-set calculation. Furthermore, the sign
function is only calculated once per reinitialization process as it is only dependent on the initial conditions.
Equation (8) is iterated to steady-state which is typically achieved after few iterations. The reconstructed
level-set function has the property that the zero-value remains unchanged as the root of the level-set function
represents the position of the physical phase boundary.

Equation (8) is of Hamilton-Jacobi type that can be discretized using a DG method proposed by Yan
and Osher [11]. In this DG method the gradients of the Hamilton-Jacobi equation are approximated by
additional variables. For the numerical flux functions at element boundaries, upwind and downwind fluxes
are used. A Lax-Friedrichs numerical Hamiltonian is used for the calculation of the numerical fluxes. To
prevent oscillations of the DG polynom near the cropped level set value filtering is used. In this case a
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Figure 2: Comparison of the phase boundary approximation for a DG scheme of order 6 using the density
iso-contour of the liquid phase. Left: Approximation using a pure DG scheme. Right: Approximation
using the adaptive mesh refinement at the phase boundary.

Hesthaven filter is used that locally reduces the order of the DG polynom.
This DG method for the Hamilton-Jacobi reinitialization equation is chosen similar to the macro-scale

approach as this approach retains the locality of the whole method. Similar to the DGSEM scheme, a
division into volume and surface contributions is achieved. For the computation the same DG grid is used
including the mapping onto the reference element. Because of that synergetic effects between the different
parts of the HMM approach can be used and the method is suitable for parallel computations.

2.4 Adaptive Mesh Refinement
A difficulty arising with the present DG approach is that the numerical resolution of the phase interface
is coarse and does not reflect the physical approximation of the phase boundary. This is a consequence
of the comparatively large DG cells as the DG cells have an in-cell resolution. In the DG framework
discontinuities are only allowed at cell interfaces which implies that the phase boundary coupling is only
possible at cell boundaries. In the native DG approach the nearest grid boundary is chosen to resolve the
phase boundary. Especially for higher orders, the phase boundary resolution can get really coarse and does
not reflect the real position of the phase boundary. Thus, the native approach is limited to medium-order and
the advantages of high-order DG methods can not be exploited to the full extent. It is especially advisable
to use high order approximations for the level-set transport as the second derivative (curvature) is needed
for the surface tension modeling. Furthermore, high-order schemes have considerably lower dissipation and
dispersion properties compared to second order finite-volumes schemes.

One approach overcome this disadvantage of the DG scheme is to use an adaptive mesh refinement (AMR).
In the surrounding of the phase boundary, that is detected using a level-set based indicator, the mesh is refined
using a second-order finite volume method, that has the same number of degrees of freedom. In the refined
region the gradient is reconstructed using a slope limiter to avoid oscillations next to the phase boundary.
This implies that one DG cell is refined into multiple finite-volume cells. At the resulting interface between
the polynomial DG cells and the refined finite volume cells a conservative projection/reconstruction method
is used to ensure consistency at the interface between refined and polynominal grid cells. This approach is
used for the conservation variables of the Navier-Stokes equations as these quantities may be discontinuous
across a phase interface. The level-set variable is always treated with DGSEM as for the calculation of the
curvature a high order level-set solution is necessary. The input for the level-set, the advection velocity field,
is interpolated onto the DG integration points for each Runge-Kutta stage. Similarily, the resulting level-set
value is projected onto the finite-volume cells.

The effect of AMR on the approximation of the numerical phase boundary is visualized in figure 2
showing the density iso-contour of the liquid phase. For this study a sixth-order DG scheme (polynominal
degree N = 5) was used that corresponds to the setting used in the first test case (steady droplet). This
AMR approach combines both the high order resolution of a DG scheme as well as the fine resolution of
discontinuities of a finite volume scheme. In order to limit the impact of the underlying finite-volume scheme
on the global solution, the AMR approach is limited to a small region next to the physical phase boundary.
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the liquid-vapor interface, approximated by the zero level-set Φ = 0, the computational interface and the
different ways to apply the numerical fluxes provided by either a standard Riemann solver (bulk phase) or
the micro-scale solver at the computational interface.

2.5 Micro-scale solver
The micro-solver used in this case is an approximate HLLC Riemann solver as proposed by Hu et al. [2].
The Riemann solver is modified to take surface tension into account and is employed at the computational
interface. The density discontinuity in the used sharp interface approach across a phase interface is resolved
using the wave pattern of contact discontinuity. This is the natural choice to resolve phase discontinuities as
primarily the density is discontinuous. In order to include surface tension in this approximate Riemann solver,
the pressure can be discontinuous across the phase boundary. The pressure drop magnitude is determined
by the Young-Laplace law (1) using the mean curvature of the level-set at the physical phase boundary that
is determined in the macro-scale solver (see step 1 of the solution algorithm).

The contact discontinuity is the standard choice to resolve the phase interface as across the contact
discontinuity no mass transfer is occurring. Furthermore, this discontinuity represents well the occurrence in
multiphase flows as typically only the densities of the different fluids vary by some order of magnitudes. The
velocity of contact discontinuity is taken as a model for the propagation speed of the interface s as needed
for the level-set transport equation.

3 Transfer of information between macro-scale and micro-scale solver
The transfer of information from the micro- to the macro-solver relies on the numerical fluxes at the com-
putational interface as illustrated in figure 3. In the bulk phases away from the computational interface,
the DGSEM incorporates a standard HLLC Riemann solver to obtain the numerical flux F ∗ inside the
single-phase region. For the element faces that form the computational interface, the micro-scale solver is
used instead. Let UL := U− and UG := U+ be the respective states in the two different phases in some
quadrature point. These states are the input for the micro-scale solver (together with the curvature; if
surface tension is considered). The micro-scale solver delivers for each quadrature point a liquid state U∗L
and a gaseous state U∗G. The DGSEM now uses the flux evaluations F ∗ = F (U∗L) for the computation on
the liquid element and F ∗ = F (U∗G) for the computation on the gaseous element. Inside the AMR region
the numerical fluxes are used on each face of the refined finite-volume cells. This method of calculating two
different fluxes for each phase results in a solution where variables such as the density remain discontinu-
ous across the (computational) interface and the typical numerical smearing of discontinuities in numerical
schemes is avoided. For piecewise constant approximations the method is similar to the ghostfluid method
[3, 12], where two different fluxes are obtained via additional ghost states near the interface.
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In this study, we include the effect of surface tension, which necessitates two elements: the first is the
evaluation of the local curvature of the interface, the second is the application of the resulting surface force
on the flow. In the literature, a common way to do the latter is to replace the surface force by a distribution
of a volume source term, e.g. the continuum surface force method of Brackbill and Kothe [13]. In the HMM
approach of the present study, the effect of surface tension is entirely handled in the micro-scale solver.
This way, the surface tension force is exerted on the macro-scale through the fluxes at the computational
interface. Inversely, it is necessary to provide the micro-scale with information on the mean curvature κ,
which is obtained from the divergence of the level-set normal:

κ = div

(
grad(Φ)

|grad(Φ)|

)
. (11)

This quantity is only meaningful at zero level-set which does not always coincide with the computational
interface as the numerical interface is only a rough approximation to the physical interface. In case of the
native DG approach the curvature value, for each mirco-solver, at the physical interface is obtained using a
1D search normal to the cell boundary until the nearest root of the level-set is found. In the AMR case the
curvature value can be obtained easily by evaluating the curvature value at the refined grid cells on both
sides of the phase boundary.

4 Results
To illustrate the performance of the method, three test cases with increasing complexity are presented. All
cases consider three-dimensional, spherical droplets.

In all test cases the complete Navier-Stokes equations are used together with corresponding equations of
states. In the gaseous phase the ideal gas law is applied and in the liquid phase the weakly compressible
Tait EOS. Due to the absence of a proper micro-scale model for phase change, mass transfer over the phase
boundary is not considered. Because of that physical droplet features like evaporation and condensation can
not be treated using the present simple micro-scale model.

4.1 Steady droplet with surface tension
The first test is a simulation of a steady-state droplet including a simple surface tension approach. As
described in section 2.5 a HLLC micro-scale solver is used at the phase boundary that incorporates a
pressure drop depending on the curvature value. The droplet is initialized at a slightly higher pressure than
the surrounding gas (see table 1 for a summary of the initial conditions). The resulting pressure difference
matches the pressure jump resulting from surface tension at the given droplet diameter, therefore leading to a
steady-state condition if the calculation of the curvature and the resulting micro-scale solution are accurate.

The simulation has been conducted over a dimensionless time of t = 0.3 representing about 570 iterations.
A Weber number based on this time period and the diameter of d = 0.3m is of the order of 106. The cartesian
grid is very coarse, consisting only of 15× 15× 15 cells, the polynomial degree of the DG scheme has been
chosen as N = 5. Figure 4 shows pressure information extracted on the mid-plane of the droplet at t = 0.15.
The jump in the pressure is visible at the cell boundaries near the level-set zero. The constant states on the
gaseous side have been perfectly conserved while minor fluctuations have developed on the liquid side. The
corresponding result is shown for the case without the use of AMR at the phase boundary and with AMR.
The resolution of the physical interface is much better using AMR especially for the here considered high
order scheme. In the AMR case minor fluctuations due to the stiff Tait EOS occur next to the interface that
might be related to the postprocessing of the results as for visualization the solution is super-sampled.

4.2 Advected droplet with surface tension
The previous steady-state test case is extended in the following way that a global droplet advection velocity
in x-direction is added. Similarly to the previous test case a HLLC micro-solver is applied at the phase
boundary. All other example parameters remain unchanged including the pressure drop between the droplet
and the surrounding air and the calculation of surface tension. The example parameters shown in table 1
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Drplet radius Inner state Outer state
rini = 0.4 ρ = 1000 |v| = 0.0 p = 1.0 ρ = 1.0 |v| = 0.0 p = 0.996365

Surface tension coeff. Tait EOS parameters inner state Ideal gas EOS parameters outer state
σ = 0.000727 κL = 7.15, k0 = 3310, ρ0 = 1000, p0 = 1.0 κ = 1.4

Table 1: Initial conditions of the steady droplet with surface tension.

Figure 4: Result of the steady droplet test case with surface tension at t = 0.15. The black line visualizes
the physical phase boundary (zero level-set). Left: Pressure contours on the droplet median plane obtained
for the case without AMR. Right: Pressure contours on the droplet median plane with the use of AMR at
the phase boundary.

apply for this case as well with the exception of the bulk fluid velocity that is set to v = (1, 0, 0)T. Because
of that no steady-state solution is reached but the droplet is advected with the fluid flow in x-direction. The
applied surface tension prevents the droplet from dilution during advection.

The simulation has been conducted over a dimensionless time for t = 0.3 representing 1120 iterations.
A Weber number based on the advection velocity and the droplet diameter of d = 0.3m is of the order of
106. For this simulation a lower polynominal degree (N = 3, resulting in a 4th order scheme) was chosen in
order to limit the negative effects of the state extrapolation procedure on the solution in case the droplet is
convected downstream. A finer cartesian grid with the size of 30×30×30 grid cells in the corresponding axis
directions is chosen. The pressure distribution is presented in Figure 5 at time t = 0.15 for both considered
configurations. On the left the pressure distribution is shown for the pure DG simulation (without refinement
at phase boundaries) and on the right the simulation incorporating AMR.

Figure 5: Result of the advection droplet test case with surface tension at t = 0.15 resulting in an advected
distance of xadv = 0.15. The physical phase boundary (zero level-set) is visualized by the black line. Left:
Pressure contours on the droplet median plane obtained for the case without AMR. Right: Pressure contours
for the droplet median plane with the use of AMR at the phase boundary.
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Droplet radius Inner state Outer state (pre/post-shock)
rini = 0.00175 ρ = 1000 |v| = 0.0 p = 1.0 ρ = 1.0 |v| = 0.0 p = 1.0

ρ = 1.32575 v = (0.346215, 0, 0) p = 1.48783

EOS parameters inner state EOS parameters outer state
κL = 7.15, k0 = 3310, ρ0 = 1000, p0 = 1.0 κ = 1.4

Table 2: Initial conditions for the droplet interacting with a planar shock wave.

4.3 Shock-droplet interaction
The third test considers a planar shock wave impinging on a spherical droplet. The initial conditions are
given in table 2. The fine cartesian grid consists of 50×50×50 cells while for the coarse grid only 30×30×30
are used. The polynomial degree is chosen to N = 2 and surface tension is not considered. The result is
shown in figure 6, showing pressure contours inside the droplet on the median plane as well as outside in the
gaseous region for the cases with AMR and without. On top the result for the coarse grid is shown, while
below the result on the fine grid is shown. All plots are taken at a simulation time of t = 1.5 · 10−3 s.

The shock is partly reflected on the droplet, the other part enters into the liquid. Inside the droplet the
shock travels at much higher speed. At the curved surface of the droplet the shock wave is reflected and
distorted. The main features of the simulations appear as physical and resemble the (higher resolved but
2D) results shown by Hu et al. [2].

In the simulation without AMR, the coarse staircase pattern of the computational interface appears as
visible perturbation in the result that is clearly visible on the coarse grid. While the reflected shock front
quickly regains a smooth shape after clearing the angular computational interface, the airflow following
the shock leads to unphysical fluctuations when passing over the jagged regions, revealing the limits of the
method without the use of AMR.

The use of AMR sufficiently improves the resolution of the computational interface as well as the flow field
in the surrounding of the droplet. Thus the previously visible unphysical staircase pattern is significantly
reduced at the phase boundary. Even on the coarse grid the staircase pattern is hardly visible. The high
pressure region next to the stagnation point on the droplet is clearly visible and not distorted by staircase
pattern of the computational interface.

5 Conclusion and Future Work
A numerical method for compressible two-phase flows using a sharp interface method is described and applied
in 3D. The present numerical approach allows for a high order of accuracy as well as efficient calculations.
The high order is of advantage for the resolution of the interface as well as its curvature. Basic ideas are
taken from the popular ghost-fluid approach and are adapted for the DG framework. The numerical fluxes
at the computational interface are obtained correctly using the solution of two-phase Riemann problems.
It is shown that the resolution of the numerical interface can be considerably improved through the use of
adaptive mesh refinement near the phase boundary.

The presented 3D test cases show the capabilities of the used solution algorithm for compressible fluids
and the results show good agreement to reference solutions.
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Coarse grid:

Fine grid:

Figure 6: Result of a droplet interacting with a planar shock at t = 1.5 · 10−3 s. On top the result for the
coarse grid(30× 30× 30 cells) is shown and on the bottom the fine grid (50× 50× 50 cells). Left: pressure
contours on the droplet median plane without AMR. Right: pressure contours on the droplet median plane
with the use of AMR at the phase boundary.
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