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Abstract: The simulation of �ows in porous media on the microscale level requires a high number
of unknowns to resolve the geometry of the �ssures in-between the sand grains. For the geometric
representation of the sand grains we use fracture network-like structures in 2D and sphere packings
in 3D. These geometries are created with an in-house scenario generator, based on a modi�ed and
extended version of the Lubachevsky-Stillinger algorithm in 3D. The incompressible Navier-Stokes
�ow solver of the PDE framework Peano is used to compute the overall �ow through the reference
volume. The throughput results allow, in combination with suitable criteria, for the estimation
of the necessary resolution of a simulation setup. Highly parallel runs have been performed with
several thousands of compute nodes on a HPC system showing good scalability results even for
this kind of unbalanced geometry data.
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1 Introduction

Simulating �ow in complex geologic formations such as oil�elds or saline aquifers to enable enhanced applica-
tions like oil recovery by CO2 sequestration is a complex and challenging task. To understand the underlying
phenomena and optimise the design of the application, su�ciently accurate numerical simulations of the cor-
responding processes are necessary. Even with the help of more and more powerful supercomputers, a full
resolution of the microscopic scale within the complex geologic formations is, however, not a�ordable since
the computational domains are huge compared to the studied simulation scale. The domains of interest are
typically by a factor of about 105 − 108 larger than the underlying micro scales; in a 3D setup, about 1018

degrees of freedom would be necessary. Since a direct solution of such systems is out of reach, homogenisation
techniques are applied to reduce the computational intensity of the problem. At the macro scale, additional
assumptions are introduced which typically increase the complexity of the underlying model.

For homogenisations, di�erent approaches exist. Using one combined mesh of macro scale cells, fully
coupled techniques resolve the overall domain by a mixture of di�erent discretisations. Thus, mere porous
media parts of the domain are solved using Darcy's law, e.g., while special non-porous areas of the domain�
such as relatively large cavities or channels�are treated as full �ow regions (see [1], e.g.). Another approach
are the so-called upscaling techniques. Here, the modelling on the coarse scale is (considerably) improved
by �ow computations on smaller areas of reference. Based on the upscaling approach presented in [2], we
developed a similar variant by generating explicitly resolved porous media-like geometries (fracture network-
like structures via channels in 2D and sphere packings in 3D) and computing the corresponding Navier-Stokes
�ow in order to obtain the respective permeability tensor values (see [3]).

Within this paper, we focus on the explicit computation of �ow in representative equivalent volumes
(REVs). Using a set of results for the two-dimensional scenarios, the �ow in the fracture network-like
channel structures is analysed in detail. Together with �rst results on the �ow in 3D sphere packings, these
results allow to estimate the necessary resolution and, thus, the resource and runtime requirements for REV
�ow simulations. The streamlines and velocity �eld of such a simulation is depicted in Figure 1.

1

ICCFD7-2905



Figure 1: Streamlines and arrows indicating the velocity �eld of a steady state �ow through a 40 spheres
REV setup.

In the three-dimensional setup, the domain may be approximated by di�erent sphere packings repre-
senting subdomain patches and di�erent sediment layers. Hence, we extended the Lubachevsky-Stillinger
algorithm [4] such that radii variations in the packings are now possible and can be con�gured by prescribing
built-in or user-de�ned distribution functions.

Since fully representative scenarios require thousands of spheres and hundreds of millions of grid elements,
high parallel e�ciency of the simulation environment is essential. Due to the porous media-like geometry,
a considerable amount of cells and vertices are outside the �ow volume in our Eulerian approach. Hence,
load imbalance increases much faster in parallel setups with a growing number of processes and degrees of
freedom compared to usual channel-like �ow scenarios. Therefore, a scaling analysis up to several thousand
processors has been performed showing both the validity of our approach and the relevance of such porous
media-like setups for High-Performance Computing (HPC).

The remainder of this paper is organised as follows: The solver for the Navier-Stokes equations and the
underlying software framework are brie�y described in Sec. 2. In Sec. 3, we present the generator tool for the
di�erent porous media-like geometries. Numerical results of �ow throughputs in 2D fracture network-like
channel scenarios and in 3D as well as of large-scale, parallel runs are provided in Sec. 4. A conclusion and
an outlook on future work in Sec. 5 close this contribution.

2 The PDE Framework Peano

To run incompressible �ow simulations on the small-scale porous media-like geometries, we use the Navier-
Stokes �ow solver of Peano. The framework Peano is implemented in C++ using a strictly object-oriented
manner relying on relevant approaches of Software Engineering such as a clear design concept, automated
tests, and continuous integration (cf. [5, 6, 7]). Peano addresses important challenges concerning performance
and re-usability of code and o�ers regular and adaptive Cartesian meshes. In order to automatically generate
the mesh for computations, a given surface geometry is embedded into the domain�typically a hypercube
root cell�and the corresponding �brick-world� volume geometry for the PDE solver is created e�ciently. The
adaptive Cartesian grids, available for arbitrary dimensions, are realised via spacetrees (similar to octrees),
space-�lling curves and stack data structures. For iterating over the grid, the underlying spacetree of cells
is serialised using the so-called space-�lling curves ([8]) which are recursively de�ned and, thus, �t perfectly
to the generation and structure of the spacetree and the corresponding grid. A two-dimensional example
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of an adaptive grid is shown in Figure 10(a) together with the corresponding discrete iterate of the space-
�lling Peano curve. A very cache-e�cient mechanism relying on simple stack data structures is used for
accessing vertex data in a cell-wise grid iteration which shows exactly the necessary linear �pile-up-pile-
down� structure of accesses to the degrees of freedom. The combined usage of the Peano curve together with
stack data structures results in very high cache-hit rates due to the inherent temporal and spatial locality of
data access independent of the dimension, the underlying architecture, or the concrete type of application
using Peano. In addition, no adjacency information has to be stored explicitly since the operator evaluation
is realised in a strictly cell-wise manner, a fact that seems to be a restriction at �rst sight but actually �ts
perfectly to the approach and may be used also in combination with higher-order discretisation schemes.
In particular, avoiding the storage of adjacency information leads to very low memory requirements of the
code. Finally, the insertion or deletion of grid cells or vertices during re�nement or coarsening of the mesh
throughout the computations is straightforward to realise.
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Figure 2: (a) Example of a 2D adaptive Cartesian grid and its corresponding discrete iteration of the Peano
curve. (b) Velocity distribution of the FSI benchmark CFD 1 (cf. [9]) at a Reynolds number of Re=20.

Peano's approach to adaptive Cartesian grids does neither depend on the discretisation scheme in use nor
on the concrete PDE to be solved. Therefore, Peano represents a framework for di�erent solvers, o�ering data
handling, grid generation, an encapsulated shared and distributed memory parallelisation etc. Currently,
the framework comprises several solvers, such as for the Poisson equation, for the continuity equation, for
heat equation simulations, and for the incompressible Navier-Stokes equations (NSE) (cf. [10]).

The Navier-Stokes solver in Peano supports two- and three-dimensional spatial discretisation using low-
order �nite elements (FEM) or higher-order interpolated di�erential operators (IDO, cf. [11, 12]). Among
the di�erent explicit and implicit time integration methods available, the solver heavily relies on the explicit
Chorin projection method (see [13]). A large number of benchmark computations showed the successful
combination of the various features necessary for a modern �ow solver and keeping good performance results
of Peano such as a low memory footprint and high cache-hit rates (cf. [6, 5, 10], e.g.). Furthermore, the
�ow solver has been used for partitioned �uid-structure interaction simulations (such as proposed in [9], see
Fig. 10(b) and [14]) where moving geometries and, hence, an e�cient realisation of dynamically changing
adaptive grids play an important role. Thus, Peano represents a powerful tool for e�cient CFD simulations.

3 Scenario Generation

Setting up a �ow scenario for porous media structures requires a considerable complex geometry. If measured
data of the underlying geometry is not (yet) available or doesn't have the necessary resolution, or if simu-
lations shall be calibrated, a computational construction of porous media-like structures is advantageous or
even necessary. Creating such structures manually is not feasible; we therefore use generic geometry setups
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which are generated by a scenario generator. This is a modular programme with a Qt1 based graphical user
interface (GUI) as a frontend. The algorithms are realised as dynamic libraries which are loaded during the
start-up phase of the GUI. For dynamic generation of setups on supercomputers, a command line version
is available as well. Currently we provide two sets of geometry setups which are discussed in the following:
fracture networks in 2D and sphere packings in 3D.

3.1 Fracture network scenarios

A typical 2D porous media scenario is a crack network of a fractured rock. In our generator the cracks are
represented by rotated channels. The insertion procedure is controlled by the user's speci�cations:

• The number of channels to be inserted in the domain.

• The length of the channels.

• The width of the channels.

• The minimum and maximum orientation of the channels in the domain.

The user frontend for such a setup is depicted in Figure 3. The user de�ned parameters are based on our

Figure 3: Screen shot of the ScenarioGenerator GUI with the fracture network generator. The channels of
length 0.5 and width 0.02 are randomly oriented in the range of (−π4 ,

π
4 ) and embedded in the unit square

in this example.

current needs and can easily be extended if a generation algorithm of higher complexity is desired, e.g. The
basis of our setup is the model discussed in [2]. There, channels of �xed length l, �xed width w, a random
orientation in the range of (−π/2, π/2), and a random centre point 0 ≤ x, y ≤ 1 are inserted into a unit
square.

3.2 3D scenarios

For the generation of 3D porous media-like geometries such as sand grain structures we use three di�erent
sphere packing variants:

• hexagonal close packing,

1http://qt.nokia.com/products/
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• layers of regular sphere packings, and

• random sphere packing.

The �rst is a standard packing known from material science where the spheres are distributed uniformly
in the domain. The layered packing represents layers of the regular packings with di�erent porosity (see
Fig. 4(a)). Each packing is speci�ed by the radius of the spheres, the thickness of the layer in the stack, and
the volume fraction which should be covered by spheres; this can be used as a simple model for multiple soil
simulations. The random sphere packing represents an irregular but spatially periodic packing, as shown
in Fig. 4(b). It is based on an algorithm of Lubachevsky and Stillinger [4]. We modi�ed the algorithm to
increase the inhomogeneity and to enforce a fully close packing prohibiting freely moving spheres. A positive
side e�ect of these modi�cations is a reduced runtime: In the average, we could measure a speed-up factor
of 9 − 11 compared to the initial algorithm given the same number of spheres and equal distribution of
90 − 100% of the reference radius. Whereas the original approach worked with homogeneous spheres, we
allow a variation of the grain size among a packing. By default this will be a uniform distribution based on
a reference radius together with a user-de�ned lower bound relative to the reference radius. Furthermore, it
is now possible to use user-de�ned distribution functions for the grain size distributions (variations of the
Gaussian distribution, e.g.).

(a) (b)

Figure 4: 3D porous media equivalent structures. (a) Example of a multilayer scenario. (b) Arti�cially
generated sphere packing with periodic domain boundaries resulting in an average maximum density of
63.4%.

4 Numerical Results

In the following, we investigate the throughput through the domain depending on the resolution of the
computational grid. During the setup phase of the computational domain, we ignore the cells that are not
part of the domain. In our notation, a cell is de�ned to be outside (red) of the domain, if one of its adjacent
vertices is outside of the �uid domain. A part of a rotated channel depicted in Fig. 5(a) shows a relatively
coarse grid resolution with at most 3 �uid cells (blue) along the channels width. This grid is now re�ned
by bisecting the cells dimension-wisely. As a result, a subset of the children of the boundary cells turn now
into inner cells. If we take the former identi�cation pattern we would expect 6 �uid cells across the channel.
However, we end up with 8 inner cells along the channel's width. By decreasing the mesh width with a factor
of 2, the width of the discretised channel increased by 30%. This increase of the �uid domain size can be
observed for all non-mesh-aligned geometric structures. Porous media structures are complicated and thus
practically never mesh-aligned. In the following we will analyse the e�ect of the resolution-based domain
change for fracture networks (2D) and the �ow through sand grains represented by irregular sphere packings.
Our context is the permeability computation of micro-scale porous structures. Therefore, we compare the
results based on the steady-state throughput computed by our �ow solver. In the second part of the results,
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we analyse the parallel e�ciency of the �ow solver and the imbalance e�ects formed by the non-homogeneous
geometry.

(a) (b)

Figure 5: E�ect of bisection the resolution on the general structure of the �uid domain. The red cells are
de�ned as outside of the �uid domain. The blue cells represent the computational �uid domain.

4.1 2D Fracture Network Simulations

The requirement for our initial con�guration is that the discretisation allows for a �ow in the complete pore
space. In the fracture network setups we started with a discrete width of three cells for a 45◦ rotated channel.
The generation setup was as follows:

• width �xed: 0.02

• length �xed: 0.5

• orientation: −45◦ − 10◦

The resulting fracture network is depicted in Figure 6(a). It is used as input data for our �uid solver.
Applying no-slip boundary conditions at the top an the bottom and a constant positive pressure di�erence
from the left to the right of the domain we run our simulation which computes the resulting �ow. From
this steady-state solution we compute the mass �ow Q through our REV by integrating the velocities at the
out�ow. The incompressibility implies that the out�ow equals the in�ow:

Q = ρ

∫
Γout

u · ~n = −
∫

Γin

u · ~n. (1)

Thus, we can compute the discrete out�ow by summing up the normal velocities at the out�ow:

Q = ρh

h−1∑
i=1

uout,i (2)

Starting from the base resolution of 400 × 400 we simulate this scenario repeatedly, while we continuously
re�ne the grid's resolution. In order to allow for a better comparison between the results we have normalised
the out�ow results based on the out�ow of the coarsest scenario. The resulting behaviour pattern (Figure
6(b)) shows that the �ow through the domain increases. However, the second derivative is negative and we
can assume a convergence towards the continuous solution for h→ 0.

4.2 3D Sphere Packing Simulations

In our �ow simulations we want to make sure that for all possible cuts through the geometry formed by
our sphere packing there is at least one velocity degree of freedom. The densest possible packing is the
hexagonal close packing. Here, we cut a slice through the narrowest area and examine the remaining area.
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(a)
(b)

Figure 6: The channel scenario depicted in (a) is used to investigate the relative throughput. The devel-
opment of the throughput over the number of time steps (b) is normalised with respect to the coarsest
resolution (400× 400).

In the centre we insert a sphere. The radius of this sphere rmin depends on the radius r of the spheres in
the dense packing:

rmin = r
√
2

(
2√
3
− 1

)
(3)

We can simplify the problem and use this as the radius of a circumcircle of a quadrangle. Now we subdivide
this quadrangle into 9 elements. The length of an edge of one of these subelements will now be the minimal
mesh width required. It can be formulated as follows:

hmin ≤
r

3

(
2
√
2√
3
−
√
2

)
(4)

Using equation (4) we now determine the starting discretisation hmin width for all sphere packings. As
we are dealing with inhomogeneous packings we assume, that a close packing of some of the smallest spheres
may exist within the domain and use rmin as the reference sphere radius.

The graph in Figure 7(b) shows the change of throughput for a sphere packing scenario, depending on
the grid resolution. From this we can deduct that the behaviour of the �ow through a sphere packing is
similar to that in the 2D fracture network case in the previous sections. However, further investigations of
various setups and higher resolutions are needed to see, if this is a general tendency.

4.3 Parallelisation and HPC

For simulating large domains with a feasible resolution, a huge amount of unknowns is needed. Especially
in three-dimensional scenarios the number of grid points easily exceeds 109, leading to a memory demand of
several hundreds of gigabytes and a computational amount that cannot be handled in a reasonable time on
a single processing core. Up-to-date multicore machines also mostly lack the computing power and memory
to cope with high-resolved simulations. Thus, a code used for such simulations must yield a parallelisation
for distributed or hybrid, shared- and distributed-memory, machines.

4.3.1 Inhomogeneity

While the Peano framework o�ers a parallel implementation of the Navier-Stokes solver, scenarios with large
porous geometries cause problems when computing on several hundreds or thousands of compute nodes.
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(a)
(b)

Figure 7: The random sphere packing scenario with 40 fully inner spheres depicted in (a) is used to investigate
the relative throughput. The development of the throughput over the number of time steps (b) is normalised
with respect to the coarsest resolution(h = 125−1).

If the domain is decomposed only into few subdomains, the ratios between the parts of the subdomains
that are considered as being inside and outside of the geometry are likely to correspond to the ratio of the
complete domain. With increasing number of nodes the area of the computational domain that is covered by
one node decreases. In the same time the di�erence between the ratios of subdomains increases, since some
subdomains will probably have mostly �uid cells, while others will have mostly cells which are located in the
geometry and thus outside of the �uid. That means that the subdomains become more and more inhomoge-
neous. Grid cells that reside in the geometry require only operations for the mere grid traversal, while grid
cells that are outside of the geometry and thus inside the �uid domain, require additional operations for the
actual solver. Therefore, the inhomogeneity between di�erent subdomains leads to an imbalance between
the work loads of the corresponding compute nodes which might in�uence the scalability of the application.

4.3.2 Experiments

All parallel simulations were performed on an IBM Blue Gene/P system with 16.384 compute nodes, each
containing a quad-core PowerPC 450 clocked at 850MHz. There are 4GB of memory available per compute
node.
The computed scenario has a cube-shaped domain and a geometry consisting of 200 spheres, shown in Figure
10 (a). We compute this scenario eight times with di�erent numbers of compute nodes and appropriate res-
olutions to keep a �xed number of cells per node. That is, we are performing a weak scaling analysis. Since
the number of solver iterations needed to gain a given accuracy threshold, depends on the grid resolution,
we are only taking into account one single solver iteration. The parallel e�ciency with respect to a parallel
run with 8 compute nodes is shown in Figure 8. The given setup yields a parallel e�ciency of approximately
70% for a parallel run with 4096 compute nodes and a grid with 8473 cells.

To get an estimation of the impact of the subdomain's imbalance we measured the time each compute
node needed for one Gauss-Seidel iteration. We estimate the imbalance as the di�erence between the time
of the slowest compute node and the time of the fastest compute node, relative to the time of the slowest
compute node: imbalance = tmax−tmin

tmax
. The result can be found in Figure 9. In our scenario the imbalance

increases from about 8% on 8 compute nodes to over 30% on 4096 compute nodes. The overview over the
maximal, minimal and average runtimes is given in Table 1. The average runtime for the test case with 4096
compute nodes indicates that a perfectly balanced simulation would take 20% less time.
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Figure 8: Parallel e�ciency for the sphere packing scenario.

0 

0,05 

0,1 

0,15 

0,2 

0,25 

0,3 

0,35 

8 64 216 512 1000 1728 2744 4096 

Im
b

al
an

ce
 

Compute Nodes 

Figure 9: Measured imbalance with increasing number of compute nodes.
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Table 1: Measured runtimes on compute nodes for running one Gauss-Seidel iteration

Compute nodes Maximum time Minimum time Average time Imbalance
8 3.74 4.05 3.90 0.08
64 3.54 4.35 3.98 0.19
216 3.62 4.31 4.03 0.16
512 3.63 4.33 4.06 0.16
1000 3.58 4.43 4.08 0.19
1728 3.61 4.59 4.09 0.21
2744 3.64 4.83 4.14 0.25
4096 3.68 5.34 4.25 0.31

(a) (b)

Figure 10: The random sphere packing scenario for the scalability tests using 200 spheres (a). Example of
a non-uniform decomposition of a grid consisting of 12× 12 cells (b).

4.3.3 Load Balancing

The domain decomposition in Peano does not necessarily follow the common concept for decomposing a rect-
angular domain into a rectangular array of compute nodes. It rather implements a kd-tree-like subdivision
of the domain. So, initially the grid is decomposed in a regular manner, but any resulting subdomain may
be further split along any coordinate axis. A resulting decomposition is shown in the right image of Figure
10. Here, a grid of 12×12 cells was initially split up into 2×2 subgrids with each 6×6 cells. Afterwards the
lower right subdomain was further split into two subdomains of 3 × 6 cells, each. The black lines between
the subdomains indicate the separating edges.

This kd-tree approach can be used for balancing the work load between the compute nodes. By examining
the runtime for a grid iteration on the initial decomposition the compute nodes with the highest loads can be
found and their subdomains can be further subdivided and redistributed on idling compute nodes. Hence,
the imbalance can be decreased, which will lead to a better scalability for scenarios with complex geometry.
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5 Conclusion and Outlook

For the simulation of a �ow in porous media-like geometries on the microscopic level, we have explicitly
discretised the domain using Cartesian grids. Using suitable criteria for detecting necessary mesh resolutions,
we computed the �ow throughput relevant for permeability tensor data for a number of representative
elementary volumes. The simulations were executed in parallel on a HPC system (IBM Blue Gene System
Shaheen2) and show good parallel e�ciency. The next step will be, in collaboration with the group of Shuyu
Sun3, to use physical input data both to validate the simulations with reference data and to use these tensors
in combination with a Darcy solver on a coarser spatial scale. Furthermore, we plan to use 3D rock scans as
input data for the �ow simulation.
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