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Abstract: In this contribution we present a pressure-based numerical scheme for the direct nu-
merical simulation of two-phase �ows. While for many technical applications, two-phase �ows can
be treated as incompressible, this assumption fails in cases with high pressure and temperature as
they can be found in rocket combustion chambers, for example. Our interest is in the development
of a pressure-based method that aims at the extension of an incompressible two-phase code to the
compressible regime. The development builds upon a method that has originally been designed
for single-phase �ows. Its adaptation to three-dimensional (3D) two-phase �ows is shown. This
includes the possibility to resolve and track the interface as well as the description of the two phases
by di�erent equations of state. Furthermore, it is shown that the scheme does not necessitate a
cumbersome interface treatment in three dimensions in order to avoid spurious oscillations in the
vicinity of the material interface. To improve the interface tracking, we present the coupling of
the pressure-based �ow solver to a discontinuous Galerkin approach for the level set transport
equation and we show �rst results. Numerical examples of shock-droplet interactions indicate the
capability of the approach to simulate excellently the propagation of shock waves in gaseous and
liquid phases, including multiple wave re�ections.

Keywords: Compressible multi-phase �ow, DNS, pressure-based method, level set.

1 Introduction

Direct numerical simulation (DNS) of two-phase �ows including the resolution of the material interface is
usually performed with the incompressible Navier-Stokes equations. Typical technical applications concern
droplets in an air environment at ambient pressure. In such a con�guration, the liquid itself can be considered
to be almost incompressible. Usually, the droplets are moving at low speed, such that the compressibility of
the gas can also be neglected. Under these circumstances, kinetic and internal energy are decoupled result-
ing in the separation of thermodynamics and hydrodynamics. This separation comes along with di�erent
roles of pressure for compressible and incompressible �ows. The incompressible pressure is decoupled from
density and internal energy, as an equation of state (EOS) is not present. Therefore, pressure is of purely
hydrodynamic nature and loses its thermodynamic meaning.

In the context of fuel injection processes, more extreme ambient conditions have to be faced that are
characterized by an augmented pressure and temperature. Especially for large pressure and temperature
gradients in the �ow �eld, the thermodynamic e�ects can no longer be neglected and have to be taken into
account by the numerical simulation in order to get accurate results. This requires the compressible �ow
equations.

The simulation of multiphase �ows is always characterized by large jumps in the material properties across
the interface separating two phases. An additional di�culty is the resolution and tracking of the interface
itself. Both issues are of great importance for incompressible and compressible �ows. However, the use of
the compressible �ow equations introduces di�erent EOS on either side of the material interface. As the
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�uids can di�er signi�cantly in their properties, their EOS are also very di�erent in nature. Problems may
arise due to the numerical smearing of the density across the material interface that represents a contact
discontinuity. When inserted into the EOS, the smeared density causes an unphysical pressure. From a
mathematical point of view, this represents a sti� problem and the change in EOS is very challenging as it
results quite often in spurious pressure and velocity oscillations in the vicinity of the interface, if there is no
special remedy applied [1].

Our interest lies in the extension of an incompressible two-phase �ow solver to the compressible regime.
Numerically, the incompressible �ow equations are solved by the so-called pressure-based schemes while the
simulation of compressible �ows is usually performed with density-based methods. Yet, there are several
possibilities to extend an originally incompressible pressure-based method to the compressible �ow equations.
One of these approaches builds upon an asymptotic pressure decomposition, introducing multiple pressure
variables. The compressible pressure is split into a hydrodynamic pressure and a thermodynamic background
pressure. While the thermodynamic pressure is spatially constant and only depending on time, the hydro-
dynamic pressure is allowed to vary in space and time. The decomposition considers the di�erent roles of
pressure for compressible and incompressible �ows and allows the transition from the fully compressible �ow
equations to their incompressible limit case. This scheme is called the Multiple Pressure Variables (MPV)
method [2]. Its conservative formulation [3] is the basis of the numerical scheme that is described in this
paper. The MPV method has been derived for single-phase �ows [2, 3] and extended to the treatment of
compressible two-phase �ows in one space dimension [4]. In this paper we now present its extension to three
space dimensions including its validation with the simulation of 3D shock-droplet interactions. Moreover,
�rst steps have been undertaken to enhance the interface resolution. An improved evaluation of the sur-
face normals and curvature is important for surface tension and other interfacial phenomena. We describe
the coupling of a spectral element discontinuous Galerkin (DG) approach [5, 6] for the high-order interface
tracking to the pressure-based �ow solver and discuss �rst results.
The outline of the paper is as follows. In the next section, the governing equations are presented. After-
wards the MPV method and its extension to the treatment of 3D multiphase �ows are described. It is shown
how the compressible pressure-based �ow solver treats the interface including the coupling of a high-order
DG level set method for the interface tracking. This is followed by the presentation and discussion of the
simulation of two shock-droplet interactions. First results are presented for the coupling of the level set DG
approach to the pressure-based �nite volume �ow solver before the paper closes with a short conclusion and
a perspective on future work.

2 Governing equations

This section gives an overview over the equations that build the basis of our numerical scheme.

2.1 Compressible Euler equations

We use the 3D conservation equations for mass, momentum and total energy for inviscid �ows without
gravitational and external forces and heat conduction in compressible gas dynamics that are known as the
Euler equations

∂ρ′

∂t′
+∇ · (ρ′v′) = 0 , (1)

∂(ρ′v′)

∂t′
+∇ · [(ρ′v′) ◦ v′] +∇p′ = 0 , (2)

∂e′

∂t′
+∇ · [v′ (e′ + p′)] = 0 . (3)

Here, ρ′ denotes the density, p′ the pressure, v′ the velocity and e′ the total energy per unit volume.
Dimensional variables are marked by the superscript ′. The system (1)-(3) has to be closed with an EOS
relating the pressure to the known �ow variables. A well-known formulation for gaseous �uids is the perfect
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gas EOS

p′ = (γ − 1)(e′ − ρ′

2
|v′|2), (4)

with γ being the adiabatic exponent. For liquids like water, the Tait EOS is used

p′ = (γ − 1)(e′ − ρ′

2
|v′|2)− γ(k0 − p0). (5)

Here, p0 and k0 are constants where the latter determines the compressibility of the �uid. However, there
also exists the so-called sti�ened gas EOS [7] that combines both previous EOS and that is used in the
following

p = (γ − 1)(e′ − ρ′

2
|v′|2)− γp∞. (6)

The constant p∞ characterizes the compressibility of the �uid. It is obvious that (6) includes the ideal gas
EOS (4) by choosing p∞ = 0 as well as the Tait �uid EOS (5) for p∞ = (k0 − p0).

The numerical scheme is based on the Euler equations in a dimensionless form and the following set of
non-dimensional variables is introduced:

x =
x′

xref
, ρ =

ρ′

ρref
, v =

v′

|vref |
, p =

p′

pref
, t =

t′ |vref |
xref

, (7)

where the subscript ref denotes the reference values.
The pressure-based numerical method uses an asymptotic expansion of the pressure, such that the limit

case of an incompressible �ow is accessible. The speed of sound and the �uid velocity are given di�erent
reference values. This leads us to the introduction of a parameter called global �ow Mach number M

M =
|vref |√
pref/ρref

, (8)

that determines the compressibility of the �ow. Using this set of variables the Euler equations (1)-(3) can
be non-dimensionalized in the following way

∂ρ

∂t
+∇ · (ρv) = 0 , (9)

∂(ρv)

∂t
+∇ · [(ρv) ◦ v] +

1

M2
∇p = 0 , (10)

∂e

∂t
+∇ ·

[(
e+M2p

)
v
]

= 0 . (11)

2.2 Level set method for the interface tracking

For the DNS of two-phase �ows, the interface location is of crucial interest. Therefore, an additional transport
equation is introduced to describe the movement of the material interface between the two �uids. Based on
[8], a level set variable Φ is initialized as a signed distance function with respect to the interface. Hence,
its zero level set determines the interface position. In order to track the interface movement, the following
transport equation in primitive variables can be used

∂Φ

∂t
+ v∇Φ = 0. (12)

The level set function is advected by the �uid velocity v. In our case, interface and �uid velocity are equal to
each other as we do not take into account phase transition. To treat the level set function in a conservative
manner, (12) is modi�ed in the following way

∂Φ

∂t
+∇ · (vΦ) = Φ∇ · (v). (13)
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It is obvious that a new term appears on the right-hand side of the equation that has to be included as a
source term.

3 The pressure-based Multiple Pressure Variables (MPV) method

The MPV scheme is a pressure-based method for the simulation of the compressible and the incompressible
Euler equations. We directly use the Euler equations (1)-(3) in conservative formulation, according to [3].
To avoid the singularity in (10) for the incompressible limit M = 0, caused by the term 1/M2∇p, the MPV
scheme splits the pressure into multiple pressure variables, according to [2, 9]

p(x, t) = p(0)(t) +M2p(2)(x, t). (14)

The leading order pressure term p(0) satis�es the EOS in the limit case M = 0 and it is therefore called
thermodynamic background pressure. The spatially and temporally variable pressure p(2) can be considered
to be a hydrodynamic pressure as it guarantees the divergence-free condition for incompressible �ows at
M = 0. Due to the pressure splitting, the term 1/M2∇p in equation (10) remains bounded in the incom-
pressible limit and simply reduces to ∇p(2). This pressure decomposition takes into account the fact that the
pressure plays di�erent roles in compressible and incompressible �ows. For compressible �ows, the pressure
couples the density and the internal energy via the EOS. This directly results in a thermodynamic meaning.
In case of an incompressible �ow, the pressure loses its connection to density and energy as there is no EOS
for this kind of �ow. The pressure is of purely hydrodynamic nature.

Based on the above pressure decomposition, the energy equation (11) is reformulated in terms of pressure.
For this purpose, the sti�ened gas EOS (6) and the pressure decomposition (14) are inserted into the non-
dimensional Euler equations (9)-(11) that result in the following system ρ

ρv
p+ γp∞ + (γ − 1)M2ek


t

+∇ ·

 ρv
(ρv) ◦ v + p(2)I

((γ − 1)M2ek + γ(p+ p∞))v

 =

0
0
0

 . (15)

Here, I designates the unity matrix. The most obvious change is apparent in the energy equation that is
now expressed in a pressure formulation. Due to this reformulation, the MPV method uses the pressure as
primary variable instead of the energy while the Euler equations are still in conservative formulation. As a
next step the discretization of the above equations is discussed.

3.1 Time Discretization

Combining compressible and incompressible �ows, the MPV approach builds upon a semi-implicit time
discretization. This includes an explicit discretization of the convection terms while all terms linked to the
speed of sound are discretized implicitly ρ

ρv
p+ γp∞ + (γ − 1)M2ek


t

+∇ ·

 ρv
(ρv) ◦ v

(γ − 1)M2ekv

ex

+∇ ·

 0
p(2)I

γ(p+ p∞)v

im

=

0
0
0

 . (16)

The superscripts ex and im designate the explicit and implicit time discretization of the respective terms.
This procedure takes care of the physical and mathematical background. While the compressible Euler
equations build a system of hyperbolic equations, the incompressible limit is described by a hyperbolic-
elliptic system. Hence, pressure waves are traveling at in�nite speed, the role of pressure in the Euler
equations changes and requires an implicit treatment of the pressure terms. The semi-implicit discretization
(16) clearly indicates that the density is treated independently in a fully explicit manner while momentum
and energy equation contain explicit as well as implicit parts.

As it is common for incompressible projection methods, the MPV scheme �nally is based on the solution
of a Poisson equation derived by introducing the following predictor-corrector relations for pressure and
velocity:
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p(2)n+1 = p(2)∗ + δp(2), (17)

vn+1 = v∗ + δv. (18)

The δ designates the corrector value for the corresponding predictor that is marked by the superscript ∗
and the superscript n+ 1 stands for the new time level.

In the following, the equations are discretized in time such that a semi-discrete formulation is obtained
(still continuous in space but discrete in time). This approach is known as the method of lines where
a partial di�erential equation (PDE) is transformed into an ordinary di�erential equation (ODE) by the
choice of a spatial discretization. Afterwards, the resulting ODE can then be solved by an appropriate time
discretization scheme. In general, the ODE that results from the semi-implicit MPV approach can be written
as follows

dU

dt
= f(Un) + g(Un+1), (19)

where U designates the vector of the discretized conservative variables of the Euler equations and ∆t stands
for the discrete time step. The operator f(Un) represents the explicitly discretized, non-sti� convective terms
while the sti� terms are discretized implicitly and grouped together in the operator g(Un+1).
At present, we use two di�erent time discretizations that are of �rst and second order accuracy. The �rst
order scheme uses the simple explicit and implicit Euler method that can be expressed as follows

Un+1 = Un + ∆t
[
f(Un) + g(Un+1)

]
. (20)

To achieve a second order temporal discretization method, we use a combination of Runge-Kutta for the
explicit part and Crank-Nicolson for the implicit terms of the MPV approach (RK2CN). This approach
necessitates the introduction of a half time level

Un+1/2 = Un +
∆t

2

[
f(Un) + g(Un+1/2)

]
, (21)

Un+1 = Un + ∆tf(Un+1/2) +
∆t

2

[
g(Un) + g(Un+1)

]
. (22)

For the sake of simplicity, the following description of the numerical scheme is limited to the �rst order time
discretization. Starting with the pressure p(2)n at the old time level as a guess for the predictor p(2)∗, the
velocity v∗ follows directly from the momentum equation. Based on the Euler explicit and implicit scheme,
we obtain a relation between the two correctors δv and δp(2) from the momentum equations

δv = −∆t
∇δp(2)

ρn+1
. (23)

The two correctors δp(2) for pressure and δv for velocity are introduced into the energy equation of system
(16) together with (23). This results in a Poisson equation for the pressure corrector δp(2)

M2δp(2)−∆t2∇·
[
γ(pe + p∞)

ρn+1
∇δp(2)

]
= M2[p(2)n−p(2)∗]−dp(0)n−∆t∇·(γ(pe+p∞)v∗)−(γ−1)M2δk∗, (24)

where pe is a tentative value for the pressure at the new time level and dp(0)n describes the e�ects of outer
compression originating from the domain boundaries. The term δk∗ represents the contribution of the kinetic
energy ek

δk∗ = e∗k − enk + ∆t∇ · (ekv). (25)

The kinetic energy e∗k is an approximation to the energy at the new time level, evaluated by the use of the
explicitly determined density ρn+1 and the predictor velocity v∗. Due to the use of pe and e∗k the Poisson
equation is linearized and solved in an iterative way until convergence of δp(2) is reached. Then, pressure
and velocity can be updated in the whole �ow domain. A more detailed description of the numerical method
can be found in [3].
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3.2 Space Discretization

The spatial discretization is carried out on a Cartesian, staggered grid in three space dimensions, according
to [10]. For the purpose of explanation, such a mesh is depicted in Fig. 1 for the two-dimensional case. It
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Figure 1: Staggered grid arrangement: overview over variables and di�erent control volumes (CV).

is obvious, that there are di�erent control volumes (CV) for mass and momentum. While all scalar values
like density, pressure and the level set function are located at the cell center of the mass CV, the velocity
components are stored at the center of the momentum CV that coincides with the center of the mass CV
cell faces. The same principle is applied in three dimensions. The convective �uxes for the �rst order spatial
discretization are evaluated in a simple upwind manner. For the second order version, a linear reconstruction
is performed based on the MUSCL approach [11].

3.3 Interface Tracking

The DNS of compressible two-phase �ows is a rather challenging task as the two �uids often di�er signi�cantly
in their material properties as well as in their thermodynamic behavior expressed by the EOS. For this reason,
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(level set function)
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Figure 2: Physical and computational interface.

it is crucial to accurately know and track the interface location at each time step. With the introduction of
the level set function Φ and the corresponding transport equation (12), we are able to describe and evolve
the material interface in the course of the computation. The level set Φ is initialized as a signed distance
function, such that its zero level set coincides with the interface location. Hence, we are able to easily assign
the di�erent �uids by the sign of the level set. While Φ has a positive sign in the gaseous phase, it is negative
in the liquid phase.
Due to the use of the general sti�ened gas EOS formulation (6) the MPV method o�ers the possibility
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to treat two di�erent �uids distinguished by their values of the constants γ and p∞. For the multiphase
computation, both constants are allowed to vary from one grid cell to another such that each cell (i, j, k) is
assigned to speci�c values γ(i,j,k) and p∞,(i,j,k). At each time step, a loop over all grid cells is performed and
based on the level set variable the corresponding values γ(i,j,k) and p∞,(i,j,k) are set. This treatment shifts
the physical interface to the cell faces, creating a computational interface that is of staircase shape, as it can
be seen in Fig. 2. Once γ(i,j,k) and p∞,(i,j,k) are assigned, the usual MPV solution procedure of the Poisson
equation can be applied, taking into account the spatially variable constants

M2δp(2) −∆t2∇ ·
[
γ(i,j,k)(p

e + p∞,(i,j,k))

ρn+1
∇δp(2)

]
=

M2[p(2)n − p(2)∗]− dp(0)n −∆t∇ · (γ(i,j,k)(pe + p∞,(i,j,k))v
∗)− (γ(i,j,k) − 1)M2δk∗. (26)

The material interface represents a discontinuity in the EOS that may lead to spurious pressure and velocity
oscillations at this location, especially when density-based �ow solvers in conservative formulation are used
without any special interface treatment [1]. Our approach based on the conservative MPV method does not
need any special interface treatment to prevent oscillations. This can be easily explained for the transport
of a density contact discontinuity with the �rst order spatial discretization. In this case, velocity and
pressure are constant in the whole �ow domain and only density is jumping across the contact discontinuity.
In general, pressure is the primary variable of the MPV scheme and velocity is directly linked to it (cf.
equation (23)). At each time step, pressure and velocity are updated by solving the Poisson equation (24).
It can easily be shown that the right-hand side of (24) is always equal to zero for constant pressure and
velocity. Therefore, the pressure corrector is also equal to zero δp(2) = 0 everywhere so that pressure and
velocity remain unchanged and the scheme is oscillation-free in the vicinity of the interface.

3.4 Interface tracking using a discontinuous Galerkin approach

To improve the interface resolution, a high-order DG scheme can be applied to the interface tracking (13).
Using a high order scheme, the surface can be described more precisely. This is crucial for the evaluation
of the surface normals and curvature that are needed in order to include surface tension and other physical
phenomena that are directly linked to the topology of the interface. The level set equation can be treated
independently from the �ow solver. For this reason it is easily possible to discretize (13) with a numerical
scheme that is di�erent from the �ow solver. We use a high-order discontinuous Galerkin spectral element
method [5] that is also employed for the interface tracking in [6]. For the coupling of the �nite volume �ow

MPV flow solver

MPV velocity field 
(cell averages)

MPV level set field 
(cell averages)

Reconstruction Projection

DG velocity field 
(polynomials)

DG level set field 
(polynomials)

DG level set solver

(a) Coupling cycle: MPV �ow solver and DG
level set solver.

(b) Reconstruction of the velocity distribution
inside a DG cell. For each small cell the integral
over the polynomial of the bigger cell is equal to
its integral mean value.

Figure 3: Coupling of the MPV scheme with the DG solver.

solver with the DG approach, appropriate data interfaces have to be de�ned. This concerns the �uid velocity
and the level set variable itself. The DG solver advects the level set function on the basis of the �uid velocity
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�eld, calculated by the �ow solver. Once the level set �eld has been updated by the DG approach, it is passed
back to the �ow solver, together with the surface normals and curvature. The following reconstruction and
projection steps have to be performed to provide the two solvers with appropriate data. On the one hand, for
the DG scheme it is necessary to reconstruct velocity polynomials from the �nite volume velocity distribution.
On the other hand, the level set polynomial has to be projected to �nite volume cell averages that can be
used by the MPV �ow solver. The whole coupling cycle is illustrated in Fig. 3(a).

The reconstruction step is depicted in Fig. 3(b) in 1D. The desired polynomial inside each DG cell is
obtained by grouping several �nite volume cells together to a bigger DG cell. The number of �nite volume
cells that are summarized to a DG cell depends directly on the polynomial degree N of the DG approach.
In case of the 1D sketch, N = 3 is chosen and four �nite volume cells build a DG cell in which a polynomial
is reconstructed from the cell averages of the smaller cells. For the reconstruction, we demand that the
integral over the DG polynomial in each small cell is equal to the corresponding cell average of the small
�nite volume cell. To project the updated level set �eld on the �nite volume cells, the inverse procedure is
applied.

4 Results

In the following, two numerical test cases are presented. Both of them are shock-droplet interactions and
we use the following setup, unless otherwise stated. The ideal gas EOS with γ = 1.4 is used for the
surrounding gas phase and the sti�ened gas EOS with p∞ = 3309 for the liquid phase inside the droplet.
The computations are carried out with the second order RK2CN MPV method and we use 64 grid cells in
each of the three spatial directions.

4.1 Shock-droplet interaction: single droplet

The �rst test case describes the impact of an initially planar shock wave on a spherical droplet. The initial
conditions of the test case are speci�ed in Fig. 4 that also shows the pressure distribution on a slice through
the center of the droplet at the instant t = 4.25 · 10−3. A more detailed analysis of the pressure �eld can be
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p = 1.488

ρ = 1.0
u = 0
v = 0
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p = 1.0

Figure 4: Sketch of the setup for the 3D shock-droplet interaction test case (left) and a slice through the
droplet center at t = 4.25 · 10−3 showing the pressure gradient log(|∇p|+ 1) (right).

carried out by having a closer look at the pressure and pressure gradient distributions at di�erent instants
that are given in Fig. 5. Plotting the gradient of the pressure, the wave structures can be resolved in more
detail. When the shock wave is impinging on the droplet surface, the shock is re�ected as well as transmitted
into the droplet. While the re�ected wave forms a bow shock due to the spherical geometry of the droplet,
the transmitted wave is traveling through the droplet. Because of the higher speed of sound inside the
droplet, the shock wave obviously is moving faster inside than outside. This is evident from the plot at
t1 = 1.5 ·10−3 in Fig. 5. The pressure distribution inside the droplet is no longer uniform indicating that the
shock has already traveled through the complete droplet. Moreover, the shock is re�ected at the rear part
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as an expansion that is moving back to the front. During the following time steps, the waves are re�ected
several times inside the droplet. At t2 = 4.25 · 10−3, the shock wave has made its way around the droplet
and the waves are interacting at the rear part, forming a curved shock front. Looking at the plots of pressure
and pressure gradient, both are indicating a perfectly symmetric distribution.

Figure 5: Pressure p and pressure gradient log(|∇p|+1) at t1 = 1.5 ·10−3 (top) and t2 = 4.25 ·10−3 (bottom).
3D shock-droplet interaction test case, slices through the droplet center.

The MPV method with the above presented interface treatment is not su�ering from any pressure or
velocity oscillations near the interface. This is illustrated by Fig. 6. The contour lines of pressure show a
smooth transition between the two phases. Additionally, the velocity vectors are not indicating any oscilla-
tions. Hence, the pressure-based MPV method proves to give oscillation-free results for the 3D simulation
of compressible two-phase �ows.

4.2 Shock-droplet interaction: two droplets

For this test case, a second spherical droplet is introduced. This generates additional wave re�ections and
interactions that �nally result in a more complex wave pattern. The initial setup is presented in Fig. 7 as
well as the pressure gradient distribution on a slice through the droplet centers at the time t = 5 · 10−3.
Similar to the single droplet case, Fig. 8 illustrates the pressure as well as the pressure gradient distribution
at the instant t = 5 · 10−3. It can be seen, that we have a non-symmetric pressure distribution inside the
bigger droplet. This is due to the presence of the smaller droplet. The right moving initial shock wave �nally
impinges on the surface of the smaller droplet where it is re�ected. The re�ected wave has a curved shape,
it travels back towards the bigger droplet and hits its surface in the rear part. This impact in�uences the
wave pattern inside the big droplet.

In Fig. 9 we compare a 3D simulation to a two-dimensional one at t = 1.6·10−3. There are two remarkable
points. First of all, the wave patterns inside the droplets look di�erent. This is due to 3D e�ects, caused
by the spherical shape of the 3D droplet that causes di�erences in the wave re�ections in comparison to the
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Figure 6: Contour lines of pressure (left) and velocity �eld with vectors at each grid node (right) for the 3D
shock-droplet interaction test case. Slice through the droplet center at t = 1.5 · 10−3.

R
 =

 0
.0

01
75

R
 =

 0
.0

01
5

ρ = 1000
p = 1.0

ρ = 1000
p = 1.0

ρ = 1.326
u = 0.346
v = 0
w = 0
p = 1.488

ρ = 1.0
u = 0
v = 0
w = 0
p = 1.0

Figure 7: Sketch of the setup for the 3D shock-droplet interaction test case including two spherical droplets
(left) and a slice through the droplet centers at t = 5 · 10−3 showing the pressure gradient log(|∇p| + 1)
(right).

2D case. Moreover, behind the bigger droplet, a very weak shock wave is visible in both cases. This wave is
transmitted through the droplet. It is clearly more pronounced in the 2D case than in the 3D calculation.

4.3 Shock-droplet interaction: single droplet with level set DG approach

The level set DG approach of section 3.4 is applied to the above introduced shock-droplet interaction with
a single droplet. The numerical scheme is used with a spatial resolution of 603 �nite volume cells and the
DG scheme uses a polynomial of the degree N = 3. This choice directly results in 153 grid cells for the DG
scheme. Figure 10 illustrates the distributions of pressure and pressure gradient inside the droplet at the
time t1 = 7.5 · 10−4. The propagation of the shock wave is clearly visible and both plots are consistent with
the previous results. Moreover, the cut through the droplet shows a perfectly circular interface. However, if
we continue the computation the results look di�erent from those of Fig. 5. The interface gets crinkled and
this change in topology causes considerable changes in the pressure distribution. Hence, later instants in
time are not accessible by our scheme yet and we are currently investigating the unphysical topology changes
of the interface. We suppose that the problem might be linked to the velocity reconstruction. Oscillations
of the velocity polynomials may cause the spurious interface deformation.
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Figure 8: Pressure p and pressure gradient log(|∇p|+ 1) at t = 5 · 10−3. Slices through the droplet centers.

Figure 9: Pressure gradient log(|∇p| + 1) at t = 1.6 · 10−3 for the 3D (1283 grid cells, slice through the
droplet center; left) and the 2D (1282 grid cells; right) calculation of the shock-droplet interaction with two
droplets.

Figure 10: Pressure and pressure gradient log(|∇p| + 1) at t = 7.5 · 10−4 on a slice through the droplet
center for the coupled MPV level set DG approach. 3D calculation of the shock-droplet interaction (603

�nite volume grid cells, 153 DG grid cells with polynomial degree N = 3).
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5 Conclusions

In this paper a pressure-based numerical scheme for the simulation of 3D compressible two-phase �ows is
presented. The algorithm is based on an asymptotic pressure expansion. It can be used to extend originally
incompressible multiphase methods to the compressible �ow regime as it formally allows the simulation
of incompressible as well as compressible �ows. Unlike many other approaches for compressible two-phase
�ows that encounter spurious oscillations at the material interface, a cumbersome special interface treatment
can be avoided. The physical interface is described by the zero level set function and it is shifted to the
cell boundaries for the computations. Two di�erent approaches for the transport of the level set variable
are shown, a standard �nite volume discretization and a high-order DG approach. Two multidimensional
test cases are shown and the MPV method proves to resolve complex wave patterns including several wave
re�ections inside and outside of liquid droplets. The DG approach for the interface tracking still su�ers
from spurious wiggles that develop in the course of the computation. Their elimination is in the scope of
the future work, �nally resulting in an enhanced interface resolution that is supposed to be bene�cial for
the simulation of interfacial phenomena, like surface tension. Surface tension is strongly dependent on the
curvature and the interface needs to be resolved accurately in order to get appropriate estimates for the
surface normals and curvature from the level set function. The polynomial representation of the level set by
the DG scheme allows to easily and accurately evaluate the desired values. Furthermore, we plan to include
viscous e�ects and to extend the numerical scheme to the compressible Navier-Stokes equations.

6 Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for �nancial support of the project
within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart and
the SFB-Transregio 40.

References

[1] R. Abgrall and S. Karni. Computations of compressible multi�uids. J. Comput. Phys., 169:594�623,
2001.

[2] C.-D. Munz, S. Roller, R. Klein and K.J. Geratz. The extension of incompressible �ow solvers to the
weakly compressible regime. Comput. Fluids, 32(2):173�196, 2003.

[3] J.H. Park and C.-D. Munz. Multiple pressure variables methods for �uid �ow at all Mach numbers. Int.
J. Numer. Meth. Fl., 49:905�931, 2005.

[4] M. Boger, F. Jaegle and C.-D. Munz. A Pressure-Based Method for the Direct Numerical Simulation
of Compressible Two-Phase Flows. Proc. 24th European Conference on Liquid Atomization and Spray
Systems, Estoril, Portugal, 2011.

[5] D. A. Kopriva. Spectral Element Methods. Springer, 2009.
[6] S. Fechter, F. Jaegle, M. Boger, C. Zeiler and C.-D. Munz. A discontinuous Galerkin based multiscale

method for compressible multiphase �ow. Proc. 7th International Conference on Computational Fluid
Dynamics, Big Island, Hawaii, 2012.

[7] R. Saurel and R. Abgrall. A simple method for compressible multi�uid �ows. SIAM J. Sci. Comp.,
21(3):1115�1145, 1999.

[8] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12�49, 1988.

[9] S. Klainerman and A. Majda. Compressible and incompressible �uids. Commun. Pur. Appl. Math.,
35:629�653, 1982.

[10] A.T. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous incompressible �ow of
�uid with a free surface. Phys. Fluids, 8:2182�2189, 1965.

[11] B. van Leer. Towards the ultimate conservative di�erence scheme. V. A second-order sequel to Godunov's
method. J. Comput. Phys., 32:101�136, 1979.

12


