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Abstract: The newly developed high-order-accurate multidimensional gas-kinetic 
scheme is further investigated, including the benefit of the consideration of 
tangential slopes in the flux function at a cell interface, and the application of the 
scheme in turbulence simulation. The present study shows that in despite of 
increasing of computational cost, the multidimensional scheme can evidently 
improve the accuracy when compared to the directional splitting one. The 
numerical simulation of the compressible turbulence with the high-order 
multidimensional gas-kinetic scheme shows better performance than the existing 
second-order gas-kinetic method. 
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1     Introduction 
 
The foundation for the development of modern compressible flow solver is the Riemann solution of 
the inviscid Euler equations. However, due to the lack of a multidimensional Riemann solution, it is 
also a great challenge to construct a genuinely multidimensional scheme. An alternative approach to 
develop a CFD scheme is based on the gas-kinetic theory, such as the multidimensional BGK-NS 
flow solver [1, 2], which has shown good performance in many flow fields. The success comes from 
the fact that the kinetic equation has the mechanism to accurately describe the gas evolution starting 
from an initial discontinuous data, including the inherent multidimensional characteristics of the 
particle transport. Recently, through the high-order expansion of equilibrium distribution function the 
high-order multidimensional gas-kinetic BGK scheme (HGKS or HBGK) has been successfully 
developed [3, 4], which puts a new way to construct high-order-accurate truly multidimensional 
scheme for compressible flows. 

In the present study, the difference in performance among the multidimensional (MD) third-order 
gas-kinetic scheme, the corresponding quasi-one-dimensional (Q1D) extension and the directional 
(DS) scheme are investigated for both viscous and inviscid flows. 

 

2     High-Order Gas-Kinetic Scheme 
 
The construction of gas-kinetic BGK scheme [1] is briefly described as follows. First, the BGK-
Boltzmann equation for three-dimensional (3-D) flow is written as 
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where f  is the gas distribution function at a point in phase space ),,,( ξux t  and p/μτ =  is the 

collision time. g  is the local equilibrium state of the gas approached by f , 

,e)( ])[(2/)2( 22 ξUu +−−+= λπλρ Kg                           (2) 

with )2/(1 RT=λ  and the total number of degrees of freedom )1/()35( −−= γγK . During the 

particle collisions, f  and g  satisfy the conservation constraint, 

51,0d)( −==Ξ− αψα gf  ,       (3) 

at any point in space and time for the conservation of mass, momentum and energy. Here ξuddd =Ξ  

is the volume element in the phase space and T)2/)(,,1( 22 ξuuψ +=  is the vector of moments.  

Thus the finite-volume method can be constructed as 
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The superscript `*' represents the variable in the global coordinates. The flux *F  is calculated 
through the transformation from that in the local coordinates F . The relations between f  and the 

macroscopic conservative quantities Q  and the flux F  are given by 

 Ξ== d)( ψUQ fE Tρρρ ，，    (5) 
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The BGK equation (1) has the integral solution for constant collision time τ , 
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where )( tt ′−−=′ uxx  is the trajectory of a particle motion and 0f  is the initial gas distribution 

function at the beginning of each time step  ( 0=t ). 

If 0f  and g  is known, the time dependent distribution function f  can be easily deduced through 

the above expression, avoiding the great difficulty to solve the BGK equation directly. This is adopted 

by the gas-kinetic scheme, with the key to construct 0f  and g  around the cell interface according to 

the Chapman-Enskog expansion. Details can be found in references [1].  
In order to develop a high-order accurate gas-kinetic BGK scheme, we can construct the high-order 

accurate initial distribution function 0f  and the equilibrium distribution g  through the expansion to 

third-order in both spatial and temporal directions. The genuinely multidimensional scheme can be 

constructed with the following 0f  and g , including both the normal and tangential slopes, 
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where 0g  is the initial local Maxwellians and H is the Heaviside function. The local terms 

',,, BCba iiji  and A  are from the Taylor expansion of a Maxwellian and take the form, 

51,)( −== αψ α
αaa , where all coefficients are local constants from the first and second derivatives 

of g  and can be determined by are the reconstructed conservative variables Q  and their slopes. Then 

the distribution function at the cell interface can be deduced, 
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In the above equation, τ/teD −=  and the variation of f  along the tangential direction of the cell 

interface 32 , xx  is represented through the tangential slopes, such as 22122 ,, bba , et al. However, the 

terms explicitly in proportion to 32 , xx  are omitted, as the integration is zero. The terms containing 
2
3

2
2 , xx are retained, which is necessary for the scheme to achieve the third-order accuracy with only 

ONE integral point (the center of the cell interface). Furthermore, the above solution allows the 
movement of particles in any direction. That is, the present high-order-accurate scheme simulates a 
multidimensional transport process across a cell interface. Thus it is a truly multidimensional scheme. 
However, if omit these coefficients related to tangential slopes, the corresponding quasi-one-
dimensional (Q1D) extension and the directional (DS) scheme can be obtained. 

It should be noted that the solution of BGK equation (7) has no specific requirement on the 
smoothness of the reconstructed initial data. That is, it can describe the flow evolution when τ<t , 
which is not valid for the method based on Euler equations. Another point is that it is difficult to 
achieve high-order reconstruction of macro conservative variables for multidimensional flow. In the 
present study, the least-square method is adopted and the coefficients can be calculated in advance for 
only one time to decrease the computational cost. The 2nd-order PFGM limiter [5] is used mostly for 
the direct reconstruction of conservative variables when the flow contains discontinuities.  

 

3     Numerical Results 
 
The first test case is the isentropic vortex problem, with initial flow field 1,1,1 ==== vupρ and 

perturbation ]2/),)(1exp[(),( 2 xyrvu −−= εδδ , ]1exp[)2/()1( 22 rT −−= γεγδ , 0=Sδ  and  

)2/(5 πε = . The computational domain is ]5,5[]5,5[ −×−  divided by uniform cells. Periodic 

boundary conditions are adopted. The computed error variations with different cell sizes are shown in 
figure 1, where the benefit of the including of tangential slopes in the flux function at a cell interface 
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is evident. 
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Figure 1: Errors in density vs. cell size for isentropic vortex problem  

 
The second case is a flat plate boundary layer flow with Mach number 0.15 and Reynolds 

number 1,100,10Re 5 === ULL . The computational domain is chosen as ]50,0[]100,40[ ×−  

and 30120 ×  grid cells are adopted with 3040 ×  cells locate ahead of the plate. The minimal cell 

sizes  are 07.0,1.0 minmin =Δ=Δ yx  with stretching rate 18.1/1 =ΔΔ= + jjy yyr . Figure 2 

shows the velocity profiles at different streamwise locations. One can see that the velocity 
distributions, not only for the streamwise component, but also for the transverse one, can be 
accurately predicted with only four cells, which shows the good performance of the present 
scheme in viscous flow. In this case, the difference between the multidimensional scheme and the 
directional splitting one is not evident. It should be noted that for this small transverse stretching 
rate of the computational cell, the second-order reconstruction can give very good results. 

However, if increasing the stretching rate, 27.1=yr , the third-order reconstruction can yield 

better transverse velocity profiles, especially near the outer edge of the boundary layer (see figure 
3). 
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Figure 2: Streamwise and transverse velocity profiles at different streamwise locations. The top two 
figures are computed with MD-HBGK and the bottom DS-HBGK. 
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Figure 3: Transverse velocity profiles at different streamwise locations predicted with MD-HBGK. 

The left figure is for the second-order reconstruction and right the third-order. 
 

The three-dimensional scheme is then developed and applied into the numerical simulation of 

compressible turbulence. Figure 4 shows the computed Mach number iso-surface for the isotropic 

turbulence with turbulent Mach number 5.0=tM  and Reynolds number  72Re =λ . Uniform 
grid with 3128  cells is adopted.  The results show better performance of HBGK than the 
existing second-order gas-kinetic BGK method. 
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Figure 4: Mach number distribution in isotropic turbulence (iso-surface for 05.0=M  and color for 
pressure). 
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Figure 5: Histories of turbulent energies and streamwise skewness factors isotropic turbulence. 

 
4     Conclusion and Future Work 
 
In the present study, the construction of a high-order truly three-dimensional gas-kinetic scheme is 
introduced and the benefit of the consideration of tangential slopes in the flux function at a cell 
interface is investigated. In despite of increasing of computational cost, the multidimensional scheme 
can evidently improve the accuracy when compared to the directional splitting one. The numerical 
simulation of the compressible isotropic turbulence with the high-order multidimensional gas-kinetic 
scheme shows better performance than the existing second-order gas-kinetic BGK method. The 
effect of the limiter for reconstruction requires further study. 
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