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1 Introduction
Classical methods for calculating compressible flows on a structured mesh rely on a directional approach
in which space derivatives are approximated independently direction by direction. In the present work, we
study compact approximations that provide a high accuracy not for each space derivatives treated apart but
for the complete residual r, i.e. the sum of all the terms in the governing equations. For unsteady problems,
r also includes the time derivative. Schemes of this type are said to be Residual-Based Compact (RBC) and
have been developed in the last ten years ([1, 2] for instance) with application to realistic flow configurations
in aerodynamics and aeroacoustics. A special feature of RBC schemes is the structure of their numerical
dissipation also constructed from the complete residual r. This dissipation exhibits interesting properties
that have not been fully analysed for unsteady problems so far. Here, we present a detailed study of the
residual-based dissipation involved in high-order RBC schemes for the unsteady Euler equations. This study
allows a better understanding of the dissipation mechanism and leads to some improvements of the existing
RBC schemes. Given the importance of numerical dissipation in Computational Fluid Dynamics, it is also
hoped that the present work could help the development of other classes of high-order schemes.
The paper is organised as follows. In Section 2 we briefly recall the general design principle of RBC spatial
discretization for convective problems, then we focus on selected RBC schemes of third-, fifth- and seventh-
order of accuracy. In section 3 we identify the effective dissipation operator, which is not obvious for a RBC
scheme since the dissipation operator and derive a criterion ensuring dissipation of RBC schemes. Then
in section 4 we derive the spectral counterparts of the RBC schemes under investigation and discuss their
dissipation and dispersion properties. Finally, Section 5 presents some numerical experiments supporting
the preceding theoretical analysis.

2 High-order RBC schemes
In this Section, we recall the design principles of RBC approximations of the space derivatives for a hyperbolic
system of conservation laws. For brevity and clarity, we will focus on two-dimensional problems even if there
is no restriction for extending the analyses below to multi-dimensional hyperbolic problems. At this stage,
we treat time derivatives exactly, i.e. we focus on semi-discrete approximations in space.
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2.1 Concept of residual-based scheme
Let us consider an initial-value problem for the hyperbolic system of conservation laws:

wt + fx + gy = 0 on R2 × R+ (1)

with initial conditions
w(x, y, 0) = w0(x, y)

where t is the time, x and y are Cartesian space coordinates, w is the state vector and f = f(w), g = g(w)
are flux components depending smoothly on w. The Jacobian matrices of the flux are denoted A = df/dw
and B = dg/dw. System (1) is approximated in space on a uniform mesh (xj = jδx, yk = kδy) with steps
δx and δy of the same order of magnitude, say O(h), using the basic difference and average operators:

(δ1v)j+ 1
2 ,k

= vj+1,k − vj,k (δ2v)j,k+ 1
2

= vj,k+1 − vj,k

(µ1v)j+ 1
2 ,k

=
1

2
(vj+1,k + vj,k) (µ2v)j,k+ 1

2
=

1

2
(vj,k+1 + vj,k)

where j and k are integers or half integers.
A residual-based scheme can be expressed in terms of approximations of the exact residual:

r := wt + fx + gy (2)

More precisely, such a scheme is of the following form:

(r̃0)j,k = d̃j,k (3)

where r̃0 is a space-centered approximation of r called the main residual and d̃ is a residual-based dissipation
term defined in terms of first-order differences of the residual as:

d̃j,k =
1

2
[δ1(Φ1r̃1) + δ2(Φ2r̃2)]j,k (4)

where r̃1 and r̃2, respectively defined at j + 1
2 , k and j, k + 1

2 , are also space-centered approximations of r
called the mid-point residuals, and Φ1, Φ2 are numerical viscosity matrices (defined at the same location as
the corresponding mid-point residuals). These matrices depend only on the eigensystems of the Jacobian
matrices A and B and on the steps δx and δy. They are designed once for all [3] and use no tuning parameters
nor limiters. Since the matrices Φ1 and Φ2 remainO(1) as δx and δy tend to zero, the dissipation d̃ represents,
to the leading order, a numerical approximation of the second-order partial differential term:

d =
δx

2
(Φ1r)x +

δy

2
(Φ2r)y (5)

This leading term of the expansion, that is only first order accurate, vanishes for an exact solution (r = 0),
so that d̃ is actually consistent with a high-order dissipation term that will be discussed later.
In the following, the residuals are discretized in a compact way so that:

(r̃0)j,k = rj,k +O(h2p)

(r̃1)j+ 1
2 ,k

= rj+ 1
2 ,k

+O(h2p−2)

(r̃2)j,k+ 1
2

= rj,k+ 1
2

+O(h2p−2).

with p ≥ 2.
Thus, the dissipation term (4) satisfies:

d̃j,k = dj,k +O(h2p−1)
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and the truncation error of the semi-discrete scheme (3) is

εj,k = rj,k +O(h2p)− dj,k +O(h2p−1).

Since the exact residual r and the leading term d of the residual-based dissipation (5) are null for an exact
unsteady solution, we finally obtain:

εj,k = O(h2p−1). (6)

The preceding truncation error analysis shows that approximating the main residual at order 2p and the
mid-point residuals at order 2p − 2 leads to a Residual-Based Compact scheme of order q = 2p − 1. Such
a scheme is called RBCq. In the following, we focus on schemes using 5 × 5-point stencils at most, which
corresponds to p = 2, 3 and 4. More precisely, RBC3 schemes can be constructed with 3× 3 points only and
RBC5 and RBC7 schemes with 5× 5 points.

2.2 Approximation of the main residual
The main residual r̃0 is approximated through a difference operator of the form:

(r̃0)j,k =

(
D1 D2wt +D2 N1

δ1µ1f

δx
+D1 N2

δ2µ2g

δy

)
j,k

(7)

where Dm and Nm (m = 1, 2) are formal polynomials of the second difference operator in the mth direction:

Nm = I + aδ2m, Dm = I + bδ2m + cδ4m, a, b, c ∈ R, (8)

where I is the identity operator and

(δpmf)j,k = δm(δm(...(δmf)))︸ ︷︷ ︸
p times

(9)

The degrees of the polynomials are chosen in such a way that the scheme stencil is limited to 5×5 space
points at most. Operator (7) is obtained by replacing space derivatives in each direction by Pade operators:

fx =(D1)−1N1
δ1µ1f

δx
+O(δx2p)

gy =(D2)−1N2
δ2µ2g

δy
+O(δy2p)

(10)

and subsequently applying the operator D1 D2 to the whole left-hand side of the equation.
The truncation error of (7) is

εj,k =
[
I +O(h2)

] [
rj,k +O(h2p)

]
(11)

where the first term at the right-hand side vanishes for an exact unsteady solution. This represents a
substantial difference of RBC schemes with respect to standard Pade approximations and avoid the inversion
of linear systems per each space direction if a suitable time-integration technique is selected [1, 4, 5].
An approximation of the main residual of order 2p = 4 on a 3 × 3 stencil, order 2p = 6 or 2p = 8 on a
5 × 5-point stencil can be obtained using the set of coefficients given in [3, 2]. Note that, because we use
purely centered operators, no damping effects are introduced at this stage. Thus, the dissipation properties
of RBC schemes are actually governed by the right-hand side operator d̃ of Eq.(3).

3



2.3 Residual-based dissipation operator
As anticipated at the beginning of this Section, the dissipation operator d̃j,k is given by Eq.(4), and involves
mid-point residual approximations. Precisely, the following difference operators are used:

(r̃1)j+ 1
2 ,k

=

[
Nµ

1 µ1

(
D2wt +N2

δ2µ2g

δy

)
+Nδ

1D2
δ1f

δx

]
j+ 1

2 ,k

(r̃2)j,k+ 1
2

=

[
Nµ

2 µ2

(
D1wt +N1

δ1µ1f

δx

)
+Nδ

2D1
δ2g

δy

]
j,k+ 1

2

(12)

based again on the use of formal polynomials of the difference operators:

Nδ
m = I + aδδ2m , Nµ

m = I + aµδ2m , Nm = I + aδ2m , Dm = I + bδ2m + cδ4m

with m = 1, 2 , and aδ, aµ, a, b, c ∈ R
(13)

The dissipation matrices Φ1, Φ2 have been designed in [1, 3] in order to introduce some form of upwinding
of the numerical scheme with respect to the local advection direction. For a linear scalar problem with
advection velocities A and B in the x and y direction respectively, they satisfy the conditions

Φ1A > 0, Φ2B > 0

δxΦ1B = δyΦ2A
(14)

with

Φ1 = sgn(A)Φ, Φ2 = sgn(B)Ψ,

Φ = min

(
1,

1

α

)
, Ψ =αΦ with α =

δx|B|
δy|A|

.
(15)

The interested reader is referred to [1, 3, 6] for more details about the dissipation matrices Φ1, Φ2 and their
extension to systems of conservation laws.

3 The χ-criterion for dissipation

During the time evolution, d is null and d̃ is consistent with some high-order term. Thus the numerical
dissipation d̃ should not be viewed as consistent with the operator d, but with another operator induced by the
discretization of d. In the following, we determine the true differential operator consistent with d̃ and find
the conditions under which this operator is dissipative or not, since this feature affects the stability of the
scheme.
For the sake of simplicity, we continue to name d̃ the dissipation term before establishing the conditions
justifying this designation.
For a better understanding of the role of the different contributions in the general dissipation (4), we proceed
in two stages. First, we restrict our attention to the role of the x-discretization in r̃1 and of the y-discretization
in r̃2.
Thus, we define:

(r̃1
x)j+ 1

2 ,k
=

[
Nµ

1 µ1(wt + gy) +Nδ
1

δ1f

δx

]
j+ 1

2 ,k

(16)

This residual depends only on two constant coefficients aµ and aδ and involves four points at most (i.e. j−1,
j, j + 1 and j + 2). Similarly, we set:

(r̃2
y)j,k+ 1

2
=

[
Nµ

2 µ2(wt + fx) +Nδ
2

δ2g

δy

]
j,k+ 1

2

(17)
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We now carry out a Taylor expansion of r̃1x around (j + 1
2 )δx. Provided the exact residual is sufficiently

smooth and null everywhere for an exact unsteady solution, r̃1x at (j + 1
2 , k) reduces to:

r̃1
x = δx2

(
aδ − aµ − 1

12

)
fxxx+

δx4

24

(
3aδ − 5aµ − 1

20

)
f5x+

δx6

5760

(
39aδ − 91aµ − 3

28

)
f7x+O(δx8) (18)

A similar result is obtained for r̃2y. Inserting the semi-discrete residuals (16) and (17) in the dissipation (4)
gives the partial dissipation term:

d̃x,yj,k =
1

2
[δ1(Φ1r̃1

x) + δ2(Φ2r̃2
y)]j,k (19)

We now consider the complete space discretization. For the mid-point residuals, this means that fx in r̃2
and gy in r̃1 are discretized through Pade approximations. By applying the operator D2 (resp. D1) to all
the terms of r̃1 (resp. r̃2) we complete the approximations of the mid-point residuals as in (12).
A Taylor expansion of the complete mid-point residual r̃1 can be easily obtained by noting that

N2
δ2µ2g

δy
= D2(gy + ε2)

so that r̃1 can be related to r̃1x as
r̃1 = D2(r̃1

x +Nµ
1 µ1ε2).

Since Nµ
1 and D2 are consistent with the identity plus second order terms, whereas r̃1x and ε2 are O(h2p−2)

for p > 2, we get
r̃1 = r̃1

x + µ1ε2 +O(h2p). (20)

Similarly, we get
r̃2 = r̃2

y + µ2ε1 +O(h2p). (21)

These simple relations are applied below to obtain the full dissipation term d̃ for RBC3, RBC5 and RBC7.
The effective dissipation term d̃ induced by the discretization of the simple operator

d =
δx

2
[Φ1(wt + fx + gy)]x +

δy

2
[Φ2(wt + fx + gy)]y

in RBC3, RBC5 and RBC7 schemes has been identified (see [7] for details) and all these expressions can be
cast in a general form. For any integer p > 2, let us denote q = 2p− 1 and

fqx =
∂qf

∂xq
, gqy =

∂qg

∂yq
.

The dissipation of a RBCq scheme can be expressed as:

d̃ = dq +O(hq+2) (22)

with
dq = (−1)p−1κ

{
δx[Φ1(δxq−1fqx + χδyq−1gqy)]x + δy[Φ2(δyq−1gqy + χδxq−1fqx)]y

}
(23)

where κ > 0 and χ are two constant coefficients.
We need to determine whether the above multidimentional operator, involving cross derivatives, is dissipative
or not. Let us first introduce a definition of dissipation. Consider linear fluxes

f = Aw, g = Bw

where A and B are scalar constants. The expression (23) reduces to

dq = Dqw
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with the linear partial differential operator:

Dq = (−1)p−1κ ( δx2p−1Φ1A
∂2p

∂x2p
+ χδxδy2p−2Φ1B

∂2p

∂x∂y2p−1

+ δy2p−1Φ2B
∂2p

∂y2p
+ χδyδx2p−2Φ2A

∂2p

∂y∂x2p−1

)
Note that this linear version contains the highest derivatives in (23).
All the derivatives in Dq being even, its Fourier symbol is real. It is denoted by D̂q(ξ, η), where ξ and η are
the wave numbers (Fourier variables).

Definition 3.1. The operator (23) is said to be dissipative (in the broad sense) if:

∀ξ ∈ R, ∀η ∈ R, D̂q(ξ, η) 6 0.

Theorem 3.1. (χ-criterion) The operator (23) is dissipative for any order q = 2p − 1 (p > 2), any
advection direction (A, B) and any functions Φ1, Φ2 satisfying the conditions (14) if and only if χ = 0. (see
[7] for proof)

Taking into account the accuracy order and the conditions for the stencil to have a minimal extent (3×3
points for RBC3 and 5×5 points for RBC5 and RBC7), the χ-criterion leads to the following conclusions.
Dissipation is ensured in any situation by a unique set of coefficients for RBC3 and RBC7, and a two-
parameter family of coefficients for RBC5 (see [7] for details). Note that coefficients for RBC3 and RBC7 are
different from those given in former works [3, 2], where their calculation was based on accuracy and minimal
complexity considerations only. Those schemes were advanced in time via a linear backward multistep
method coupled with an implicit dual time stepping technique and proved to be inconditionally stable in
pseudo time. However, violation of the dissipation criterion of Theorem 3.1 leads to a slight instability with
respect to physical time for some wave numbers. This is discussed in the following.

4 Spectral properties of RBC schemes

Given mesh functions w and wt such that w(xj , yk, t) = wj,k(t) and wt(xj , yk, t) = ∂w
∂t

∣∣∣
j,k

, the RBCq spatial

discretization scheme of order q = 3, 5, 7 can be expressed as:

r̃0(w,wt) = d̃(w,wt) (24)

where r̃0 is the centered residual operator and d̃ is the numerical dissipation operator. They can both be
split in a part dependent on the state vector w only and another one that is a function of the time derivative
wt only. Precisely, calling:

Ir̃0 = D1 D2, Id̃ =
1

2
(δ1Φ1N

µ
1 µ1D2 + δ2Φ2N

µ
2 µ2D1) (25)

the linear difference operators that apply to wt and:

Rr̃0(w) = D2 N1
δ1µ1f(w)

δx
+D1 N2

δ2µ2g(w)

δy
,

Rd̃(w) =
1

2

[
δ1Φ1

(
Nδ

1D2
δ1f(w)

δx
+Nµ

1 µ1N2
δ2µ2g(w)

δy

)
+δ2Φ2

(
Nδ

2D1
δ2g(w)

δy
+Nµ

2 µ2N1
δ1µ1f(w)

δx

)]
(26)

the operators that apply to functions of w only, Eq. (24) re-writes:

(Ir̃0 − Id̃)wt = −Rr̃0(w) + Rd̃(w)
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or, in a more compact way:

wt = −I−1R(w), with I = Ir̃0 − Id̃ and R = Rr̃0 −Rd̃ (27)

or
wt = S(w), with S = −I−1R (28)

Eq. (28) represents now a system of ordinary differential equations and, completed by initial conditions
w(., 0) = w0(.), it defines a Cauchy problem. Thus, the stability properties of the semi-discrete scheme
depend only on properties of the operator S.
To study these properties, we consider the linear problem

wt +Awx +Bwy = 0 (29)

where A and B are scalar constants. The Fourier transform of Eq. (29) is:

ŵt = −i(Akx +Bky)ŵ = −iA · kŵ (30)

where A = (A,B) is the advection velocity vector and k = (kx, ky) a 2D wave vector. Denoting Ȧ = (Ȧ, Ḃ)
a vector whose components are the CFL numbers in the x and y directions, respectively:

Ȧ = A∆t/δx, Ḃ = B∆t/δy

and introducing the reduced wave number aligned with Ȧ/|Ȧ|:

ξθ =
Ȧ

|Ȧ|
· ξ

with ξ = (ξ, η) = (kxδx, kyδy) the reduced wave vector, Eq. (30) can be rewritten as:

ŵt = −i|Ȧ|ξθ
ŵ

∆t
(31)

The notation ξθ refers to the local advection direction with respect to the mesh, where cos(θ) = Ȧ/|Ȧ| and
sin(θ) = Ḃ/|Ȧ|. The right-hand side of Eq. (31) represents the exact transport operator, a pure imaginary
number, and ξθ is a pure real number. We now consider the semi-discrete counterpart to Eq. (31). Taking
the Fourier transform of the semi-discrete system (28) applied to the linear problem (29), we obtain:

ŵt = Ŝ(ξ, Ȧ)
ŵ

∆t
(32)

with Ŝ the Fourier symbol of the spatial operator. Introducing the modified wave number:

ξ∗θ = i
Ŝ(ξ, Ȧ)

|Ȧ|
(33)

Eq. (32) can be rewritten as:

ŵt = −i|Ȧ|ξ∗θ
ŵ

∆t
(34)

which represents the numerical counterpart of the exact operator (31). Eq. (33) represents the approximate
dispersion relation of the semi-discrete scheme and relates a given reduced wave number ξθ to its numerical
representation ξ∗θ . Differently from the exact wave number, the modified wave number ξ∗θ is a complex
number, with a non-zero imaginary part in general. If the imaginary part is positive, then any Fourier mode
set as an initial condition to the ordinary differential equation (28) will grow without bound.
As a consequence, a necessary condition for the Cauchy-stability of the semi-discrete system of equations is
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that:
sup

ξθ∈[−π,π]
Im(ξ∗θ ) 6 0, ∀Ȧ ∈ R2 (35)

This comes to require that the Fourier symbol of the spatial discretization Ŝ always lies in the left-hand
side of the complex plane. Any spatial discretization satisfying the stability condition (35) leads to an
unconditionally stable fully discrete scheme whenever it is combined to an A-stable time integration method.
In addition to stability analysis, the modified wave number may be used as an indicator of how accurately
a given wave number is represented by the difference operator. Specifically, we define the error with respect
to the exact wave number:

E = ξ∗θ − ξθ = (Re(ξ∗θ )− ξθ) + iIm(ξ∗θ ) (36)

More precisely, following previous work [8, 9, 10] for 1-D problems, we consider the multidimensional coun-
terparts of the normalised phase error Pξθ and of the scheme damping function Dξθ :

Pξθ =
|Re(ξ∗θ )− ξθ|

π
, Dξθ = 1− exp[Im(ξ∗θ )] (37)

For an infinitely accurate scheme, Pξθ = 0 and Dξθ = 0. In the following, we apply the preceding measures
to the spectral operators of RBC schemes presented in Section 2. To this purpose, we first establish the
approximate dispersion relation for an RBC scheme. We start by taking the Fourier transform of Eq. (27),
which gives:

ŵt = −Î−1R̂ŵ, with Î = Î(ξ, Ȧ) and R̂ = R̂(ξ, Ȧ)

As a consequence:

ξ∗θ = −i∆t Î
−1R̂

|Ȧ|
(38)

For the sake of brevity, we omit the mathematical expressions for Î and R̂. Given the complexity of the
analytical expression of the modified wave number for an RBCq scheme, a computer code has been written to
study its mathematical properties. First of all, we numerically check that RBCq schemes using coefficients
deduced from Thm. 3.1 are Cauchy stable. To this purpose, the imaginary part of ξ∗θ is computed for
CFL numbers Ȧ and Ḃ ranging in [−2, 2] with a step ∆Ȧ = ∆Ḃ = 1/100 and the wave vector ξ ranging
in [−π, π] × [0, π] with steps ∆ξ = ∆η = π/50. Fig. 1 displays criterion (35) for several RBC schemes.
Precisely, Fig. 1(a) to 1(c) show that RBC schemes with coefficients satisfying the dissipation criterion of
Thm. 3.1 verify condition (35) for any CFL and any wave number, whereas the third- and seventh-order
RBC schemes with coefficients given in [2] violate the stability criterion over a wide range of wave numbers.
Then, we proceed to the analysis of the dispersion error and damping function for dissipative RBC schemes
of different orders. Fig. 2 shows the dispersion error and damping functions in the case of advection aligned
with one grid direction. Specifically, we choose Ȧ = (Ȧ, 0).

In this case, the error does not depend on η. Then, we consider a 1D cut of figure 2 for all schemes under
investigation, and represent the errors on the same graph for comparison purposes. Precisely, Fig. 3(a)
shows the phase errors (in log scale), for RBC schemes of different orders. Tab. 1 provides the wave number
corresponding to a normalized phase error equal to 10−3. RBCq schemes of fifth- and seventh-order accuracy
exhibit a cut-off wave number, ξc, very close to π/2, the smallest resolvable wave number being close to 2π/5.
Similarly, Fig. 3(b) displays 1D cuts of the damping function Dξ∗0 . RBC5 and RBC7 exhibit a damping
function of less than 10−3 up to cut-off wave numbers of 1.03 and 1.24, respectively. The conclusion of the
preceding analysis is that RBC schemes of order 5 and 7 can accurately resolve a given wavelength by means
of less than 5 mesh cells, λc/δx, whilst RBC3 requires approximately 16 mesh cells to meet the prescribed
accuracy requirements on disssipation errors and about 9 mesh points for dispersion errors. Nevertheless,
this requirements are much lower than those e.g. of the third-order upwind scheme, for which 20 to 10 mesh
cells per wavelength are required to meet the accuracy criterion on dissipation and dispersion, respectively.
Figure 3(b) shows that the intrinsic numerical dissipation of high-order RBCq schemes acts as a selective
filter with a shap cut-off at high frequency. It efficiently damps out grid-to-grid oscillations that can lead to
numerical instabilities without affecting the resolved wave numbers.

Then, we investigate the spectrum of RBCq schemes in the case of multi-dimensional advection. Specifi-
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(a) RBC3: (a, b, c) = (0, 1
6
, 0). (b) RBC5: (a, b, c) = ( 1

10
, 4
15
, 1
90
). (c) RBC7: (a, b, c) = ( 5

42
, 2
7
, 1
70
).

(d) RBC3: (a, b, c) = (0, 0, 0). (e) RBC7: (a, b, c) = ( 1
30
, 1
5
, 0).

Figure 1: Representation in the complex plane of the Cauchy-stability criterion (33) for RBC schemes with different
choices of Pade coefficients for the numerical dissipation term.

ξc λc/δx
RBC3 0.74 8.47
RBC5 1.39 4.53
RBC7 1.54 4.07

Table 1: Dispersion accuracy limit of RBC schemes.

ξc λc/δx
RBC3 0.40 15.56
RBC5 1.03 6.08
RBC7 1.24 5.06

Table 2: Dissipation accuracy limit of RBC schemes.

cally, we consider the case Ȧ = (Ȧ, Ȧ), i.e. θ = π/4, which corresponds to to advection velocity aligned with
a mesh diagonal. Fig. 4 shows the phase error and damping function contours for this case that illustrate well
the multidimensional nature of RBCq schemes. The bold black contour corresponds to the error criterion
10−3. RBCq schemes display very law errors up to small reduced wave numbers in the diagonal direction.
There is almost no dispersion in the direction normal to the diagonal. Inspection of contours of the damping
function, displayed in Fig. 4 show that the multidimensional nature of RBCq schemes allows minimising
numerical dissipation along the advection direction while dispersion is minimized in the direction orthogonal
to the advection direction. This effect is more evident for higher order RBC5 and RBC7 schemes compared
to RBC3.

5 Numerical experiments
For the present computations, the time derivative in the main residual and in the mid-point residuals is
discretized by a Linear Multistep Method of order two, which is A-stable. Such a method is unconditionally
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(a) Pξ∗0 , RBC3. (b) Pξ∗0 , RBC5. (c) Pξ∗0 , RBC7.

(d) Dξ∗0 , RBC3. (e) Dξ∗0 , RBC5. (f) Dξ∗0 , RBC7.

Figure 2: Contours of the phase error Pξ∗0 (top) and damping function Dξ∗0 (bottom) for pure advection in the x
direction, Ȧ = (Ȧ, 0) i.e. θ = 0.

(a) Pξ∗0 . (b) Dξ∗0 .

Figure 3: 1D cut of Pξ0 and Dξ∗0 for RBC schemes.

stable when the spatial approximation is dissipative. The time-discretization being fully-implicit, it is solved
by using a dual-time stepping approach.
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(a) Pξ∗
π/4

, RBC3. (b) Pξ∗
π/4

, RBC5. (c) Pξ∗
π/4

, RBC7.

(d) Dξ∗
π/4

, RBC3. (e) Dξ∗
π/4

, RBC5. (f) Dξ∗
π/4

, RBC7.

Figure 4: Contours of the phase error Pξ∗
π/4

(top) and damping function Dξ∗
π/4

(bottom) for pure advection in the

diagonal direction, Ȧ = (Ȧ, Ȧ) i.e. θ = π/4.

5.1 Advection of a sine wave
5.1.1 Validation of the the χ-criterion

We consider the initial-value problem:{
wt + wx + wy = 0

w(x, y, 0) = sin(2π(x+ y)), − 1 6 x 6 1, − 1 6 y 6 1,

with periodic boundary conditions. The initial condition is shown on Fig. 5. In the diagonal direction,
the wavelength is

√
2/2 and the advection speed is

√
2. The computational domain [−1, 1]2 is discretized

by 25×25 square cells (δx = δy = 0.08), which corresponds to 12.5 points per wavelength. The time step
is chosen such that: ∆t/δx = 0.05. As expected, wave amplitude grows significantly when the χ-criterion
is violated. The growth is faster with RBC3 than with RBC7. On the contrary, the sine wave is damped
out when the χ-criterion is satisfied. The damping is very small for RBC7: 1.6% after 5000 time-iterations
(t = 20), corresponding to a diagonal advection over a distance of 40 wavelengths.

5.1.2 Resolvability of RBC schemes

The sine wave advection can also be used to study numerically dissipation and dispersion errors for compar-
ison with theoretical results of Section 4. Precisely, we want to investigate the minimum number of mesh
points per wavelength required by RBC schemes. The computational domain [−1, 1]2 is discretised by 48×48
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Figure 5: Initial wave on the 25×25 mesh. Figure 6: Wave amplitude versus time-iterations.

square cells (δx = δy = 1/24) with periodic boundary conditions and the number of points per wave length
are chosen to be 6, 8 and 16, which corresponds to the theoretical accuracy limits of RBC schemes as stated
in Section 4. A very small time step is used in order to rule out errors due to the time integration scheme
∆t = 0.002 (∆t/δx = 8.3× 10−5).
We consider the initial-value problem:wt +Awx +Bwy = 0

w(x, y, 0) = sin

[
2π

(
x

δx nx
+

βy

δy ny

)]
, − 1 6 x 6 1, − 1 6 y 6 1,

where w is a scalar quantity, A = (A,B) is the advection velocitie vector chosen equal to (1,0) and (1,1)
corresponding to the advection directions θ equal to 0 and π/4 respectively, nx and ny are the number of
points per wavelength in the x- and y-direction and β is equal to 1 for a 2D-sine wave and 0 for a sine wave
in the x-direction.

(a) nx = 6. (b) nx = 8. (c) nx = 16.

Figure 7: Discretization of the sine wave with 6, 8 and 16 points per wavelength.

Fig. 7 shows representations of the initial 1D-sine wave using 6, 8 and 16 points per wavelength. The
choice 6 or 8 points per wavelength gives a rathely rough representation of the wave. The amplitude of
the sine wave versus the number of wavelentgh traveled by the sine wave in the x-direction is displayed
for the three values of nx and several RBC schemes in Fig. 8 for the case of the advection along a single
mesh direction, so that the damping of the sine wave only depends on the number of mesh points along
this direction. Fig. 9 shows two cases with rather different discretizations in the direction orthogonal to
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(a) nx = 6. (b) nx = 8. (c) nx = 16.

Figure 8: Wave amplitude versus number of wavelengths traveled in the case of A = (1, 0) i.e. θ = 0.

the advection direction giving the same damping error in time even with RBC3 which totally damps a wave
discretized by 6 points per wavelength. This confirms the results of Fig. 2 since errors only come from
the advection direction in the case of an advection along a mesh direction. It has to be stressed that this
behaviour comes from the use the dissipation matrices Φi (i = 1, 2, 3) which adapt the dissipation to the
characteristics of the flow [11]. On the contrary of the behaviour of a filter is less costly but do not adapt to
flow and filter in all directions whatever the flow. Fig. 10 shows that even after 48 wavelentghs traveled their
is almost no dispersion errors in the computed solutions. This confirms that dissipation error predominates
compared to dispersion for RBCq schemes.

(a) nx = 16, β = 0. (b) nx = 16, ny = 6.

Figure 9: Initial conditions inducing the same dissipation and dispersion error in the case of θ = 0.

5.2 Converging cylindrical shock
When the χ-criterion is violated in an RBC scheme, the lack of dissipation occurs in some oblique flow
directions. So, we consider a test case involving all the flow directions and a large range of wave numbers,
that is a 2-D simulation of a converging cylindrical shock on a uniform Cartesian mesh. Of course, this
axisymmetric problem could be solved more easily as a 1-D problem in polar coordinates. Here, the 2-
D Euler equations, for a perfect gas with a specific heat ratio γ = 1.4, are solved in a square domain
[−0.5, 0.5]2.
At time t = 0, a cylindrical shock (satisfying the Rankine-Hugoniot relations) lies on a circle of center
(x, y) = (0, 0) and radius r0 = 0.25. Inside the cylindrical shock (state 0), the fluid is at rest and at pressure
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(a) nx = 6. (b) nx = 16.

Figure 10: Sine wave after an advection over 48 wavelengths in the case of θ = 0 with nx equal 6 and 16.

p0. The pressure just behind the shock is p1 = 2.4 p0 at t = 0. Outside the cylindrical shock, the initial state
corresponds to a steady converging flow, i.e. the flow at a radius r > r0 is related to the state 1 just behind
the shock by the conservation of mass (ρV r = ρ1V1r0 where ρ is the density and V the radial velocity), the
conservation of total enthalpy and of the entropy. For improving the initial representation of the shock on
the Cartesian mesh, the vector w of conservative variables is defined as follows in the mesh cells intersecting
the shock:

w∗ = (1− θ)w0 + θw1, 0 6 θ 6 1

where θδxδy is the cell area fraction in state 1.
During the evolution, the cylindrical shock increases in strength as it converges towards the axis. When the
shock reaches the axis, it is reflected as a divergent shock. At the very instant of reflection, the pressure at
the axis becomes infinite in the Euler model. To avoid a numerical difficulty, the Cartesian mesh is set so
that the axis corresponds to a cell vertex and not to a cell center. This prevents the computation of any
unphysical quantity on the axis. Note also that the outside boundary is not affected by the perturbations
coming from the shock motion in the duration of the present simulation.
Chisnell [12] gave in 1957 an analytical estimation of the pressure behind a moving cylindrical shock, the
theoretical arguments of which were improved by Whitham [13]. According to this theory, the Mach number
M of the shock wave (relative to the fluid at rest) at radius r is solution of the differential equation:

dM

dr
= −1

r

(M2 − 1).K(M)

2M
(39)

where

K(M) = 2

[(
1 +

2

γ + 1

1− µ2

µ

)(
2µ+ 1 +

1

M2

)]−1

µ =

[
(γ − 1)M2 + 2

2γM2 − (γ − 1)

] 1
2

.

For γ = 1.4, the function K(M) decreases slowly from 0.5 for M = 1 to 14/(17 + 7
√

7) ≈ 0.394 for M →∞.
Starting from the initial condition M0 = M(r0), the equation (39) can easily be solved numerically with a
high accuracy. An exact solution is also available [12], but its expression is very complicated and defined in
the form r = r(M).
The pressure behind the shock in motion is deduced from M = M(r) using the Rankine-Hugoniot relations:

p1 =
2γM2 − (γ − 1)

γ + 1
p0 (40)
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The converging cylindrical shock problem is solved by the RBC schemes on a 800×800 Cartesian mesh
with ∆t/δx = 0.21. When the χ-criterion is violated, the computation fails after a few time iterations
(one iteration for RBC3 with b = 0 and 26 for RBC7 with c = 0). When the χ-criterion is satisfied, the
computation succeeds, even after the shock reflection on the axis. In this case, the pressure profiles along the
x-axis are shown on Fig. 11 for the RBC3, RBC5 and RBC7 schemes at different times, together with the
analytical pressure behind the shock deduced from (39)-(40). The agreement between the numerical solution
and the Chisnell theory is very good. The shape of the converging shock computed by the RBC7 scheme at
different times is shown on Fig. 12 . This shape has been defined as the isobar lines of level 1

2 (p1+p0) at each
time. The converging shock appears to be perfectly circular on the Cartesian mesh. Clearly, Fig. 11 reveals
the oscillatory nature of the shock profiles computed by the present high order schemes, specially by RBC5
and RBC7. It should be noted that the computations have been achieved by a strict use of the method
described in the present paper: there is no limiter, no entropy correction, no filtering or other additive.
In these conditions, it appears that a good design of the dissipative operator and low dispersion allow the
calculation of a difficult test case, even if the discrete shock is not perfectly represented.

(a) RBC3. (b) RBC5. (c) RBC7.

Figure 11: Pressure along the x-axis at different times for RBC schemes satisfying the χ-criterion.

Figure 12: Shape of the converging shock at different times computed by RBC7.

5.3 Inviscid Taylor-Green vortex
The use of high accuracy schemes is of utmost importance for numerical simulation of turbulent flows since
they enable capturing flow structures from large to small scales at an acceptable computational cost. The
Taylor-Green vortex is a classical example of nonlinear fluid flow with kinetic energy transfert from large to
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small scales and is a good milestone to assess the applicability of numerical schemes to Large Eddy Simulation
(LES).
A three-dimesional vortex is set as an initial condition for 3D-computation. Because of vortex-stretching and
vortex tilting mechanisms, the vortex breaks up, giving origin to smaller and smaller structures. At finite
Reynolds number, the kinetic energy is transfered from larger to smaller scales and dissipated by the smallest
one; the test case gives thereby a simple model of the energy cascade. The case of the inviscid Taylor-Green
vortex (Fig. 13) does not completely model the energy cascade since the energy is not dissipated through
physical viscosity.
The initial conditions of the computation are:

u(x, y, z, 0) = sin(x) cos(y) cos(z)

v(x, y, z, 0) = − cos(x) sin(y) cos(z)

w(x, y, z, 0) = 0

ρ(x, y, z, 0) = 1

p(x, y, z, 0) = p0 +
ρ

16
[(cos(2z) + 2)(cos(2x) + cos(2y))− 2]

Computation parameters are exactly the same as those taken by Shu et al. in [14]. This way our results

(a) t = 0. (b) t = 3. (c) t = 5.

Figure 13: Iso surface Q=0 colored by k (computed with RBC5 on the 1283 mesh). The figure show initial phases
of vortex break-up.

can be compared to those of Shu et al. [14] using the WENO-5 scheme and the Fourier collocation method
with a sharp-cuttof filter (F-SF-23N) which can be considered as a benchmark.
Comparisons are done on integral quantities such as enstrophy (Fig. 14) and kinetic energy (Fig. 15). This
quanties are normalised by their initial values and defined in [14]. Integral quantities are more difficult to
match since all the errors commited in the computational domain will be taken into account. However, RBC
schemes have a good resolvability, thanks to their low dissipation and dispersion errors. Even the third-order
accurate scheme gives better results than the WENO-5 scheme.

Morover, the flow physic of the flow is well captured, and vortex stretching mechanisms are clearly visible
(see Figure 16). These results are encouraging showing a good resolvabilty of high-order RBC schemes and
their aptitude to compute a flow with a large range of scales.

6 Conclusions
A comprehensive study of the dissipation properties of a family of Residual-Based Compact schemes has
been presented for 2-D and 3-D hyperbolic systems of conservation laws. The residual-based numerical
dissipation operator has been shown to be the counterpart of a high-order differential operator based on
pure and mixed derivatives of even order. A general criterion (Thm. 3.1) has been established for this
operator to be dissipative. The resolvability of the RBC schemes has been quantified through its spectral
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(a) 643 mesh (b) 1283 mesh

Figure 14: Comparison of the time evolution of the normalized total enstrophy on a 643 mesh (a) and on a 1283

mesh (b) with different numerical schemes.

(a) 643 mesh (b) 1283 mesh

Figure 15: Comparison of the time evolution of the normalized total kinetic energy on a 643 mesh (a) and on a 1283

mesh (b) with different numerical schemes.
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Figure 16: Visualization of the vortex stretching through iso-contours of vorticity (computed with RBC5 on the
1283 mesh).
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properties.
Numerical tests confirm the theoretical results and demonstrate the importance of a well-designed dissipation
operator for numerical simulations in gas dynamics. The low dissipative and dispersive errors introduced
of RBC schemes make them excellent candidates for compressible turbulent flow simulations, since they
combine good shock capturing capabilities with high resolvability of fine flow structures. Specifically, RBC5
and RBC7 schemes provide very encouraging results, and their applicability to complex unsteady flow will
be further investigated in future work.
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