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Abstract: A general framework is presented for deriving compact-stencil high-order summation-
by-parts (SBP) finite-difference operators for the second derivative with variable coefficients with
4th through 6th order accuracy. These second-derivative operators are compatible with the first
derivative SBP operator, possess the same norm, and can therefore be used to construct time
stable numerical schemes with simultaneous approximation terms to weakly impose boundary
conditions. The derivation of these operators leads to various free parameters which can be used for
optimization of the operator about criteria such as spectral radius and truncation error. Numerical
tests on the one-dimensional linear convection-diffusion equation using the method of manufactured
solutions are used for verification and characterization studies, demonstrating that the compact
operators have lower global error and better accuracy than application of the first derivative twice.
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1 Introduction
Since the seminal work of Kreiss and Oliger [1] and Swartz and Wendroff [2], the computational efficiency
of higher-order (HO) methods has been recognized. In the asymptotic region, the local truncation error of
HO methods is of order O(∆x)p, where p ≥ 3, and ∆x is the mesh spacing. Thus, for a given accuracy, HO
methods require coarser mesh spacing relative to lower-order methods. HO methods have been shown to be
more computationally efficient than lower-order methods; some examples are the linear advection equation
[3] and the compressible Navier-Stokes (NS) equations [4, 5]. Here the HO discretization employed is a com-
bination of summation-by-parts (SBP) finite-difference operators, [6, 7, 8, 9, 8, 10, 11, 12] with simultaneous
approximation terms (SATs) for boundary and interface treatment [13, 14, 15, 16, 17, 18, 19, 20, 21, 22],
which have been successfully applied to various problems including, the linear advection diffusion equation
[23], electromagnetic wave propagation [24], and the compressible Euler and NS equations [17, 19, 22].

The main difficulty in implementing HO methods arises from the boundary treatment. SBP operators
provide a systematic means of deriving HO finite-difference operators with suitably HO boundary treatment
that are time-stable [11]. In conjunction with SATs to weakly impose boundary conditions, SBP operators
naturally give rise to multi-block schemes that have low communication overhead, which is advantageous for
parallel computations. This results from the fact that only C0 continuity needs to be maintained between
blocks and, regardless of the order of the scheme, the same amount of information is passed between blocks,
i.e. there is no need for halo nodes. In curvilinear coordinates, time stability can only be proven for diagonal-
norm SBP operators [25]; thus we limit ourselves to those operators. The disadvantage of diagonal-norm
SBP operators is that while the interior scheme is 2p accurate, the boundary treatment is p order accurate
and the global order of accuracy is p+ 1 [26]. However, Mattsson and Nordström [8] have shown that if the
PDE contains a second derivative, utilization of the compact-stencil SBP formulation for the second deriva-
tive garners an additional degree of accuracy, and so the method is formally p + 2 order accurate. Finally,
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Hicken and Zingg [27] have shown that if the formulation is dual consistent, then functionals converge with
the order of accuracy of the interior scheme.

Compact-stencil operators have been shown to have various numerical advantages over non-compact-stencil
operators (application of the first derivative twice) [11]: they have lower global error, and are more dissipative
of high wavenumber modes. Moreover, they have a smaller bandwidth and thus require less computational
resources, particularly if one is interested in adjoint-based optimization for which the Jacobian must be
constructed. Finally, although one can use the application of the first-derivative twice, doing so with SBP
operators results in the loss of one additional order of accuracy.

The present paper is concerned with presenting a general framework for derivation of higher-order maximally-
compact-stencil SBP operators for the second derivative with variable coefficients. Recent work by Mattsson
[12] presents maximally-compact-stencil SBP operators up to 5th order accuracy. Here we will present a new
derivation for maximally-compact-stencil operators that generalizes to higher order, with better accuracy
characteristics, and reduces the number of equations that need to be solved. These operators are validated
using the one-dimensional linear convection-diffusion equation.

2 Spatial Discretization
Here we introduce summation by parts (SBP) finite-difference operators for the first derivative, the second
derivative with constant coefficients, and the second derivative with variable coefficients. The SBP operators
for the first derivative were first derived by Kreiss and Scherer [6], refined by Strand [7], and applied by
various authors (see [11],[28], [9], [29]). SBP operators are centred difference schemes that do not include
boundary conditions; these must be taken care of by some other means, in our case using SATs, see Section
3. Ultimately we are interested in the solution of the compressible NS equations over complex geometries. In
order to capture these geometries we use structured meshes, so we transform the NS equations to curvilinear
coordinates. As a result, we limit the discussion of SBP operators to those with a diagonal-norm, as these
are the only SBP operators that can be proven to be time-stable in curvilinear coordinates [25] . Given our
interest in the NS equations, the goal is to construct a finite-difference approximation to ∂x(β∂xQ) that is
conservative, has the SBP property, and is compatible with the first derivative such that it can be used to
prove time stability for the linearized NS equations [11]. In line with our goal to garner interest in the SBP
SAT approach, we present detailed derivations of the required derivatives that are 4th-order in the interior
of the domain as examples.

2.1 Notation and definitions
We follow the conventions laid out by Hicken and Zingg [30]. SBP difference operators are generically defined
on a uniformly spaced grid of N + 1 points on the domain [0, 1] and thus the grid spacing is ∆x = 1/N .
Typically the domain we are interested in is not [0, 1], but we assume that for the set of problems of interest
a sufficiently differentiable invertible transformation exists from the domain of interest to [0, 1].

Capital letters with a script type are used to denote functions on a specified domain, and so U(x) ∈ Cp[a, b]
denotes that the function, U(x), is a p times differentiable function on [a, b]. Roman letters in bold font
denote the restriction U(x) onto a N+1 grid of corresponding continuous functions, as an example u ∈ RN+1

means u = [U(x0),U(x1), ..,U(xN )]T . In discussing the imposition of boundary conditions using SATs, we
refer to the unit vectors eL, eR ∈ RN+1, which are

eL = [1, 0, ..., 0]T , eR = [0, .., 0, 1]T .

The operators for the first and second derivatives have different orders of accuracy on the interior, at the
boundary, and globally. In order to differentiate between operators and the various orders of accuracy we
follow the convention that we append a superscript to operators for the various orders of accuracy and a
subscript to denote which derivative we are approximating, for example, D(a,b,c)

i,e , denotes the operator for
the ith derivative with interior order of accuracy of a, boundary closure accuracy of b and results in a solution
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with global order of accuracy c, while the additional subscript e is to differentiate amongst various versions
of the operator. In some cases we will not be interested in one or several of the orders of accuracy and will
insert colons; as an example; D(2,:,:)

3 denotes a second-order approximation to the third derivative where we
specify neither the accuracy of the operator at the boundary nor the global order of accuracy. For the second
derivative with variable coefficients we will make explicit the dependence on the variable coefficients, β, by
denoting these operators as D(a,b,c)

2 (B), where B is a diagonal matrix with the variable coefficients along its
diagonal.

2.2 First derivative
For the first derivative, the SBP property is mimetic of

∫ b
a
Q∂xQdx, which leads to the following definition:

SBP Diagonal Norm First Derivative The matrix D ∈ R(N+1)×(N+1) is an SBP operator for the first
derivative if it approximates the first derivative and is of the form D = H−1Θ, where H ∈ R(N+1)×(N+1), is
a positive-definite diagonal matrix, called the norm, and Θ has property Θ + ΘT = diag(−1, 0, ..., 0, 1).

To understand the SBP property, first let us define the inner product of two real valued-functions, U ,V ∈ [0, 1]

by (U ,V) =
∫ 1

0
UVdx, and hence the norm ||U|| =

√∫ 1

0
U2dx. Now consider the linear convection equation,

∂Q
∂t

= −∂Q
∂x

. (1)

The energy method involves multiplying (1) by Q and integrating in space, i.e. taking the inner product of
the PDE with respect to the solution Q. We get

d||Q||2

dt
= − Q2

∣∣1
0
, (2)

and we can see that stability of the equations depends solely on the boundary values of Q. The semi-discrete
form of the linear convection equation is

dq

dt
= −Dq = −H−1Θq. (3)

We similarly define a discrete inner product and norm as (u,v)H = uTHv and ||u||H =
√
uTHu. Taking

the discrete inner product of (3), i.e. multiplying through by qTH, and adding the transpose, based on the
properties of H and Θ, gives

d||q||2H
dt

= − q2
∣∣1
0
,

and we can see that the SBP property is mimetic, in the discrete case, of integration by parts and thus the
energy method. SBP operators for the first derivative have been well studied (see [7], [9], [21], [14], [16],
[18], [31], [32]). Here we present a brief account of how to derive them. We are interested in compact-stencil
centred-difference approximations of the first derivative that satisfy the SBP property. Various definitions
of compact-stencil exist; here we mean operators that in the interior have the same number of nodes as the
compact first-derivative operator in the interior, i.e. 2p+ 1 nodes. The interior stencil is known, so we need
only concentrate on deriving the stencil at boundary points. To summarize what we know about D = H−1Θ:

1. D is 2p accurate at interior points and p accurate at 2p points at the left and right boundaries [7];

2. ΘT + Θ = diag(−1, 0, 0, ..., 0, 0, 1) implying that Θ is nearly skew-symmetric with Θ(1, 1) = − 1
2 ,

Θ(N + 1, N + 1) = 1
2 , and the remaining diagonal entries are 0;

3. H is diagonal and positive definite.

We use D(4,2,3)
1 as an example, i.e. p = 2. Since it is 4th order in the interior, this means that we have

a 5-point interior stencil, and we have 4 boundary stencils that need to be derived. The global order of
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accuracy of the solution is p+ 1 = 3. The interior stencil is given as ( 1
12 ,−

2
3 , 0,

2
3 ,−

1
12 , ), so we have that

D=H−1Θ=



1
H1,1

1
H2,2

1
H3,3

1
H4,4

1

. . .


×



− 1
2

θ1,2 θ1,3 θ1,4

−θ1,2 0 θ2,3 θ2,4

−θ1,3 −θ2,3 0 θ3,4
1
12

−θ1,4 −θ2,4 −θ3,4 0 2
3

− 1
12

0 0 1
12

− 2
3

0 2
3

− 1
12

. . .
. . .

. . .
. . .

. . .


.

Note that the above form is based upon the minimum boundary stencil width, as derived by Strand [7], to
satisfy order 2p accuracy on the interior and order p accuracy at 2p points. The D(4,2,3)

1 operator gives the
following approximations at the boundary nodes

Node 1: 1
H1,1

(
− 1

2qj + θ1,2qj+1 + θ1,3qj+2 + θ1,4qj+3

)
,

Node 2: 1
H2,2

(−θ1,2qj−1 + θ2,3qj+1 + θ2,4qj+2)

...

The above equations must satisfy our accuracy criteria, in this case second-order accuracy. Inserting Taylor
series expansions of the qjs, we get a system of equations; as an example from the first node we have

− 1
2 + θ1,2 + θ1,3 + θ1,4 = 0,

θ1,2 + 2 θ1,3 + 3 θ1,4 = H1,1,

1
2 θ1,2 + 2 θ1,3 + 9

2 θ1,4 = 0.

The reader will note that there are 2p(2p−1)
2 = 6 coefficients but there are 2p(p + 1) = 12 equations, and

so the system appears overdetermined. However, this does not turn out to be the case since not all of the
equations are linearly independent. In fact, the following occurs: for D(2,1,2)

1 and D(4,2,3)
1 , the operators are

unique, while for D(6,3,4)
1 and D(8,4,5)

1 , the operators have 1 and 3 free parameters respectively that can be
used to optimize their behaviour. For interior orders beyond 8, no solutions can be found with H being
positive definite and hence a discrete norm, see [7]. In order to surpass these limitations one could increase
the interior stencil width, see [9]. The operators D(2,1,2)

1 , D(6,3,4)
1 and D(8,4,5)

1 are given in Appendix A.

2.3 Second derivative
The discrete SBP operator for the second derivative with variable coefficients results in a large system of
non-linear equations that must be solved for the boundary closures. As the order of the operator increases
so too does the complexity of the system of non-linear equations that needs to be solved and the number
of free parameters that need to be specified once a solution is found. The second derivative with constant
coefficients is a specific instance of the second derivative with variable coefficients and therefore the second
derivative with variable coefficients must collapse onto it. We derive the second derivative with constant coef-
ficients to use it as a means of restricting the solution space of the second derivative with variable coefficients.

First we define the SBP operators for the second derivative with constant and variable coefficients, give
a generic structure to construct them, and then deal with each in subsections. We define the discrete SBP
operator for the second derivative with constant coefficients, B = diag(1, . . . , 1), and variable coefficients as
follows:

SBP Second Derivative The matrix D(2p,p,p+2)
2 (B) ∈ R(N+1)×(N+1) is an SBP operator for the second

derivative if it approximates the second derivative and is of the form, D(2p,p,p+2)
2 (B) = H−1 {−M + EBDb},

whereH is a diagonal positive-definite matrix called the norm, E = Diag(−1, 0, ..., 0, 1), B = diag(β0, . . . , βN ),
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D
(:,p+1,:)
b is an approximation to the first derivative at the boundaries, M =

(
D

(2p,p,p+1)
1

)T
HBD

(2p,p,p+1)
1 + R,

M , and R are positive-semi-definite (PSD) and symmetric, and B is PSD.

In order to show that the proposed SBP-SAT discretization is time-stable for the linearized NS equations,
H in the above definition must be the same norm as used with the first derivative. Thus the formulation is
said to be compatible with the first derivative; see Mattsson [10].

To construct these operators, we need R. For the p+2 globally accurate operator, we posit the general form:

Rp+2 =
1

h

2p∑
i=p+1

αi(D̃
(2,1,:)
i,p+2 )TC

(p+2)
i BD̃

(2,1,:)
i,p+2 ,

where h is the mesh spacing. For the construction of R, D̃(2,1,:)
i has the same number of entries as the

compact-stencil first derivative in the interior. The tilde notation denotes an undivided difference approx-
imation. Constructed thus, the operator is guaranteed to be PSD, as long as the Ci, which are diagonal
matrices of the form C

(p+2)
i = diag

(
c
(p+2)
11 , . . . , c

(p+2)
2p2p , 1, . . . , 1, c

(p+2)
2p2p , . . . , c

(p+2)
11

)
, where the superscript

(p+ 2) is to differentiate amongst the various Ci, are PSD.

The interior stencil that is compatible with the proposed construction of the second derivative is given
as

D
(2p,:,:)
2,int = −

{
(D(2p,:,:))TBD(2p,:,:) +

1

h2

2p∑
p+1

αi(D̃
(2,:,:)
i,p+2)TBD̃

(2,:,:)
i,p+2

}
.

We are limited to 8th-order interior accuracy if we want to retain the compact stencil, so we can explicitly
give the general form of the SBP operators for orders 2, 4, 5, and 6 as

D
(2,1,2)
2 (B) = H−1

{
−
(
D

(2,1,2)
1

)T
HBD

(2,1,2)
1 − 1

4h

(
D̃

(2,1,:)
2

)T
C

(2)
2 BD̃

(2,1,:)
2 + 1

hEBD̃
(:,2,:)
1

}
,

D
(4,2,4)
2 (B) = H−1

{
−
(
D

(4,2,3)
1

)T
HBD

(4,2,3)
1 − 1

18h

(
D̃

(2,1,:)
3

)T
C

(4)
3 BD̃

(2,1,:)
3

− 1
48h

(
D̃

(2,1,:)
4,4

)T
C

(4)
4 BD̃

(2,1,:)
4,4 + 1

hEBD̃
(:,3,:)
1

}
,

D
(6,3,5)
2 (B) = H−1

{
−
(
D

(6,3,4)
1

)T
HBD

(6,3,4)
1 − 1

80h

(
D̃

(2,1,:)
4,5

)T
C

(5)
4 BD̃

(2,1,:)
4,5

− 1
100h

(
D̃

(2,1,:)
5,5

)T
C

(5)
5 BD̃

(2,1,:)
5,5 − 1

720h

(
D̃

(2,1,:)
6,6

)T
C

(5)
6 BD̃

(2,1,:)
6,6 + 1

hEBD̃
(:,4,:)
1

}
,

D
(8,4,6)
2 (B) = H−1

{
−
(
D

(8,4,5)
1

)T
HBD

(8,4,5)
1 − 1

350h

(
D̃

(2,1,:)
5,6

)T
C

(6)
5 BD̃

(2,1,:)
5,6

− 1
252h

(
D̃

(2,1,:)
6,6

)T
C

(6)
6 BD̃

(2,1,:)
6,6 − 1

980h

(
D̃

(2,1,:)
7

)T
C

(6)
7 BD̃

(2,1,:)
7

− 1
11200h

(
D̃

(2,1,:)
8

)T
C

(6)
8 BD̃

(2,1,:)
8 + 1

hEBD̃
(:,5,:)
1

}
.

(4)

Without additional restrictions, the above formulation leads to a very large system of highly nonlinear
equations, which are difficult to solve and lead to a large number of free parameters. However, our experience
with the first derivative and the second derivative with constant coefficients leads us to anticipate a certain
degree of cancelation and a particular form of the operators. Specifically, we expect
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• pth order accuracy at 2p boundary nodes at the left and right boundary, with the remaining nodes
having accuracy of 2p; these will be called the accuracy constraints;

• M is symmetric and so we have a 2p× 2p block of unknowns at each boundary; these will be called the
form constraints.

These restrictions lead to operators that have preferable accuracy characteristics, more nodes that are 2p
accurate, and smaller stencil size at boundary nodes. Moreover, our hope is that with these restrictions we
should be able to simplify the process and reduce the number of free parameters.

2.4 SBP second derivative with constant coefficients
Operators with the SBP property for the second derivative with constant coefficients were first derived by
Mattsson and Nordström [10] and refined by Mattsson et al. [11]; operators of accuracyD(2,1,2)

2 ,D(4,2,4)
2 ,D(6,3,5)

2 ,

and D(8,4,6)
2 were derived in the latter. Mattsson and Nordström [10] proved that the second derivative can

have boundary closures with order of accuracy of p but retain global order of accuracy p + 2. However,
the authors did not prove that for an arbitrary number of grid points their proposed D(8,4,6)

2 operator leads
to a time-stable scheme. We could use form (4); however we run into same problems as with the variable-
coefficient case, namely solving a large system of non-linear equations. Instead we propose a second means
that requires solution of a system of equations with fewer nonlinear terms but does not automatically satisfy
the requirements for time stability, i.e. PSD M and R. In order to satisfy the PSD condition, we present
a novel means of determining which members of the resultant operators are time stable for an arbitrary
number of nodes.

First though, to understand the SBP property in the constant-coefficient case, consider the diffusion equation
on the interval [0, 1]:

∂Q
∂t

=
∂

∂x

(
∂Q
∂x

)
. (5)

Applying the energy method to (5) gives

d||Q||2

dt
= 2

(
Q
∂Q
∂x

)∣∣∣∣1
0

− 2

∫ 1

0

(
∂Q
∂x

)2

dx. (6)

The semi-discrete equations are
dq

dt
= H−1 {−M + EBDb}q.

Multiplying by qTH and adding the transpose of the product gives

d||q||H
dt = 2qTEDbq− 2qTMq

= 2qTEDbq− 2(Dq)THDq− 2qTRq,
(7)

and we can see that (7) is mimetic of the continuous case (6) within the discretization error, i.e. the R
term is of the same order as the discretization error. This is easiest to see by noting that 2qTEDbq =

2(qN (Dbq)N − q0(Dbq)0) and 2(Dq)THDq is the discrete approximation to 2
∫ 1

0

(
∂Q
∂x

)2
dx. Also note that

the PSD property of M and R is required to find an energy estimate.

As mentioned, we would like to avoid solving the large system of nonlinear equations that arises from
(4) and propose a construction that leads to a system with fewer nonlinear terms. To understand how we
do so, first we must explore the construction of the D̃(2,1,:)

i operators. These are constructed to mimic the
pattern in the first-derivative operator. The operator D(2p,p,p+1)

1 has 2p boundary nodes at either boundary
that are p order accurate. By virtue of the fact that the Θ component of the operator is almost skew-
symmetric, this means that the largest boundary stencil, in row 2p, has 3p entries. Hence the operation(
D(2p,p,p+1)

)T
HD

(2p,p,p+1)
1 , leads to an operator that has 3p nodes at either boundary that do not have

the interior stencil. Our construction of the D̃(2,1,:)
i mimics the first derivative; thus we implement 2p
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boundary nodes that are first-order approximations to the ith derivative that have 3p entries. The operation(
D̃

(2,1,:)
i

)T
Cp+1
i D̃

(2,1,:)
i results in a symmetric operator that has 3p×3p blocks of non-linear coefficients that

need to be determined to give an operator that is pth-order accurate at the boundary, the remaining entries
coming from the interior stencil and they symmetry of the operator. We can replace these non-linear coef-
ficients with new variables, taking advantage of the symmetry of the operator. As an example consider the(
D̃

(2,1,:)
3

)T
C

(4)
3 D̃

(2,1,:)
3 component of the operator D(4,2,4)

2 : The interior stencil of
(
D̃

(2,1,:)
3

)T
C

(4)
3 D̃

(4,2,4)
3 ,

has the form (− 1
2 , 1, 0,−1, 12 ). Application of this operator twice leads to (− 1

4 , 1,−1,−1, 52 ,−1,−1, 1,− 1
4 ),

and so we replace
(
D̃

(2,1,:)
3

)T
C

(4)
3 D̃

(2,1,:)
3 , with R(4)

3 , which has form

R
(4)
3 =



R311 R312 R313 R314 R315 R316

R312 R322 R323 R324 R325 R326

R313 R323 R333 R334 R335 R336 − 1
4

R314 R324 R334 R344 R345 R346 1 − 1
4

R315 R325 R335 R335 R355 R356 −1 1 − 1
4

R316 R326 R336 R336 R356 R366 −1 −1 1 − 1
4

− 1
4 1 −1 −1 5

2 −1 −1 1 − 1
4

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
− 1

4 1 −1 −1 5
2 −1 −1 1 − 1

4


,

with the lower portion given as the permutation of the columns and rows of the upper portion. The new set
of equations has substantially fewer nonlinearities, the nonlinearities in the D(6,3,4)

2 and D
(8,4,6)
2 operators

coming from the application of the first derivative twice. However, we no longer have a guarantee that M
of the resultant operator is PSD, and we must determine a means of finding which members of the resultant
family of operators satisfy this requirement.

To determine the PSD conditions on M , we break it up into three matrices, two boundary matrices for
the left and right boundary and one for the interior nodes. For example consider the M matrix for the
operator D(4,2,4)

2 :
M = ML +Mint +MR

where

M =



M11 M12 M13 M14

M12 M22 M23 M24

M13 M23 M33 M34
1
12

M14 M24 M34 M44 − 4
3

1
12

1
12 − 4

3
5
2 − 4

3
1
12

. . .
. . .

. . .
. . .

. . .
1
12 − 4

3
5
2 − 4

3
1
12

1
12 − 4

3 M44 M34 M24 M14

1
12 M44 M34 M24 M14

M34 M33 M23 M13

M24 M23 M24 M12

M41 M31 M21 M11



,ML =



M11 M12 M13 M14

M12 M22 M23 M24

M13 M23 M33 M34
1
12

M14 M24 M34 M44 − 4
3

1
12

0 0 0 0 0 0

. . .
. . .

. . .
. . .

. . .
. . .


,
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Mint =



. . .
. . .

. . .
. . .

. . .
0 0 0 0 0

1
12 − 4

3
5
2 − 4

3
1
12

. . .
. . .

. . .
. . .

. . .

1
12 − 4

3
5
2 − 4

3
1
12

0 0 0 0 0

. . .
. . .

. . .
. . .

. . .



,MR =



. . .
. . .

. . .
. . .

. . .
0 0 0 0 0

1
12 − 4

3 M44 M34 M24 M14

1
12 M44 M34 M24 M14

M34 M33 M23 M13

M24 M23 M24 M12

M41 M31 M21 M11



.

Now M is PSD if ML and Mint are PSD, since the sum of matrices that are PSD is PSD, and if ML is
PSD, then MR is PSD. The interior stencil for centred-difference approximations to the second derivative
leads to Mint being PSD; see Kamakoti and Pantano [33] for the proof of the variable-coefficient case, which
assures us that the constant-coefficient case has the same property. Left then is ML, which reduces to the
requirement that the upper 4 × 4 matrix be PSD. Thus, in general, we have converted the conditions for
M being PSD for an arbitrarily sized M , within the confines of the minimum number of nodes required for
construction of the operator, to the conditions under which a 2p× 2p matrix is PSD.

Still the question is not simple since the size of the 2p × 2p matrix increases with the order of the op-
erator. Here we present three alternative means of determining the PSD property ordered from most to least
complex. Since the 2p× 2p matrix we are interested in is symmetric and must be PSD, we can construct a
Cholesky decomposition. However, aside from being difficult to do, this approach is made more difficult by
the need to consider degenerate cases. Alternatively, we can construct the characteristic polynomial of the
matrix and note that the coefficients of the polynomial must have alternating sign – see Horn [34]. Finally, we
can do a numerical parameter search, optimizing the operator with respect to some criterion, and see which
members satisfy the PSD property by doing an eigenvalue analysis. The resultant operators are presented
in Appendix B, and we give optimized values for the free parameters that result in an M that is PSD. The
optimization was conducted by taking the derivative of a known test function and minimizing the L2 norm.

2.5 Second derivative with variable coefficients
Previous work [35] demonstrates the existence of SBP operators for the second derivative that are more
compact than the application of the first derivative twice. The work by Kamakoti et al. [33] proved the
existence of maximally-compact interior stencils. Moreover as we have seen, compact SBP operators for the
constant-coefficient case exist. Taken all together this points to the possibility that compact SBP opera-
tors for the second derivative with variable coefficients exist. Consequently we began our work to derive
these operators. In the meantime Mattsson [12] derived specific instances of the operators D(4,2,4)

2 (B) and
D(6,3,5)(B). Our goal is to derive these operators in as general a form as possible so that we can optimize
them to make them as efficient as possible. In this section we deal with solving (4) in the variable-coefficient
case. We find the general solution for the D(4,2,4)

2 (B) operator, and prove the existence of the D(8,4,6)
2 (B),

operator by determining a solution to (4) , while presenting a D(6,3,5)
2 (B) operator that has preferable accu-

racy characteristics and has the potential to be optimized.

To understand the SBP property we use the variable-coefficient diffusion equation on the interval [0, 1]:

∂Q
∂t

=
∂

∂x

(
β
∂Q
∂x

)
. (8)
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Applying the energy method to (8) gives

d||Q||2

dt
= 2

(
βQ

∂Q
∂x

)∣∣∣∣1
0

− 2

∫ 1

0

β

(
∂Q
∂x

)2

dx. (9)

The semi-discrete equations are
dq

dt
= H−1 {−M + EBDb}q.

Multiplying by qTH and adding the transpose of the product gives

d||q||H
dt = 2qTEBDbq− 2qTMq

= 2qTEBDbq− 2(Dq)THBDq− 2qTRq,
(10)

and we can see that (10) is mimetic of the continuous case (9) within the discretization error, i.e. the R
term is of the same order as the discretization error. This is easiest to see by noting that 2qTEBDbq =

2(qNB(N,N)(Dbq)N−q0B(1, 1)(Dbq)0) and 2(Dq)TBHDq is the discrete approximation of 2
∫ 1

0
β
(
∂Q
∂x

)2
dx.

Also note that the PSD property of M and R is required to find an energy estimate.

To solve for the operators we could use the simple method presented for the second derivative with constant
coefficients. However, to prove that the resultant operator is PSD in the variable-coefficient case, we cannot
resort to a parameter search but rather must rely on using either the Cholesky or the characteristic equation
methods, both of which are difficult; we have yet to seriously attempt either. For the moment, we are forced
to use (4) in order to ensure that M is PSD. This means that we must now solve a large system of nonlinear
equations, which in some cases results in no solution or many solutions with many free parameters. The
4th-order operator is presented in detail, as we can solve (4), and it results in two solutions with one and two
free parameters respectively. Moreover, as before, we use the D(4,2,4)

2 (B) operator as a template to detail
how to solve these operators. The second-order operator, D(2,1,2)

2 , is well known and so we do not discuss it
here, but simply present it in Appendix C.

ForD(4,2,4)
2 (B) we require D̃(2,1,:)

3,4 and D̃(2,1,:)
4,4 , with the remaining matrices given as in the constant-coefficient

case, and the C matrices being diagonal matrices with 2p unknowns at either boundary, the remaining di-
agonal entries being unity. For each of these we will give the boundary stencils as well as the interior stencils.

The D̃(2,1,:)
3,4 operator has the following free variables before imposing constraints: d315, d316, d325, d326,

d335, d336, d345, d346. The boundary and interior stencils are given as:

• D̃(2,1,:)
3,4 (1, 1 : 6): (1 + d315 + 4d316, 3− 4d315− 15d316,−3 + 6d315 + 20d316, 1− 4d315− 10d316, d315, d316)

• D̃(2,1,:)
3,4 (2, 1 : 6): (−1+d325 +4d326, 3−4d325−15d326,−3+6d325 +20d326, 1−4d325−10d326, d325, d326)

• D̃(2,1,:)
3,4 (3, 1 : 6):: (−1+d335+4d336, 3−4d335−15d336,−3+6d335+20d336, 1−4d335−10d336, d335, d336)

• D̃(2,1,:)
3,4 (4, 1 : 6):: (−1+d345+4d346, 3−4d345−15d346,−3+6d345+20d346, 1−4d345−10d346, d345, d346)

• D̃(2,1,:)
3,4 (j, j − 2 : j + 2):: (− 1

2 , 1, 0,−1, 12 )

where the notation dirc refers to the (r, c) entry of the operator D̃(2,1,:)
i,4 .

The D̃(2,1,:)
4,4 operator has the following free variables before imposing constraints d416, d426, d436, d446. The

boundary and interior stencils are given as:

• D̃(2,1,:)
4,4 (1, 1 : 6): (1− d416,−4 + 5d416, 6− 10d416,−4 + 10d416, 1− 5d416, d416)

• D̃(2,1,:)
4,4 (2, 1 : 6): (1− d426,−4 + 5d426, 6− 10d426,−4 + 10d426, 1− 5d426, d426)

9



• D̃(2,1,:)
4,4 (3, 1 : 6): (1− d436,−4 + 5d436, 6− 10d436,−4 + 10d436, 1− 5d436, d436)

• D̃(2,1,:)
4,4 (4, 1 : 6): (1− d446,−4 + 5d446, 6− 10d446,−4 + 10d446, 1− 5d446, d446)

• D̃(2,1,:)
4,4 (j, j − 2 : j + 2): (1,−4, 6,−4, 1)

Imposing the accuracy and form constraints we have a non-linear system with a total of 142 non-linear
equations. On the other hand, we have 8 variables from D̃

(2,1,:)
3,4 , 4 from C

(4)
3 , 4 from D̃

(2,1,:)
4,4 , and 4 from

C
(4)
4 , giving us 16 variables, so the system appears overdetermined. However, because of the chosen form

of D(2p,p,p+2)
2 (B) some of these equations are automatically satisfied, leaving 76 non-linear equations, see

Table 1, and since we find solutions to the system we know that only a small number are independent.
Solving the system, we get two solutions which have only 4 free parameters each. Furthermore, as with
the constant-coefficient case, once we construct M , these reduce to only one and two and free parameters,
respectively.

The first solution, with free parameter c32, is given as:

M(1, 1) = 1349
1680 b1 + 59

192 b2 + 1
105 b3 + 1

192 b4 −
1
18 b1c32 + 1

18 c32 b2,

M(1, 2) = − 649
560 b1 −

59
840 b3 + 1

6 b1c32 −
1
6 c32 b2,

M(1, 3) = − 89
1680 b1 + 9

280 b3 + 1
18 b1c32 −

1
18 c32 b2 + 1

24 b4,

M(2, 2) = 13039
6720 b1 + 3481

6720 b3 −
1
2 b1c32 + 1

2 c32 b2,

M(2, 3) = − 1711
1680 b1 + 1

2 b1c32 −
1
2 c32 b2 −

59
280 b3,

M(2, 4) = 531
2240 b1 −

531
2240 b3 −

1
6 b1c32 + 1

6 c32 b2,

M(3, 3) = 1501
1680 b1 + 59

192 b2 + 113
192 b4 + 1

24 b5 −
1
2 b1c32 + 1

2 c32 b2 + 129
280 b3,

M(3, 4) = − 159
560 b1 −

1
6 b5 + 1

6 b1c32 −
1
6 c32 b2 −

113
280 b3 −

3
8 b4,

M(4, 4) = 671
6720 b1 + 5209

6720 b3 + 5
6 b5 + 1

24 b6 −
1
18 b1c32 + 1

18 c32 b2 + 17
24 b4.

The second solution, with free parameters c32, c33, is given as:

M(1, 1) = 1699
2064 b1 + 59

192 b2 −
11

1032 b3 + 1
192 b4 −

1
18 b1c32 −

1
18 b1c33 + 1

18 c32 b2 + 1
18 b3c33 ,

M(1, 2) = − 839
688 b1 −

5
516 b3 + 1

6 b1c32 + 1
6 b1c33 −

1
6 c32 b2 −

1
6 b3c33 ,

Table 1: Number of equations from the form and accuracy constraints at boundary nodes for D(4,2,4)
2 (B)

Node form constraints accuracy constraints automatically satisfied net number of equations
1 8 10 9 9
2 8 10 9 9
3 10 10 9 11
4 12 10 9 13
5 14 21 15 20
6 8 21 15 14
Total 60 82 66 76
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M(1, 3) = − 839
688 b1 −

5
516 b3 + 1

6 b1c32 + 1
6 b1c33 −

1
6 c32 b2 −

1
6 b3c33 ,

M(1, 4) = − 151
2064 b1 + 9

172 b3 + 1
18 b1c32 + 1

18 b1c33 −
1
18 c32 b2 −

1
18 b3c33 + 1

24 b4,

M(2, 2) = 17519
8256 b1 + 2777

8256 b3 −
1
2 b1c32 −

1
2 b1c33 + 1

2 c32 b2 + 1
2 b3c33 ,

M(2, 3) = − 2477
2064 b1 + 1

2 b1c32 + 1
2 b1c33 −

1
2 c32 b2 −

1
2 b3c33 −

5
172 b3,

M(2, 4) = 819
2752 b1 −

819
2752 b3 −

1
6 b1c32 −

1
6 b1c33 + 1

6 c32 b2 + 1
6 b3c33 ,

M(3, 3) = 2219
2064 b0 + 59

192 b1 + 113
192 b3 + 1

24 b4 − 1
2 b0c32 −

1
2 b0c33 + 1

2 b1c32 + 1
2 b2c33 + 12

43 b2,

M(3, 4) = − 237
688 b0 −

1
6 b4 + 1

6 b0c32 + 1
6 b0c33 −

1
6 b1c32 −

1
6 b2c33 −

59
172 b2 −

3
8 b3,

M(4, 4) = 991
8256 b−1 + 6233

8256 b1 + 5
6 b3 + 1

24 b4 − 1
18 b−1c32 −

1
18 b−1c33 + 1

18 b0c32 + 1
18 b1c33 + 17

24 b2.

The interior entries are given as:

M(j, j − 2) = − 1
6 bj−1 + 1

8 bj−2 + 1
8 bj ,

M(j, j − 1) = − 1
6 bj−2 −

1
6 bj+1 − 1

2 bj−1 −
1
2 bj ,

M(j, j) = 1
24 bj−2 + 5

6 bj−1 + 5
6 bj+1 + 1

24 bj+2 + 3
/4 bj ,

M(j, j + 1) = − 1
6 bj−1 −

1
6 bj+2 − 1

2 bj −
1
2 bj+1,

M(j, j + 2) = − 1
6 bj+1 + 1

8 bj + 1
8 bj+2.

For the D(6,3,5)
2 (B) operator, we are not as fortunate as with the D(4,2,4)

2 (B) operator. We cannot solve the
resultant system of equations with all the free variables in D(6,3,5) = 1, D̃(2,1,:)

4,5 = 24, C(5)
4 = 6, D̃(2,1,:)

5,5 = 18,
C

(5)
5 = 6, and D̃

(2,1,:)
6,5 = 12, C(5)

6 = 6, a total of 76. For the D(6,3,5)
2 (B) operator we must now make a

decision as to how to simplify the resultant system of equations so that we can attain a solution. First we
can drop the accuracy and the form constraints; we will call this the no-constraints condition. We note that
the equations for the no-constraints condition only include free variables from D̃

(2,1,:)
4,5 and C(5)

4 , and so we
are free to set the remaining free variables to any choice. We set the boundary equations of the remaining
matrices to the interior stencil and the non-unity values of the C matrices to zero. At boundary nodes, for
the D̃(2,1,:)

i,5 operators, we cannot use stencils that have smaller bandwidth than the interior stencil, since no
solution can be found under any condition for such boundary operators, so in practice we either leave all the
variables in the boundary nodes or we use the interior stencil. Moreover, our choice of setting the non-unity
entries in the diagonal C matrices for the no-constraints derivation to zero is based upon our experience
for which many of the solutions have zeros for these entries. The no-constraints operator is problematic for
two reasons: first we now have an additional p nodes at each boundary that are p accurate, and second, the
stencils at the boundary nodes are p wider than in the first and second derivative with constant coefficients.

We have tried to solve for just the accuracy constraints, but we find that it is impossible to solve in the gen-
eral case. In order to satisfy both the accuracy and form constraints and find a solution, we must somehow
simplify the system of equations. Two possibilities have lead to solutions. In the first, we systematically set
boundary nodes in the D̃(2,1,:)

i,e operators to their respective interior stencils. In the second, we solve for the
free variables in the first-derivative operator, D(6,3,4)

1 . From our experience with the D(8,4,6)
2 (B) operator,

we note that specifying the values of the free variables in the first derivative substantially simplifies the
resultant system of equations. In fact, in that case we have been unable to solve the system under any
condition without specifying the free variables of the first derivative. Still for the D(6,3,5)

2 (B) operator we
can get away with not specifying the free variables in the first derivative; instead we have been able to solve
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up to only having the first two boundary stencils in D̃
(2,1,:)
5,5 and D̃

(2,1,:)
6,5 , set to the interior stencil while

retaining the remaining free variables and imposing both the accuracy and the form constraints. This results
in 71 solutions, many of which can be discarded, 9 of which we know directly have members which satisfy
the PSD conditions, while another 23, potentially could satisfy the PSD condition. We have not investigated
these yet, as their form is significantly more complex than the solution we present in this paper. We present
one of the 9 solutions for which a PSD M exists that has a particularly simple form. The final M only
has one free parameter, and the solution specifies the free parameter in the first derivative which results in
an operator for the first derivative with accuracy characteristics very close to those of the first derivative
optimized about minimizing the L∞ error of the first derivative on a known test function. We summarize the
various approaches to solving D(6,3,5)

2 (B) in Table 2, where CC stands for constant-coefficient constraints,
A for accuracy constraints, F for form constraints and OFD for optimized first derivative constraints.

Table 2: Solution methods for D(6,3,5)
2 (B)

Constraints Comment

none Many free parameters, difficult to optimize, large boundary stencil
width, p accurate at 3p boundary nodes at either boundary

CC Have not found solutions yet using these restrictions

A Cannot solve without setting some boundary nodes in D
(2,:,:)
i to

respective interior stencils

A&F Cannot solve without setting some boundary nodes in D
(2,:,:)
i to

respective interior stencils

A&F and CC Have not found solutions yet using these restrictions

A&F and OFD Have not found solutions yet using these restrictions

A&F, OFD, and CC Have not found solutions yet using these restrictions

For the D(8,4,6)
2 (B) operator we encounter even more challenges. As mentioned, we cannot even find a

solution for the no-constraint case without specifying the free variables of the first derivative. For this paper
we limit the presentation to a particular solution to demonstrate the existence of the operator. For simplicity
we set all boundary equations for the D̃(2,1,:)

i,6 operators to the interior stencil and all of the free variables in
the C(6)

i matrices to zero, adding free variables to the D̃(2,1,:)
5,6 and C(6)

5 operators until we have a sufficient
number of variables to solve the no-constraints system of equations. In this manner we obtain a unique
operator, given in Appendix C.

2.6 Summary of SBP operators for the second derivative
We have covered a lot of ground in the above section and feel it important to summarize where we are and
what still needs to be done. For SBP operators for the second derivative with constant coefficients we have
found a novel way to circumvent deriving the operators using (4), while enforcing the PSD constraint on
M . We have yet to tackle in a systematic way optimizing these operators and the relationship between op-
timized versions of the first and second derivatives. That is to say, in our limited numerical experimentation
we have found that the optimum for the second derivative with constant coefficients uses a first-derivative
operator that does not necessarily coincide with the optimum for the first derivative by itself. Although we
have been unable to use information about the constant-coefficient case for the variable-coefficient case, we
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believe that ultimately this will be useful information in either simplifying the resultant non-linear system
of equations, or, if we manage to solve for the variable-coefficient operators in the general case, as we did for
the D(4,2,4)

2 (B) operator, to simplify the choice of the free parameters that remain.

For SBP operators for the second derivative with variable coefficients, our goal has been to derive these
using the general form (4) while satisfying the accuracy and form constraints. We managed to do so for
the D(4,2,4)

2 (B) case but encounter difficulties with the higher order operators. For the D(6,3,5)
2 (B) operator,

we almost manage to solve the general case with the accuracy and form constraints, having only to set the
first two boundary stencils of the D̃(2,1,:)

5,5 and D̃
(2,1,:)
6,5 matrices to their interior stencils. Finally, for the

D
(8,4,6)
2 (B) operator, we were unable to solve with the accuracy and form constraints and instead limit the

presentation to an operator that satisfies the no-constraint conditions and has no free parameters.

In the future, we would ideally like to solve for both the D(6,3,5)
2 (B) and the D(8,4,6)

2 (B) operators in the
general case with the accuracy and form constraints. Baring this, we will use some combination of specifying
the free parameters of the first derivative and having the operators collapse onto optimized versions of the
constant-coefficient case in order to simplify the resultant system of equations.

3 Boundary conditions and dissipation model
With SBP operators it is typical to use SATs to enforce boundary conditions weakly. Moreover, as the
compressible NS equations, which are nonlinear, are of interest, we require a dissipation model to stabilize
the solution. The dissipation model is a modified version of that proposed by Diener et al. [9]. To explain
both concepts consider the linear convection-diffusion equation with variable coefficients (see [21] for the
case with b = 1):

∂Q
∂t = −a∂Q∂x + ε ∂∂x

(
b∂Q∂x

)
, 0 ≤ x ≤ 1, t ≥ 0

Q(0, t) + αb∂Q(0,t)
∂x = 0, ∂Q(1,t)

∂x = 0,

Q(x, 0) = f(x),

−2ε
a ≤ α ≤ 0,

and its semi-discrete analogue with SATs and dissipation model applied,

dq

dt
= −aDq + εD2(b)q + SAT +DISS.

SATs impose the boundary conditions as penalty terms; rather than imposing the boundary term exactly,
they do so within the discretization error. This method has been found to be preferable to explicit enforce-
ment of the boundary conditions. In their comparison of weakly and strongly enforced Dirchlet boundary
conditions for the boundary layer solution of the advection-diffusion equation and the incompressible NS
equations, Bazilevs and Hughes [36] found that weakly imposed boundary conditions resulted in faster con-
vergence to steady state. Similarly, Eliasson et al. [37] found that weakly enforced boundary conditions for
the NS equations resulted in faster convergence to steady state, suggesting that the reason for this was an
improved eigenspectrum for the semi-discrete equations.

The SAT term has the following form, [21]:

SAT = −H
−1

2

(
τLe

T
L

[
q −Q(0)eL + αbDbq − b∂Q(0)

∂x eL

])
,

−H
−1

2

(
τRe

T
R

[
bDbq − b∂Q(1)

∂x eR

])
.

where τL = −2ε
α , andτR = 2ε.
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4 Method of Manufactured Solutions
In the method of manufactured solutions [38] a solution is assumed, and a source term is introduced such that
the assumed solution satisfies the equation. For the one-dimensional linear convection-diffusion equation we
have:

∂U
∂t = −∂U∂x + ∂

∂x

(
b∂U∂x

)
+ G,

where

G = 2ε cos(x) sin(x)e−t + cos(x)e−t,

and b = 1+ε cos(x), the initial conditions are U(x, 0) = sin(x), and the solution is given as U(x, t) = sin(x)e−t.

5 Results
Here we present some results for the 2nd to 6th global order SBP operators for both compact-stencil and
non-compact-stencil operators in the context of the one-dimensional linear convection-diffusion equation with
the source term given in Section 4.

For the D(4,2,4)
2 operator, we have two solutions with one and two free parameters, respectively. We perform

a simple parameter search to optimize the operator with regards to the above problem. In the parame-
ter search we use the L2 norm as a measure of the error, looking for values of the free parameters that
minimize this norm. For the first solution we find that the minimum occurs for c32 = 0. For the sec-
ond solution we find that the minimum also occurs for c32 = 0, and we are left with minimizing about
c33. For c33 we find a slight dependence on the number of nodes, N , in the operator, varying between
c33 ∈ [2.020202818181819, 2.222223]. For operators 101 ≥ N ≥ 25 the dependence vanishes and we get a
consistent value of c33 = 2.121212909090910, which will be used for the remaining computations.

The solution for the D(6,3,5)
2 (B) operator we present in this paper has only one free parameter, c54, while

the free variable in the first derivative is specified by the solution as Θ15 = 13241
259200 . We find a minimum

for c54 = 19.363363363363362. Figure 1 shows the L2 norm of the solution error, where the L2 norm is
computed using:

L2 =
√∑N+1

i=1
(qc,i−qe,i)2

(N+1) , (11)

where qc,i is the computed solution and qe,i is the exact solution at the ith node. We can see from the
figure that we attain or surpass the theoretical rates of convergence, except for the non-compact-stencil
D

(4,1,3)
2 (B) operator, which comes very close. The compact-stencil operators not only give an additional

order of accuracy but produce a global discretization error that is substantially less than that of the non-
compact-stencil operators (application of the first derivative twice).

6 Conclusions and Future Work
We have presented a general framework for deriving higher-order maximally-compact-stencil SBP operators,
where the interior stencil width is the same as that for the compact first derivative, for the second derivative
with constant and variable coefficients. The proposed operators posses better accuracy characteristics and
reduce the number of equations that need to be solved. General solutions were found for the D(4,2,4)

2 (B)

operator while a family of solutions for the D(6,3,5)
2 (B) operator was determined, for which we presented a

solution with a simple form with one free parameter that was used to optimize the operator for the linear
convection-diffusion equation. Derivation of the D(8,4,6)

2 (B) operator required specification of the free pa-
rameters in the first derivative, and we reduced the number of remaining free parameters to obtain a unique
solution.
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Figure 1: L2 norm of the error for the one-dimensional linear convection-diffusion equation. Solid lines are
for the compact-stencil operator, while dashed lines are for the non-compact-stencil operator. The slope of
each line is given beside the operator name, and solution one for D(4,2,4)

2 (B) is given as the green line with
diamonds, while solution two is given as the green solid line with crosses.
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Our study of the compact-stencil operator for the second derivative with variable coefficients, as applied
to the linear convection-diffusion equation, has shown that the proposed operators behave as theoretically
predicted. In line with the results of of Mattsson et al. [8], and Mattsson [12], we get p+ 2 convergence rates
for the compact-stencil operators and p+ 1 for the non-compact-stencil operators. Moreover, the compact-
stencil operators have a significantly smaller global error relative to the non-compact-stencil operators. In
future work we intend to implement and characterize the proposed SBP operators for the compressible NS
equations.

Our next steps will be to derive the D(6,3,5)
2 (B) and D

(8,4,6)
2 (B) in the general case with the accuracy

and form constraints. Given our interest in optimization, efficiency is a major priority, particularly as we
are interested in optimization based on the NS equations including the effects of turbulence using either the
Reynolds-averaged equations or large-eddy simulations. Deriving the operators in the general case gives us
the ability to optimize the operators as to make them as efficient as possible. Moreover, since in optimization
functionals are the quantity of concern, extending the dual-consistent formulation proposed by Hicken and
Zingg [27] for the Euler equations to the compressible NS equations would give us additional accuracy in our
computations and will be pursued in the near future.

References
[1] H.-O. Kreiss and J. Oliger. Comparison of accurate methods for the integration of hyperbolic equations.

Tellus, 24(3):199–215, 1972.
[2] B. Swartz and B. Wendroff. The relative efficiency of finite difference and finite element methods: I

hyperbolic problems and splines. SIAM Journal on Numerical Analysis, 11(5):979–993, 1974.
[3] D. W. Zingg. Comparison of high-accuracy finite-difference methods for linear wave propagation. SIAM

Journal on Scientific Computing, 22(2):476–502, 2000.
[4] D. W. Zingg, S. De Rango, M. Nemec, and T. H. Pulliam. Comparison of several spatial discretizations

for the Navier-Stokes equations. Journal of Computational Physics, 160(2):683–704, 2000.
[5] S. De Rango and D. W. Zingg. Higher-order spatial discretization for turbulent aerodynamic computa-

tions. AIAA Journal, 39(7):1296–1304, 2001.
[6] H.-O Kreiss and G. Scherer. Mathematical aspects of finite elements in partial differential equations,

chapter Finite element and finite difference methods for hyperbolic partial differential equations. Aca-
demic Press, New York/London, 1974.

[7] B. Strand. Summation by parts for finite difference approximations for d/dx. Journal of Computational
Physics, 110(1):47–67, 1994.

[8] K. Mattsson, M. Svärd, and J. Nordström. Stable and accurate artificial dissipation. Journal of Scientific
Computing, 21(1):57–79, 2004.

[9] P. Diener, E. N. D., E. Schnetter, and M. Tiglio. Optimized high-order derivative and dissipation
operators satisfying summation by parts, and applications in three-dimensional mulit-block evolutions.
Journal of Scientific Computing, 32(1):109–145, 2007.

[10] K. Mattsson and J. Nordström. Summation by parts operators for finite difference approximations of
second derivatives. Journal of Computational Physics, 199:503–540, 2004.

[11] K. Mattsson, M. Svard, and M. Shoeybi. Stable and accurate schemes for the compressible Navier–Stokes
equations. Journal of Computational Physics, 227(4):2293–2316, 2008.

[12] K. Mattsson. Summation by parts operators for finite difference approximations of second-derivatives
with variable coefficients. Journal of Scientific Computing, 51(3):650–682, 2011.

[13] D. Funaro and D. Gottlieb. A new method of imposing boundary conditions in pseudospectral approx-
imations of hyperbolic equations. Mathematics of Computation, 51(184):599–613, 1988.

[14] M. H. Carpenter, D. Gottlieb, and S. Abarbanel. Time-stable boundary conditions for finite-difference
schemes solving hyperbolic systems: methodology and application to high-order compact schemes. Jour-
nal of Computational Physics, 111(2):220–236, 1994.

[15] J. S. Hesthaven. A stable penalty method for the compressible Navier-Stokes equations: III multidi-
mensional domain decomposition schemes. SIAM Journal on Scientific Computing, 20(1), 1988.

16



[16] M. H. Carpenter, J. Nordström, and D. Gottlieb. A stable and conservative interface treatment of ar-
bitrary spatial accuracy. Journal of Computational Physics, 148(2):341–365, 1999.

[17] J. Nordström and M. H. Carpenter. Boundary and interface conditions for high order finite differ-
ence methods applied to the Euler and Navier-Stokes equations. Journal of Computational Physics,
148(2):621–645, 1999.

[18] J. Nordström and M. H. Carpenter. High-order finite-difference methods, multidimensional linear prob-
lems, and curvilinear coordinates. Journal of Computational Physics, 173(1):149–174, 2001.

[19] M. Svärd, M. H. Carpenter, and J. Nordström. A stable high-order finite difference scheme for the
compressible Naiver-Stokes equations, far-field boundary conditions. Journal of Computational Physics,
225(1):1020–1038, 2007.

[20] M. Svärd and J. Nordström. A stable high-order finite difference scheme for the compressible Navier–
Stokes equations: No-slip wall boundary conditions. Journal of Computational Physics, 227(10):4805–
4824, 2008.

[21] K. Mattsson. Boundary procedures for summation-by-parts operators. Journal of Scientific Computing,
1(133-153), 2003.

[22] J. Nordström, J. Gong, E. van der Weide, and M. Svärd. A stable and conservative high order multi-block
method for the compressible Navier-Stokes equations. Journal of Computational Physics, 228(24):9020–
9035, 2009.

[23] M. H. Carpenter, J. Nordström, and D. Gottlieb. A stable and conservative interface treatment of
arbitrary spatial accuracy. Journal of Computational Physics, 148(2):341–365, 1999.

[24] J. Nordström and R. Gustafsson. High order finite difference approximations of electromagnetic wave
propagation close to material discontinuities. Journal of Scientific Computing, 18(2):215–234, 2003.

[25] M. Svärd. On coordinate transformations for summation-by-parts operators. Journal of Scientific
Computing, 20(1):29–42, 2004.

[26] B. Gustafsson. The convergence rate for difference approximations to general mixed initial boundary
value problems. SIAM Journal on Numerical Analysis, 18(2):179–190, 1981.

[27] J. E. Hicken and D. W. Zingg. The role of dual consistency in functional accuracy: Error estimation
and superconvergence. AIAA paper 2011-3070, 2011.

[28] J. E. Hicken and D. W. Zingg. A parallel Newton- Krylov solver for the euler equations discretized
using simultaneous approximation terms. AIAA Journal, 46(11):2773–2786, 2008.

[29] S. Dias and D. W. Zingg. A high-order parallel Newton-Krylov flow solver for the euler equations. AIAA
paper, 2009-3657, 2009.

[30] J. E. Hicken and D. W. Zingg. Superconvergent functional estimates from summation-by- parts finite-
difference discretizations. SIAM Journal on Scientific Computing, 33(2):893–922, 2011.

[31] P. Olsson. Summation by parts, projections, and stability. i. Mathematics of Computation, 64(211):1035–
1065, 1995.

[32] M. Gerritsen and P. Olsson. Designing an efficient solution strategy for fluid flows: 1. a stable high order
finite difference scheme and sharp shock resolution for the euler equations. Journal of Computational
Physics, 129(2):245–262, 1996.

[33] R. Kamakoti and C. Pantano. High-order narrow stencil finite-difference approxmations of second-
derivatives involving variable coefficients. SIAM Journal on Scientific Computing, 31(6):4222–4243,
2009.

[34] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Universiyt Press, 1985.
[35] K. Mattsson. Summation by parts operators for finite difference approximations of second-derivatives

with variable coefficients. Technical report, Department of Information Technology, Uppsala University,
October 2010.

[36] Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics.
Computers & Fluids, 36(1):12–26, 2007.

[37] P. Eliasson, S. Eriksson, and J. Nordström. The influence of weak and strong solid wall boundary
conditions on the convergence to steady-state of the Navier-Stokes equations. AIAA Paper 2009-3551,
2009.

[38] C. J. Roy, C. C. Nelson, T. M. Smith, and C. C. ober. Verification of Euler/Navier-Stokes codes
using the method of manufactured solutions. International journal for numerical methods in fluids,
44(6):599–620, 2004.

17



A First-derivative operators
Using the approach for deriving the first derivative SBP operators given in the text, we present them below.

D
(2,1,2)
1 : H = h× diag

(
1
2 , 1, . . . , 1,

1
2

)
,

Θ =


− 1

2
1
2

− 1
2 0 1

2
. . . . . . . . .

− 1
2 0 1

2
− 1

2
1
2

 .

D
(4,2,3)
1 : H = h× diag

(
17
48 ,

59
48 ,

43
48 ,

49
48 , 1, . . . , 1,

49
48 ,

43
48 ,

59
48 ,

17
48

)

Θ =



− 1
2

59
96 − 1

12 − 1
32

− 59
96 0 59

96 0

1
12 − 59

96 0 59
96 − 1

12

1
32 0 − 59

96 0 2
3 − 1

12

1
12 − 2

3 0 2
3 − 1

12

. . . . . . . . . . . . . . .

1
12 − 2

3 0 2
3 − 1

12

1
12 − 2

3 0 59
96 0 − 1

32

1
12 − 59

96 0 59
96 − 1

12

0 − 59
96 0 59

96

1
32

1
12 − 59

96
1
2



D
(6,3,4)
1 : H = h× diag

(
13649
43200 ,

12013
8640 ,

2711
4320 ,

5359
4320 ,

7877
8640 ,

43801
43200 , 1, . . . , 1,

43801
43200 ,

7877
8640 ,

5359
4320 ,

2711
4320 ,

12013
8640 ,

13649
43200

)
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Θ



θ11 θ12 θ13 θ14 θ15 θ16

−θ12 0 θ23 θ24 θ25 θ26

−θ13 −θ23 0 θ34 θ35 θ36

−θ14 −θ24 −θ34 0 θ45 θ46
1
60

−θ15 −θ25 −θ35 −θ45 0 θ56 − 3
20

1
60

−θ16 −θ26 −θ36 −θ46 −θ56 0 3
4 − 3

20
1
60

− 1
60

3
20 − 3

4 0 3
4 − 3

20
1
60

. . . . . . . . . . . . . . . . . . . . .

− 1
60

3
20 − 3

4 0 3
4 − 3

20
1
60

− 1
60

3
20 − 3

4 0 θ56 θ46 θ36 θ26 θ16

− 1
60

3
20 −θ56 0 θ45 θ35 θ25 θ15

− 1
60 −θ46 −θ45 0 θ34 θ24 θ14

−θ36 −θ35 −θ34 0 θ23 θ13

−θ26 −θ25 −θ24 θ23 0 θ12

−θ16 −θ15 −θ14 θ13 θ12 −θ11


where,

θ11 = − 1
2 , θ12 = 224881

345600 −
1
4 θ15, θ13 = − 10073

129600 + θ15, θ14 = − 16033
172800 −

3
2 θ15, θ16 = − 1

4 θ15 + 20539
1036800 ,

θ23 = 49967
103680 −

5
2 θ15, θ24 = 187

960 + 5 θ15, θ25 = 383
13824 −

15
4 θ15, θ26 = θ15 − 1741

32400 ,

θ34 = 28279
51840 − 5 θ15, θ35 = 5 θ15 − 4651

25920 , θ36 = − 3
2 θ15 + 2197

57600 ,

θ45 = − 5
2 θ15 + 25157

34560 , θ46 = θ15 − 12581
129600 ,

θ56 = − 1
4 θ15 + 147127

207360 ,

D
(8,4,5)
1 : H=diag( 1498139

5080320 ,
1107307
725760 ,

20761
80640 ,

1304999
725760 ,

299527
725760 ,

103097
80640 ,

670091
725760 ,

5127739
5080320 ,1,...,1,

5127739
5080320 ,

670091
725760 ,

103097
80640 ,

299527
725760 ,

1304999
725760 ,

20761
80640 ,

1107307
725760 ,

1498139
5080320 )

θ11 = − 1
2 , θ12 = − 114877129

6773760 + 1
5 θ27 + 5 θ68 + 24 θ78, θ13 = 571884877

6773760 − θ27 − 24 θ68 − 115 θ78,

θ14 = − 9637446191
60963840 + 2 θ27 + 215 θ78 + 45 θ68, θ15 = 236230403

1693440 − 2 θ27 − 40 θ68 − 190 θ78,

θ16 = − 1417763
27648 + θ27 + 15 θ68 + 70 θ78, θ17 = − 6688951

8709120 −
1
5 θ27 + θ78, θ18 = 24839327

6773760 − θ68 − 5 θ78,

θ23 = − 119306357
483840 +3 θ27 +70 θ68 +336 θ78, θ24 = 149409773

241920 − 8 θ27− 175 θ68− 840 θ78, θ25 = − 5373215293
8709120 +9 θ27 +175 θ68 +840 θ78,

θ26 = 119306357
483840 − 24

5 θ27 − 70 θ68 − 336 θ78, θ28 = − 536324953
30481920 + 5 θ68 + 24 θ78, θ34 = − 40075829

53760 + 10 θ27 + 210 θ68 + 1015 θ78,
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θ35 = 970678259
967680 − 15 θ27 − 280 θ68 − 1365 θ78, θ36 = − 3559543

7680 + 9 θ27 + 126 θ68 + 630 θ78, θ37 = 1298651
120960 − 2 θ27 − 14 θ78,

θ38 = 7439833
225792 − 10 θ68 − 45 θ78, θ45 = − 622544147

967680 + 10 θ27 + 175 θ68 + 875 θ78, θ46 = 9523751
23040 − 8 θ27 − 105 θ68 − 560 θ78,

θ47 = − 4165723
155520 + 2 θ27 + 35 θ78, θ48 = − 19764155

677376 + 10 θ68 + 40 θ78, θ56 = 3 θ27 − 30014249
193536 + 35 θ68 + 210 θ78,

θ57 = 245071
9216 − θ27 − 35 θ78, θ58 = 657798011

60963840 − 5 θ68 − 15 θ78, θ67 = − 240463
24192 + 1

5 θ27 + 14 θ78

B SBP operators for the second derivative with constant coeffi-
cients

D
(2,1,2)
2 : M11 = 1, M12 = −1, Mj,j−1 = −1, Mj,j = 2, Mj,j = −1

D̃
(:,2,:)
1 (11) = −D̃(:,2,:)

1 (N + 1, N + 1) = − 3
2 , D̃

(:,2,:)
1 (12) = −D̃(:,2,:)

1 (N + 1, N) = 2,

D̃
(:,2,:)
1 (13) = −D̃(:,2,:)

1 (N + 1, N − 1) = − 1
2

D
(4,2,4)
2 : M11 = 9

8 , M12 = − 59
48 , M13 = 1

12 , M14 = 1
48 , M22 = 59

24 , M23 = − 59
48 , M24 = 0, M33 = 55

24 ,

M34 = − 59
48 , M44 = 59

24 , Mj−2 = 1
12 , Mj−1 = − 4

3 , Mj = 5
2 , Mj+1 = − 4

3 , Mj+2 = 1
12

D̃
(:,3,:)
1 (11) = −D̃(:,3,:)

1 (N + 1, N + 1) = − 11
6 , D̃

(:,3,:)
1 (12) = −D̃(:,3,:)

1 (N + 1, N) = 3,

D̃
(:,3,:)
1 (13) = −D̃(:,3,:)

1 (N + 1, N − 1) = − 3
2 , D̃

(:,3,:)
1 (14) = −D̃(:,3,:)

1 (N + 1, N − 2) = 1
2

D
(6,3,5)
2 : Optimized values θ15 = −0.007650765076508, R416 = 63.636363636363626, R516 = −83.838383838383834

and R616 = 59.595959595959584 M11 = 26186839262775032479
22371314363653896000 + 107839124700805815409

93820217467072685005 θ15 − 5572523608171200
1374755915701849 θ15

2 − 1
80 R416 −

1
100 R516 − 1

720 R616 ,

M12 = − 70092213991064437097
53691154472769350400 −

107839124700805815409
18764043493414537001 θ15 + 27862618040856000

1374755915701849 θ15
2 + 1

16 R416 + 1
20 R516 + 1

144 R616 ,

M13 = 230537076389599279
2684557723638467520 + 215678249401611630818

18764043493414537001 θ15 − 55725236081712000
1374755915701849 θ15

2 − 1
8 R416 − 1

10 R516 − 1
72 R616 ,

M14 = 480573607038734353
8948525745461558400 −

215678249401611630818
18764043493414537001 θ15 + 55725236081712000

1374755915701849 θ15
2 + 1

8 R416 + 1
10 R516 + 1

72 R616 ,

M15 = 107839124700805815409
18764043493414537001 θ15 + 6838481746435627

1677848577274042200 −
27862618040856000
1374755915701849 θ15

2 − 1
16 R416 − 1

20 R516 − 1
144 R616 ,

M16 = − 107839124700805815409
93820217467072685005 θ15− 2346074127529863073

268455772363846752000+
5572523608171200
1374755915701849 θ15

2+ 1
80 R416+

1
100 R516+

1
720 R616 M22 = 6636327825578494873

2684557723638467520+

539195623504029077045
18764043493414537001 θ15 − 139313090204280000

1374755915701849 θ15
2 − 5

16 R416 − 1
4 R516 − 5

144 R616 ,

M23 = − 1797986189259347647
1789705149092311680 −

1078391247008058154090
18764043493414537001 θ15 + 278626180408560000

1374755915701849 θ15
2 + 5

8 R416 + 1
2 R516 + 5

72 R616 ,

M24 = − 413513765307439787
2684557723638467520 + 1078391247008058154090

18764043493414537001 θ15 − 278626180408560000
1374755915701849 θ15

2 − 5
8 R416 − 1

2 R516 − 5
72 R616 ,

M25 = − 539195623504029077045
18764043493414537001 θ15 + 139313090204280000

1374755915701849 θ15
2 − 417169689063704929

10738230894553870080 + 5
16 R416 + 1

4 R516 + 5
144 R616 ,

M26 = 107839124700805815409
18764043493414537001 θ15 + 69223621197595393

2237131436365389600 −
27862618040856000
1374755915701849 θ15

2 − 1
16 R416 − 1

20 R516 − 1
144 R616

M33 = 127829446458355505
67113943090961688 + 2156782494016116308180

18764043493414537001 θ15 − 557252360817120000
1374755915701849 θ15

2 − 5
4 R416 − R516 − 5

36 R616 ,

M34 = − 3147712892227461013
2684557723638467520 −

2156782494016116308180
18764043493414537001 θ15 + 557252360817120000

1374755915701849 θ15
2 + 5

4 R416 + R516 + 5
36 R616 ,

20



M35 = 1078391247008058154090
18764043493414537001 θ15 − 278626180408560000

1374755915701849 θ15
2 + 197041321020116971

894852574546155840 −
5
8 R416 − 1

2 R516 − 5
72 R616 ,

M36 = − 215678249401611630818
18764043493414537001 θ15 − 180293443335375817

5369115447276935040 + 55725236081712000
1374755915701849 θ15

2 + 1
8 R416 + 1

10 R516 + 1
72 R616

M44 = 12468941238494581
4660690492427895 + 2156782494016116308180

18764043493414537001 θ15 − 557252360817120000
1374755915701849 θ15

2 − 5
4 R416 − R516 − 5

36 R616 ,

M45 = − 1078391247008058154090
18764043493414537001 θ15 + 278626180408560000

1374755915701849 θ15
2 − 1607086159417302073

1073823089455387008 + 5
8 R416 + 1

2 R516 + 5
72 R616 ,

M46 = 215678249401611630818
18764043493414537001 θ15 + 1412441198725977743

13422788618192337600 −
55725236081712000
1374755915701849 θ15

2 − 1
8 R416 − 1

10 R516 − 1
72 R616

M55 = − 139313090204280000
1374755915701849 θ15

2 + 6967547563240370611
2684557723638467520 + 539195623504029077045

18764043493414537001 θ15 − 5
16 R416 − 1

4 R516 − 5
144 R616 ,

M56 = 27862618040856000
1374755915701849 θ15

2 − 107839124700805815409
18764043493414537001 θ15 − 8489912257066819361

5965683830307705600 + 1
16 R416 + 1

20 R516 + 1
144 R616

M66 = − 5572523608171200
1374755915701849 θ15

2 + 107839124700805815409
93820217467072685005 θ15 + 180562318487605372787

67113943090961688000 −
1
80 R416 − 1

100 R516 − 1
720 R616

Mj−3 = − 1
90 ,Mj−2 = 3

20 ,Mj−1 = − 3
2 ,Mj = 49

18 ,Mj+1 = − 3
2 ,Mj+2 = 3

20 ,Mj+3 = − 1
90 ,

D̃1(11) = −Db(N+1,N+1) = − 25
12 , D̃

(:,4,:)
1 (12) = −D̃(:,4,:)

1 (N + 1, N) = 4,

D̃
(:,4,:)
1 (13) = −D̃(:,4,:)

1 (N + 1, N − 1) = −3, D̃(:,4,:)
1 (14) = −D̃(:,4,:)

1 (N + 1, N − 2) = 4
3 , D̃

(:,4,:)
1 (15) = −D̃(:,4,:)

1 (N + 1, N − 2) = − 1
4

D
(8,4,6)
2 : Given space limitations, we present how to construct the required matrices for deriving the D(8,4,6)

2

operator. The operator is constructed as

D
(8,4,6)
2 = H−1

{
−
(
D

(8,4,5)
1

)T
HD

(8,4,5)
1 − 1

350(h)R
(6)
5 − 1

252(h)R
(6)
6 − 1

980(h)R
(6)
7 − 1

11200(h)R
(6)
8 + 1

hED̃
(:,5,:)
1

}
.

Each of the matrices R5, R6, R7, and R8 is symmetric and has a box that is 12×12 with unknown coefficients,
while the remaining entries are defined by the interior stencil, which is as follows:

R
(6)
5 (j, j − 8 : j + 8) =

[
− 1

16
,

1

2
,−7

4
,

7

2
,−17

4
,

5

2
,

7

4
,−13

2
,

69

8
,−13

2
,

7

4
,

5

2
,−17

4
,

7

2
,−7

4
,

1

2
,− 1

16

]
,

R
(6)
6 (j, j−8 : j+8) =

[
9

100
,−21

25
,

17

5
,−39

5
,

57

5
,−313

25
,

363

25
,−99

5
,

231

10
,−99

5
,

363

25
,−313

25
,

57

5
,−39

5
,

17

5
,−21

25
,

9

100

]
,

R
(6)
7 (j, j − 8 : j + 8) =

[
−1

4
, 3,−16, 49,−91, 91, 0,−143,

429

2
,−143, 0, 91,−91, 49,−16, 3,−1

4

]
,

R
(6)
8 (j, j−8 : j+8) = [1,−16, 120,−560, 1820,−4368, 8008,−11440, 12870,−11440, 8008,−4368, 1820,−560, 120,−16, 1] .

D̃
(:,5,:)
1 (1, 1) = −D̃(:,5,:)

1 (N,N) = − 4723
2100 , D̃

(:,5,:)
1 (1, 2) = −D̃(:,5,:)

1 (N,N − 1) = 839
175 ,

D̃
(:,5,:)
1 (1, 3) = −D̃(:,5,:)

1 (N,N − 2) = − 157
35 , D̃

(:,5,:)
1 (1, 4) = −D̃(:,5,:)

1 (N,N − 3) = 278
105 ,

D̃
(:,5,:)
1 (1, 5) = −D̃(:,5,:)

1 (N,N − 4) = − 103
140 , D̃

(:,5,:)
1 (1, 6) = −D̃(:,5,:)

1 (N,N − 5) = − 1
175 ,

D̃
(:,5,:)
1 (1, 7) = −D̃(:,5,:)

1 (N,N − 6) = 6
175 ,
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C SBP operators for the second derivative with variable coefficients

D
(4,2,4)
2 (B): This is a well known operator and can be derived in multiple ways. Here we present the final

operator:

M(1, 1) =
1

2
b1 +

1

2
b2,M(1, 2) = −1

2
b1 −

1

2
b2,M(2, 2) =

1

2
b1 + b2 +

1

2
b3

with the interior stencil given as

M(j, j − 1) = −1

2
bj−1 −

1

2
bj ,M(j, j) =

1

2
bj−1 + bj +

1

2
bj+1,M(j, j + 1) = −1

2
bj −

1

2
bj+1.

For the D(6,3,5)
2 (B) operator Θ15 = 13241

259200 , while the entries in M are as follows:

M(1, 1) = 10800
13649

b1 + 40404456100952950342336957378423912929225841
121642464506660098545269212273252478308032000

b2 + 1907161
1686458880

b3 + 40904803
3086784000

b4 + 175324081
27659232000

b5+

13315201
17175628800

b6 + 1
100

b4c54

M(1, 2) = − 330701
327576

b1 − 8453101
562152960

b3 − 3625633
370414080

b4 − 74983783
3687897600

b5 − 835621
2862604800

b6−

1190275333316954549780981622094045689014543
9731397160532807883621536981860198264642560

b2 − 1/20 b4c54

M(1, 3) = 6905
163788

b1 − 305008109078185925192727408367440760163
4486996108692736943757624945527572051200

b2 − 138751201
926035200

b4 + 17385433
1843948800

b5 − 485317
114504192

b6 + 1/10 b4c54

M(1, 4) = 14637
54596

b1 − 1837135093642846375736148179648459011119709
12164246450666009854526921227325247830803200

b2 + 10383739
843229440

b3 + 309031699
5531846400

b5 + 27436831
8587814400

b6−

1/10 b4c54 + 234593
1929240

b4

M(1, 5) = − 13241
163788

b1 − 672114744489070674597075831060419705166571
24328492901332019709053842454650495661606400

b2 + 1813253
562152960

b3 + 3625633
370414080

b4 + 20335877
1908403200

b6−

251579
6402600

b5 + 1/20 b4c54

M(1, 6) = − 3649
327576

b1 + 813578192998621653135820707341757423364513
22116811728483654280958038595136814237824000

b2 − 183673
112430592

b3 + 138751201
9260352000

b4 − 73792093
6146496000

b5 − 3649
361440

b6

− 1
100

b4c54

M(2, 2) = 37466641
187384320

b3 − 337141319
3333726720

b4 + 32069569
491719680

b5 + 52441
477100800

b6 + 109363151401
84907699200

b1+

3688468654513792415289891494095994233163053
9731397160532807883621536981860198264642560

b2 + 1/4 b4c54

M(2, 3) = 217516705
333372672

b4 − 7435519
245859840

b5 + 30457
19084032

b6 − 456698081
8490769920

b1 − 525843099388717108696006963379476215881
1794798443477094777503049978211028820480

b2 − 1/2 b4c54

M(2, 4) = − 46023799
281076480

b3 − 132168757
737579520

b5 − 1721851
1431302400

b6 − 1613490179
4717094400

b1 − 837347369628168251940141738652474190656271
4865698580266403941810768490930099132321280

b2+

1/2 b4c54 − 139252
241155

b4

M(2, 5) = − 8036873
187384320

b3 + 337141319
3333726720

b4 − 1276217
318067200

b6 + 4378811941
42453849600

b1 + 3100255381699148585555158355026708402565933
9731397160532807883621536981860198264642560

b2+

107597
853680

b5 − 1/4 b4c54

M(2, 6) = 814093
37476864

b3 − 43503341
666745344

b4 + 31559899
819532800

b5 + 1206727949
84907699200

b1 − 97512061704911434894003181298198956626829
884672469139346171238321543805472569512960

b2 + 229
60240

b6+

1/20 b4c54

M(3, 3) = − 845817599
833431680

b4 + 1723969
122929920

b5 + 442225
19084032

b6 + 1907161
849076992

b1 + 28421884688362413557983953905530968191
89739922173854738875152498910551441024

b2 + b4c54

M(3, 4) = 30644107
368789760

b5 − 1000027
57252096

b6 + 6737899
471709440

b1 + 111153046084790373787166750753517298163
448699610869273694375762494552757205120

b2 − b4c54 + 410237
385848

b4

M(3, 5) = − 217516705
333372672

b4 − 741209
12722688

b6 − 18285821
4245384960

b1 − 51691048198429610269810204907883667915
179479844347709477750304997821102882048

b2 − 24947
426840

b5 + 1/2 b4c54

M(3, 6) = − 217516705
333372672

b4 − 741209
12722688

b6 − 18285821
4245384960

b1 − 51691048198429610269810204907883667915
179479844347709477750304997821102882048

b2 − 24947
426840

b5 + 1/2 b4c54

M(4, 4) = 23804641
262060800

b1 + 120005477
221273856

b5 + 110209201
4293907200

b6 + 1
180

b7 + 272376206506802243207452911549925498237597
1216424645066600985452692122732524783080320

b2 + 56535361
421614720

b3+

b4c54 − 4879
5359

b4

M(4, 5) = − 64602839
2358547200

b1 − 29661733
954201600

b6 − 1/40 b7 − 480988850897909970622794752545229036955689
2432849290133201970905384245465049566160640

b2 + 9872447
281076480

b3−

173701
640260

b5 − 1/2 b4c54 + 116695
385848

b4

M(4, 6) = − 17803471
4717094400

b1 − 314463127
1229299200

b5 + 1/20 b7 + 108786659595659526046519374650669224902533
2211681172848365428095803859513681423782400

b2 − 1000027
56215296

b3−

371
90360

b6 + 1/10 b4c54 + 7519
241155

b4

M(5, 5) = 279377095751864675729010129709828066844101
973139716053280788362153698186019826464256

b2 + 137080729
212044800

b6 + 1/8 b7 + 1
180

b8 + 1723969
187384320

b3+

175324081
21226924800

b1 + 232607141
666745344

b4 + 671161
1280520

b5 + 1/4 b4c54

M(5, 6) = 279377095751864675729010129709828066844101
973139716053280788362153698186019826464256

b2 + 137080729
212044800

b6 + 1/8 b7 + 1
180

b8 + 1723969
187384320

b3+

175324081
21226924800

b1 + 232607141
666745344

b4 + 671161
1280520

b5 + 1/4 b4c54

M(6, 6) = 88445
37476864

b3 + 19
20
b7 + 1/8 b8 + 1

180
b9 + 8530288801

83343168000
b4+

709041613738887613006217766007060339775987
22116811728483654280958038595136814237824000

b2 + 13315201
84907699200

b1 + 1260357529
1365888000

b5 + 94793
180720

b6 + 1
100

b4c54
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Internal stencil

M(j, j − 3) = 1/40 bj−1 + 1/40 bj−2 − 11
360 bj −

11
360 bj−3

M(j, j − 2) = 1/20 bj+1 − 3/10 bj−1 + 1/20 bj−3 + 7
40 bj + 7

40 bj−2

M(j, j − 1) = −3/10 bj+1 − 1/40 bj+2 − 3/10 bj−2 − 1/40 bj−3 − 17
40 bj −

17
40 bj−1

M(j, j) = 19
20 bj+1 + 1/8 bj+2 + 1

180 bj+3 + 19
20 bj−1 + 1/8 bj−2 + 1

180 bj−3 + 101
180 bj

M(j, j + 1) = −3/10 bj+2 − 1/40 bj+3 − 3/10 bj−1 − 1/40 bj−2 − 17
40 bj −

17
40 bj+1

M(j, j + 2) = −3/10 bj+1 + 1/20 bj+3 + 1/20 bj−1 + 7
40 bj + 7

40 bj+2

M(j, j + 3) = 1/40 bj+1 + 1/40 bj+2 − 11
360 bj −

11
360 bj+3

For the D(8,4,6)
2 (B) operator, we give the form of the various matrices for the operator presented in the

paper. As noted, to get a solution we specify the free parameters of the first derivative, θ27 = − 17001835
14684544 ,

θ68 = 324
4213 , and θ78 = 441

607 . For the D̃
(2,1,:)
5 we have the upper portion and internal stencils given as:

• D̃(2,1,:)
5,6 (1 : 5, 1 : 9) = (− 1

4 , 1,−
3
2 , 1, 0,−1, 32 ,

1
4 )

• D̃(2,1,:)
5,6 (6, 1 : 10) = (0,− 1

4 , 1,−
3
2 , 1, 0,−1, 32 ,

1
4 )

• D̃(2,1,:)
5,6 (7, 1 : 11) = (0, 0,− 1

4 , 1,−
3
2 , 1, 0,−1, 32 ,

1
4 )

• D̃(2,1,:)
5,6 (7, 1 : 11) = (−.233733, 0.927044,−1.629026, 2.408228,−3.696047, 3.923674,−2.159058, 0.435713, 0.033912,−0.107020,−0.158569, 0.001579) ,

• D̃
(2,1,:)
5,6 (j, j − 4 : j + 4) = (− 1

4 , 1,−
3
2 , 1, 0,−1, 32 ,

1
4 )

The bottom 2p entries are the negative of the permutation of the rows and columns of the upper 2p rows
while C(6)

5 = diag(0, 0, 0, 0, 0, 0, 0, 118.87949, 1, . . . , 1, 118.87949, 0, 0, 0, 0, 0, 0, 0).

For D̃(2,1,:)
6,6 we have the upper portion and internal stencils given as:

• D̃(2,1,:)
6,6 (1− 8, 1 : 9) =

(
3
10 ,−

7
5 ,

12
5 ,−

9
5 , 1,−

9
5 ,

12
5 ,−

7
5 ,

3
10

)
• D̃(2,1,:)

6,6 (j, j − 4 : j + 4) =
(

3
10 ,−

7
5 ,

12
5 ,−

9
5 , 1,−

9
5 ,

12
5 ,−

7
5 ,

3
10

)
The bottom 2p entries are the permutation of the rows and columns of the upper 2p rows.

For D̃(2,1,:)
7,6 we have the upper portion and internal stencils given as:

• D̃(2,1,:)
7,6 (1− 8, 1 : 9) =

(
− 1

2 , 3,−7, 7, 0,−7, 7,−3, 12
)

• D̃(2,1,:)
7,6 (j, j − 4 : j + 4) =

(
− 1

2 , 3,−7, 7, 0,−7, 7,−3, 12
)

The bottom 2p entries are the negative of the permutation of the rows and columns of the upper 2p rows.

For D̃(2,1,:)
8,6 we have the upper portion and internal stencils given below, while the bottom 2p entries are the

permutation of the rows and columns of the upper 2p rows:

• D̃(2,1,:)
8,6 (1− 8, 1 : 9) = (1,−8, 28,−56, 70,−56, 28,−8, 1)

• D̃(2,1,:)
8,6 (j, j − 4 : j + 4) = (1,−8, 28,−56, 70,−56, 28,−8, 1)

while C(6)
6 = C

(6)
7 = C

(6)
8 = diag (0, 0, , 0, 0, 0, 0, 0, 1, . . . , 1, 0, 0, 0, 0, 0, 0, 0, 0)
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