Seventh International Conference on ICCFD7-2801-
Computational Fluid Dynamics (ICCFD7),
Big Island, Hawaii, July 9-13, 2012

Symmetric-conservative metric evaluations for higher-order finite
difference scheme with the GCL identities on three-dimensional
moving and deforming mesh

Y. Abe*, N. lizuka™, T. Nonomura®*, K. Fujii***
Corresponding author: abe@flab.isas.jaxa.jp

*Department of Aeronautics and Astronautics, University of Tokyo, Japan.
“Institute of Industrial Science, University of Tokyo, Japan.
“*Institute of Space and Astronautical Science, JAXA, Japan.

Abstract: New conservative forms are introduced for time metrics and the Jacobian, which satisfy
the geometric conservation law (:GCL) identity even when higher-order spatial discretization is
employed for the moving and deforming meshes. The conservative quantities are ensured to keep
constant for three-dimensional moving and deforming meshes with use of these new forms for the
computation of the uniform flow. In addition, one of the new forms has spatial symmetry property,
and some tests indicate the significance of the spatial symmetry in the expression of time metrics
and the Jacobian.
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1 Introduction

Body-fitted coordinate systems are often adopted to compute the fluid motion around arbitrary body shapes.
In this case, the coordinate transformation metrics from the body-fitted coordinate system to the Cartesian
coordinate system are introduced for the computation. Although transformation metrics analytically satisfy
freestream preservation, which is called the “geometric conservation law” (GCL) [11], some discretized forms
of metrics break the GCL identities with certain finite difference schemes. The GCL identities consist of
“surface closure law” (SCL) ! and “volume conservation law” (VCL) [17]. We focus on the VCL identity.
For details on the GCL identities, refer to the review article [12][13].

In terms of the freestream preservation for a moving and deforming grid, Visbal and Gaitonde have
proposed a method to replace the governing equation with an equation in which the time derivative of the
Jacobian is split from the conservative fluxes (Sec. 3.3 in [16] and Sec. 4.3 in [15]) for high-order schemes; this
is called the split form in this paper; on the other hand, the conservative expression of the governing equation
is referred to as the conservative form. In the split form, the error within the discretized VCL identity is
subtracted and the freestream is preserved. However, the split form is potentially nonconservative in terms
of the time derivative of the Jacobian, whose inverse corresponds to each cell volume in the computation.
As a result, the summation of conservative quantities in the computational region is not preserved when the
computational region is being deformed. The use of the conservative form of the governing equation cancels
out the error related to the preservation of conservative quantities, where the discretized VCL identities
should be satisfied for freestream preservation. A number of techniques for the discretization of time metrics
and the Jacobian have been proposed from a geometric viewpoint, e.g., finite volume schemes [13], which
are not suitable for high-order finite difference schemes. In addition, the special form (Sec. 3.D in [10]) has

IThis identity is called “surface (area) conservation law” in previous studies [4][14][17]. Tt is called “surface closure law” in
this paper and states that the sum of surface area vectors equals 0.



been proposed, in which the conservative flux for a freestream condition is subtracted from the conservative
form in advance. However, this method is not valid for a flow field where the freestream cannot be defined.

We aim to propose new analytical forms for time metrics and the Jacobian, that is, asymmetric conser-
vative metrics and symmetric conservative metrics of which discretizations satisfy the VCL identity at each
time step of any linear high-order finite difference scheme. The use of asymmetric and symmetric conser-
vative metrics for time metrics and the Jacobian enables adopting the conservative form of the governing
equation. Therefore, it is expected that the preservation of both the freestream and conservative quantities
that are integrated over the computational region is accomplished for any linear high-order finite difference
scheme. Note that a form of asymmetric conservative metrics has been proposed for the discretization of
spatial metrics for stationary grids [11]. In terms of coordinate invariance, spatial symmetry property has
been introduced to asymmetric conservative metrics for spatial metrics [14]. These discretized spatial metrics
satisfy the SCL identities for any linear high-order finite difference scheme, which has been experimentally
proven by Visbal and Gaitonde [15] and mathematically proven by Vinokur and Yee [14]. Nonlinear high-
order schemes are addressed in [4][8]. It should be mentioned that for moving but nondeforming grid, the
use of nonconservative metrics for time metrics and the Jacobian can satisfy the VCL identity for any linear
high-order finite difference scheme, and so has been constructed by Vinokur and Yee [14]. The forms pro-
posed here, i.e., asymmetric and symmetric conservative metrics for time metrics and the Jacobian are an
extension of those used for spatial metrics [15][14].

The rest of the paper is organized as follows. We state the problem and assumptions in Sec. 2. The newly
proposed analytical expression, i.e., asymmetric and symmetric conservative metrics for time metrics and
the Jacobian are introduced, and its validation for any linear high-order finite difference scheme is shown
in Sec. 3. Numerical tests on three-dimensional deforming grids with high-order schemes are described in
terms of freestream preservation and the resolution of an isentropic vortex in Sec. 4. These numerical tests
also validate the conservative form of the governing equation in terms of the preservation of conservative
quantities integrated over the computational region. We summarize the results and state our future work
relating to the proposed forms in Sec. 5.

2 Coordinate system and governing equation

Consider the flow field around an arbitrary body shape, where the Cartesian and body-fitted coordinate
systems are introduced to represent physical space. Let the Cartesian coordinate system be {t,xz,y,z}
and the body-fitted coordinate system be {7,&,n,{}. Each coordinate is assumed to have the following
relationships:
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—
~—

E=¢&(tx,y.2), n=nltzy2), (=(tzyz),
r=x(r,§1,0), y=y(n.&n,C), z==z2(1,£n,(), (2)
t=r, (3)

where {t,z,y, 2z} are assumed to be nondimensionalized by the reference time and length. The coordinate
transformation matrix is defined from the Cartesian coordinate system to the body-fitted coordinate system.
The spatial metrics are defined as

§Z/J = Tn¥Y¢ — T¢Yn, n./J = LeYe — LY, CZ/J = TeYn — Tnle, (4)

where (., denotes the partial derivative of ¢ in terms of z, i.e., 9(/9z. The partial derivatives of 7, £, , (, ¢,
x, and y are similarly denoted in the note. The Jacobian J is defined as

(Non-cons-met.)

ox,y, 2)
1/J = 5((“0 = TeYn2¢ — TyYeac + TYedn — TeYcin T TnYcZe — TYnZes (5)



where (Non-cons-met.) denotes the nonconservative metric. The time metrics are defined as

(Non-cons-met.) & /J = TpYrze — TplcZe + TeYnZr — TeYrzn + T2Yc 2y — TrYnZe, (6)
(Non-cons-met.)  n;/J = Teyczr — Teyr2g + TcYrZe — TcYezr + Tryesc — TrycZe, (7)
(Non-cons-met.) (i/J = Tpyezr — Tplr2e + TeYr 2y — Telnzr + TolYnZe — TrYeZe. (8)

The other metrics are similarly introduced, but their definitions are not presented here. The compressible
Euler equations are written in the body-fitted coordinate system as

Qr = —E¢ - F, = G, (9)
p pU pV pW
. 1 | PY . 1 pul + &p ~ 1 puV + nzp . 1 puW + Czp
Q:j pv|, E=—| ppU+&p | F==| poV4np |,G==| poW+Gp |,
pw pwU +&.p pwV +n.p pwW + C.p
e (e+p)U —&p (e+p)V —mp (e+p)W —Gp

U= ft +§mu+§yv+§zw7
V =n + npu + nyv + n,w,
W =¢ +Cxu+CyU+Czwa

where p,u = (u,v,w),p, and e denote density, flow velocity vector expressed in Cartesian coordinates,
pressure, and whole energy per unit volume, respectively. All variables are normalized by the reference
length, density, and sound speed. U = (U, V, W) is called the contravariant velocity vector. The equation
of state of ideal gas is coupled with Eq.(9) and the equations are closed.

3 New evaluation for time metrics and the Jacobian

In this section, we introduce a new evaluation for time metrics and the Jacobian. First, asymmetric conser-
vative metrics for time metrics and the Jacobian are introduced. Then, we show how discretized asymmetric
conservative metrics satisfy the VCL identity for any linear high-order finite difference scheme. Finally,
the symmetric conservative metrics are proposed from a viewpoint of coordinate invariance property for
computation.

3.1 Conservative metrics

Proper discretization of metrics and the Jacobian is often conducted on the basis of freestream preservation,
which is called GCL [11]:

(/)¢ + 2/ ), + (Ca/ )¢ =0, (10)
&/ D) + (1), + o/ T) = O, (1)
(fz/'])g + (nz/J)»q + (Cz/'])( =0, (12)
(1)), + &/ D) + (/) + (Ge/T)e = 0, (13)
where Eqgs.(10)—(12) are the SCL identities, and Eq.(13) is the VCL identity [17]. The SCL and VCL identities
are analytical identities that represent the surface closure and volume conservation of finite volumes [13],
respectively. However, note that the discretized SCL and VCL identities are often broken when improper

discretization is employed for time metrics and the Jacobian. We propose a new evaluation for time metrics
and the Jacobian that satisfies the VCL identity with any linear high-order finite difference scheme. Now,



we let

(Asym-cons-met.)

1/J = [{(zey)n — (@ny)etzle + {(zey)e — (wey)ctzly + [{(@ny)e — (xcy)ntale.
A B c
(Asym-cons-met.)

&/ = K(@-y)e = (wey)rtzly + {(@ny)r — (@-y)ntele + [ (@ey)n — (@ny)dz]r
D E e

(Asym-cons-met.)

ne/J = {(@ry)e — (xey)r}2lc + {(@ey)e — (@cy)ez]- + {(wey)r — (@-y)cF2e,
F —-B -D

(Asym-cons-met.)

G/J = @ny)e = (@ey)ntalr + {(@ry)y — (@gy)r bl + {(@ey)r — (@ry)etzln,
_A —E —-F

where (Asym-cons-met.) denotes asymmetric conservative metrics. The discretized time metrics and the
Jacobian based on Eqs.(14)—(17) always satisfy the VCL identity (13), regardless of the finite difference
scheme employed for the discretization under the condition described in Sec. 3.2. In terms of coordinate
invariance, we introduce the spatial symmetry property into Eqs.(14)—(17), and get

(Sym-cons-met.)

1/J :{ {(@ey)n — (@qy)e} 2l + {(zew)e — (zey)c} 21, + {(@qy)e — (xey)n} 2],
+ {wez)y — (n2)et 2l + {(ye2)e — (wez)ct al, + Hyn2)e — (wez)n} 2l
+ {(zex)n — (zn@)e} ] + H(zcw)e — (zex)c} o), + [{(zn2)c — (2c2)n} yle
+ {ynw)e = (ew)n} 2] + Hyer)e — (yew)el} 21, + Hyew)n — (yno)c} 2l
+ {(zny)e = (zey)nt ol + {(zey)e — (zey)ed o], + {(2cy)n — (zny)ct 2l
+ {(@n2)e = (we2)n} yle + [ (e2)c — (we2)e} yl, + H(we2)n — (wn2)c}yle }/67

(Sym-cons-met.)

&/ J = { {(@-y)e = (zcy)-} 2], + K (@ny)r = (@2y)n} 2] + {(wcy)y — (wny)c} 2],
{ ]

+ [{(yr2)e = (ye2)r 2l + {yn2)r = (yr2)nd 2l + {(Ye2)n — (yn2)c 2,
+ {(zr2)e = ()7 byl + [{(2020)r = (zra)n} yle + [{(2c2)y — (292)c} 9],
+ [{(yer)r = (yrz)ct 2, + {yr2)n = (yn)r} 2l + {{gm@)e = (yez)n} 21,
+ {(2cv)r = (zry)ct 2], + {(zry)y = (zgy)r ) e + {(zny)e = (2cy)n} 2],
+ {(z¢2)r = (@r2)c} o], + [{(@r2)y = (292)- Lyl + {(202)c = (2¢2)n} ul, }/6-

(19)

where (Sym-cons-met.) denotes symmetric conservative metrics. Similar simmetry property has been intro-

duced to spatial metrics in conservative form by Vinokur and Yee[14]. The other time metrics are similarlly

expressed in (Sym-cons-met.), but omitted for brevity.
The spatial metrics are expressed as

&/ = (gy)e — (@cy)n, n=/J = (e — (Tey)e, /T = (xey)n — (@py)e,

(20)

with which the discretized SCL identities are satisfied for any linear high-order finite difference scheme. The
other spatial metrics in Eq.(4) are similarly rewritten. These expressions were first introduced by Thomas
and Lombard for a second-order central scheme [11] and were subsequently extended for any linear high-



order finite difference scheme experimentally by Gaitonde and Visbal (Sec. 8 in [6], Sec. 4.2 in [15]). The
mathematical proof and extention to the symmetric form have been carried out by Vinokur and Yee (Sec. 8.3.3
n [14]). Note that all schemes in Sec. 4 adopt Eq.(20) as spatial metrics.

3.2 Discretization of asymmetric conservative metrics

In this section, the validation of the discretized asymmetric conservative metrics is performed in a manner
similar to that for spatial metrics by Deng et al. [4]. Let ¢(7,&,n, ¢) represent an arbitrary physical quantity
in physical space, which is discretized as ¢(7;,&;, Mk, §) = @ik, We introduce the multiple finite difference
operator as

] )
85 (83 D)ijkl € (87_¢i,j,k,l> ; (21)

where the subscript of the finite difference operator ¢ indicates the number of finite difference schemes, and
the physical quantity is differentiated with respect to the variables denoted by the superscripts. The left
hand side of the VCL identity is discretized with the finite difference operator (21) as follows:

OT(L/T) + 85(&/T) + 67 (m/ ) + 831G/ )
= 07(05A + 6§ B + 05C) + 03 (04D + 05 E — 63C)
+ 6765 F — 65 B — 65D) + 65 (—05 A — 65E — 6 F). (22)
Note that Eq.(22) is obtained by substituting (Asym-cons-met.) for time metrics and the Jacobian [Egs.(15)—
(17) and Eq.(14)] into the left hand side of the VCL identity (13). The symbols from A to F in Eq.(22)
correspond to each term in time metrics [Eqs.(15)—(17)] and the Jacobian [Eq.(14)]. Here, the subscripts

for the indices are omitted for brevity. The discretized VCL identity is satisfied [in other words, Eq.(22)
diminishes] only when the following relationships are satisfied.

0705 = 0707, o767 = 6707, o705 = 614, (23)
6163 = 6165, 5105 = 6165, 8705 = 5763 (24)
The relationships (23) and (24) are nontrivial. In the following, d7d7 = 673 represents the relationships
(23) and (24). We show that 67d4 = 6747 is satisfied for any linear high-order finite difference method under

the following condition. Any linear high-order finite difference operator [4] can be described as a weighted
average of the first-order forward-facing difference operator as

M, My

0T = > am(Girmirght = Givmint)s O = Y bl Gijhtmits — Gijkrmi)s (25)
m=L, m=Ly
M. Mgy

03 = > em(Girmirjhr— Gitmikt)s 08 =Y Am(Bijhimits — Gijkimi): (26)
m=L. m=Lgq

The limits L, ..., Lqg, Mg, ..., My, and coefficients a.,, ..., d,, vary depending on the finite difference scheme
employed. The discretized operators 67d4 and 675 can be expanded using either of the linear high-order



finite difference operators (25) and (26) as follows.

M, M,
0704 = {@mdn(Pitm+1,jktn+1,0 — Pitmi1,j,k+n.l
j j
m:La TL=Ld
— Qitmjktnt1l + Pivm jkini)}s (27)
My, M.
6703 = Z Z {bmen(Pitmtt,jktnt1,l = Pitmt1,jhotn,l

m=Ly n=L.

— Pitm,jktnt1,l + Pitm,jkinl)} (28)
The relationship 6765 = 0763 becomes true at least under the following condition: for any m,
{am = Cm, dm, == bma Ma = McyLa = Lca Md = Mba Ld = Lb} (29)

The sufficient condition (29) indicates that for multiple finite differences in a specific direction (including
the time derivative), the unique operator should be used. This condition is also satisfied for the boundary
scheme if the boundary scheme is unique for the same direction and is not satisfied when a different operation
is used for a different grid line in the same direction. For this sufficient condition, any linear high-order finite
difference operator can be employed to discretize the differentiation in the time and space directions. A
similar approach can be used for the relationships (23) and (24). Note that discretized time metircs and
Jacobian in (Sym-cons-met.) are similarly proven to satisfy the VCL identity.

4 Numerical tests

The compressible Euler equations are computed to validate the new evaluation for time metrics and the
Jacobian, i.e., (Asym-cons-met.) and (Sym-cons-met.).

4.1 Computational methods

In this section, we present schemes and numerical methods.

4.1.1 Time discretization

The governing equation is written in Eq.(9), with which (Asym-cons-met.) [Eqs.(14)—(17)] are used for the
discretization of time metrics and the Jacobian. On the other hand, the governing equation is also reformed
into its nonconservative form in terms of the Jacobian (Sec. 3.3 in [16] and Sec. 4.3 in [15]), with which
(Non-cons-met.) [Eqgs.(5)—(8)] can be used for the discretization of time metrics and the Jacobian. These
governing equations are called the conservative form [(Cons.)] and split form [(Split.)], respectively.

(Cons.) (Q/J)r = —RHS(q, (30
(Split.) Qr = —J{RHS(q,5) — QI(&:/T)e + (ne/T)n + (Ce/T)cl}, (31

where Eq.(30) corresponds to Eq.(9) and RHS /s denotes the right hand side of Eq.(9). Equation (31)
corresponds to Eq.(30) using the VCL identity (13). Note that because of freestream preservation, (Cons.)
[Eq.(30)] should be adopted with (Asym-cons-met.) or (Sym-cons-met.) [Eqs.(14)—(17) or Eqs.(14)—(19)] for
time metrics and the Jacobian, whereas (Split.) [Eq.(31)] does not offer such an expression for time metrics
and the Jacobian that satisfy the discretized VCL identity. In the following, all schemes adopt the two-stage
rational Runge-Kutta method for time integration on the basis of Eq.(30) or (31).

)
)

4.1.2 Schemes and deforming grid

Here, we introduce some schemes for the computation of compressible Euler equations in order to validate the
new evaluation for time metrics and the Jacobian, i.e., (Asym-cons-met.) or (Sym-cons-met.) [Eqs.(14)-(17)
or Egs.(14)—(19)]. The following schemes are used.



e NCM-CF: (Non-cons-met.) [Egs.(5)—(8)] are used for the discretization of time metrics and the Jaco-
bian; (Cons.) [Eq.(30)] is used for the time discretization of the governing equation.

o ACM-CF: (Asym-cons-met.) [Eqs.(14)-(17)] are used for the discretization of time metrics and the
Jacobian; (Cons.) [Eq.(30)] is used for the time discretization of the governing equation.

e NCM-SF: (Non-cons-met.) [Eqs.(5)—(8)] are used for the discretization of time metrics and the Jaco-
bian; (Split.) [Eq.(31)] is used for the time discretization of the governing equation.

e SCM-CF: (Sym-cons-met.) [Eqs.(18)—(19)] are used for the discretization of time metrics and the
Jacobian; (Cons.) [Eq.(30)] is used for the time discretization of the governing equation.

The numerical methods and conditions common to all schemes in Table 1 are as follows. The computation
is performed for the compressible inviscid fluid in the cubic region, which deforms with time. The governing
equation are the compressible Euler equations [Eq.(30) or (31)]. The fluid is assumed to be an ideal gas
and the ratio of specific heat v = 1.4 is that of air. Periodic boundary conditions are adopted for the
computational region.

The initial grid exists in —Ly/2 < w9, yo,20 < Lo/2 and has a cubic shape. Grid points in each di-
rection are located at the equally spaced discrete Np.x points, that is, the position of the grid point is
expressed as (2o, Yok, 20:) = (—Lo/2 + (j — 1)Axzo,—Lo/2 + (k — 1)Ayo, —Lo/2 + (I — 1)Az) [Azg =
Ayo = Azg = Lo/(Nmax — 1),1 < j, k,1 < Npax]. The body-fitted coordinates (£,7,() are discretized as
&me, ) = [(J — DAL (K — 1)An, (I — 1)AC]. Let A = Anp = A¢ = 1.0, which corresponds to each

grid points (2 k.1, Yj,k,1, 2j,k,1)- The grid deforms temporally and each grid point [z} ,(7), ¥57% (), 255 ,(7)]
moves randomly:

o (7) = zoy5 + Rsin[@]y (1)] cos[0]; ,(T)], (32)
Y5 (T) = Yo + Rsin[¢f ()] sin[0% (7)), o
Zina(T) = 200 + Reos[@) (1)), 0

where R = 0.20Azq and —m/2 < 07 (1), ¢} ,(T) < m/2 are given randomly. The computational parameters
are set as follows: Axzg = 0.1, Npee = 21, and A7 = 0.1, i.e., the Courant number is set to 0.37. The
computation is performed for 0 < 7 < 6.0, and the computational time is discretized as 7, = nA7. Note
that the manner of grid deformation is consistent for each numerical test (in Sec. 4.2.1 and Sec. 4.2.2).

Table 1: Schemes examined in this paper

Scheme ‘ Time metrics and the Jacobian Governing equations
NCM-CF (Non-cons-met.) [Eqs.(4)—(5)] (Cons.) [Eq.(30)]
ACM-CF | (Asym-cons-met.) [Eqs.(14)—(17)] (Cons.) [Eq.(30)]
SCM-CF | (Sym-cons-met.) [Eqs.(18)-(19)] (Cons.) [Eq.(30)]
NCM-SF (Non-cons-met.) [Eqgs.(4)-(5)] (Split) [Eq.(31)]

4.2 Computational results
4.2.1 Freestream preservation

Now, the error in freestream preservation is shown. The initial flow is assumed to be a uniform flow in the
x direction:

Uug = 0.10, Vg = Wy = 00, Po = pPo = 1.0. (35)

First, Loo-norm is defined as the maximum disturbance of the flow velocity at 7 = 6.0: Lo = max{|v —
vo|/uo, |w — wo|/ug}. The preservation of conservative quantities integrated over the computational region



is also defined as

Nmax ) A Nmax .
(p) = Z (¢ — ¢0)j,l~c,l/ Z 0:5,k,l 2 / (¢ — qbo)dV/ PodV, (37)
7.k, =1 gk, 1=1 Vr Vr

where subscript 0 denotes the initial values and Vg indicates the computational region. Table 2 shows the
result of freestream preservation at 7 = 6.0, where the randomly deforming grid is used, and the fourth-order
explicit central scheme is employed for the spatial discretization without losing generality.

Table 2 indicates that the schemes which satisfy discretized GCL identities, i.e., ACM-CF, SCM-CF
and NCM-SF, maintain freestream preservation. The schemes where the conservative form of the governing
equation is used, i.e., NCM-CF, ACM-CF and SCM-CF, maintain the preservation of the conservative
quantities (@). The use of (Cons.) for the governing equation potentially ensures the preservation of
conservative quantities. Note that when a larger number of grid points or larger distortion, e.g., R = 0.25Ax,
is adopted for the grid, qualitatively similar results are obtained in terms of freestream preservation and the
preservation of conservative quantities.

Table 2: Freestream preservation errors for randomly deforming grid (Ls-norm and (@) at 7 = 6.0);
fourth-order explicit central scheme is used.

Scheme | Log-norm (p) (pu) (pe)

NCM-CF | 5.00 x 1077 6.72x 10717  1.14 x 10~ 3.04 x 10716
ACM-CF | 1.27x 10715 597 x 107" 1.16 x 10716 294 x 10~16
SCM-CF | 8.03 x 10~ 3.16x 1077 1.02x10716 263 x 10716
NCM-SF | 1.51 x 10715 —6.44 x10°% —6.44x10"% —6.44x 1076

4.2.2 Preservation of isentropic vortex

The initial flow is a two-dimensional isentropic vortex [3]:

22 442 r 22 4 42
ug = Eﬁ% exp [a (1 — R?y )] ) U0 = € XD [a (1 — RQ,y )} , (38)
P 71, a® +y°
Ty = L= 21—
0= Iy e exp { ! ( I , (39)
wo = 0.0, P = po = poo = 1.0, (40)

where € = 0.02, « = 0.204, and R, = 1.0.

Figures 1, 2, 3 show contours of the velocity magnitude on the {-constant plane at 7 = 6.0 for a randomly
deforming grid with a fourth-order explicit central scheme. Figure 4 shows the distribution of v, p and p along
the {- and n-constant line. The analytical solutions of v, p, and p in Fig. 4 appear to be unfamiliar because
they are calculated along the (- and n-constant line, which is not straight at 7 = 6.0. Figures 1, 2, 3 and 4
indicate that the schemes that satisfy the discretized GCL identities, i.e., ACM-CF, SCM-CF and NCM-SF,
maintain a vortex that is better than NCM-CF. In particular, SCM-CF shows the best resolution of a vortex
in Figs. 1(a)—(d); it follows that on highly deforming grid, a vortex is better preserved by introducing the
symmetry property into time metrics and Jacobian.

Figures 5(a) and (b) show the preservation of conservative quantities when the randomly deforming grid
is used with the fourth-order explicit central scheme. Figures 5(a) and (b) indicate that NCM-CF, ACM-
CF and SCM-CF preserve the conservative quantities that are integrated over the computational region.
In addition, the preservation of the inverse of the Jacobian integrated over the computational region, i.e.,
the volume of the computational region, is better with ACM-CF and SCM-CF than with SDM-CF and
SDM-SF [see Fig. 5(c)]. In particular, the use of (Cons.) for the governing equation potentially ensures the



preservation of conservative quantities, which is a result similar to that of freestream preservation (shown in
Table 2). We also computed the isentropic vortex on a sinusoidally deforming grid and confirmed that the
formal order-of-accuracy is maintained by checking the Lo-error while varying the grid density.

Note that when asymmetric conservative metrics are adopted for the random grid with R = 0.12Ax,
the sixth-order compact scheme[7] blows up at 7 = 3.0; on the other hand, symmetric conservative metrics
does not blow up at 7 > 20.0. This indicates that the symmetric conservative metric is more robust for
computations on an intensively deforming grid.

]
'\

=

[

(a) NCM-CF (b) ACM-CF (c) SCM-CF (d)NCM-SF
Fig. 1: Resolution of isentropic vortex (contours of velocity magnitude on (-constant plane at 7 = 6.0 on
randomly deforming grid. Contour is from 0.0 to 0.34. The fourth-order explicit central scheme is employed

for spatial discretization): (a) NCM-CF, (b) ACM-CF, (c) SCM-CF, (d) NCM-SF.
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(a) NCM-CF (b) ACM-CF (¢c)SCM-CF (d)NCM-SF

Fig. 2: Resolution of isentropic vortex (contours of pressure on (-constant plane at 7 = 6.0 on randomly
deforming grid. Contour is from 0.85 to 1.02. The fourth-order explicit central scheme is employed for
spatial discretization): (a) NCM-CF, (b) ACM-CF, (c) SCM-CF, (d) NCM-SF.

5 Concluding remarks

A new evaluation for time metrics and the Jacobian, i.e., asymmetric conservative metrics and symmetric
conservative metrics were investigated. It was shown that discretized asymmetric and symmetric conservative
metrics satisfy the VCL identity with any linear high-order finite difference scheme. The new scheme with
the use of asymmetric and symmetric conservative metrics for time metrics and the Jacobian accomplishes
the both of preservation of freestream and the conservative quantities integrated over the computational
region even on severely-deforming grid. In particular, symmetric conservative metrics where a symmetry
property in space is introduced into asymmetric conservative metrics give fine resolution for the computation
of a vortex.

Numerical tests were conducted to validate this new evaluation for time metrics and the Jacobian: the
computation of compressible Euler equations was performed for a three-dimensional randomly deforming
grid, where freestream preservation and the resolution of a two-dimensional isentropic vortex were exam-
ined. When the fourth-order explicit central scheme was employed for spatial discretization on a randomly
deforming grid, in terms of freestream preservation, the performance of the schemes with asymmetric and
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Fig. 3: Resolution of isentropic vortex (contours of z-vorticity on (-constant plane at 7 = 6.0 on randomly

deforming grid. Contour is from 0.0 to 0.34. The fourth-order explicit central scheme is employed for spatial
discretization): (a) NCM-CF, (b) ACM-CF, (¢) SCM-CF, (d) NCM-SF.
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Fig. 4: Resolution of isentropic vortex (the distribution of v, p and p along ¢- and n-constant line at 7 = 6.0
on a randomly deforming grid. A fourth-order explicit central scheme is employed for spatial discretization):
(a) v, (b) p and p.
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Fig. 5: Preservation of conservative quantities and inverse of the Jacobian (fluctuation of (¢) in the 7-
direction. The fourth-order explicit central scheme is employed for spatial discretization. log |(1)| corresponds
to the error in conservation of the inverse of the Jacobian): (a) log|(p)|, (b) log|{pe}|, (c) log|(1)|.
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symmetric conservative metrics was similar to the widely used method, i.e., the split form (Sec. 3.9 in [5],
Sec. 3.1 in [9], Sec. 4.3 in [15] and Sec. 3.3 in [16]) of the governing equation. However, the preservation of
conservative quantities integrated over the computational region can be achieved only when the conservative
form of the governing equation is adopted, with which the use of asymmetric and symmetric conservative
metrics for time metrics and the Jacobian preserves the freestream. When the sixth-order compact scheme [7]
was employed, the preservation of conservative quantities should be carefully considered. This is because
all inner points evaluated by the compact scheme are influenced by the boundary scheme, and the conser-
vation property has a strong relationship with the inflow and outflow at the boundary. With respect to
the resolution of the two-dimensional isentropic vortex, there was no significant difference between the two
evaluations for time metrics and the Jacobian:nonconservative metrics and asymmetric conservative metrics.
However, with introducing the symmetry property into asymmetric conservative metrics, i.e., using symmet-
ric conservative metrics, the resolution of isentropic vortex was improved on intensively deforming grid. The
preservation of conservative quantities was also significantly improved with the asymmetric and symmetric
conservative metrics. Therefore, we conclude that in terms of freestream preservation and the resolution
of the isentropic vortex, the discretized VCL identity should be satisfied with any scheme i.e., the use of
asymmetric and symmetric conservative metrics for time metrics and the Jacobian or the use of the split form
of the governing equation. On the other hand, the preservation of conservative quantities integrated over
the computational region is maintained only when the conservative form of the governing equation is used
(see Table 3). In terms of the improvement of resolution for an isentropic vortex on highly-deforming grid,
the symmetry property in space for time metrics and Jacobian was considered to be of great significance.
In addition, symmetric conservative metrics is more robust than asymmetric conservative metrics with the
use of sixth-order compact scheme. The robustness of the symmetric conservative metrics is pursued in
terms of their geometries in present: for example, it was determined that the discretized Jacobian based on
the symmetric conservative metric corresponds to the volume of the cell with any linear high-order finite
difference scheme [1][2].

Table 3: Summary of schemes; O is better than x; () is better than Q).

Preservation of
Scheme | conservative quantities Freestream preservation Resolution of vortex
NCM-CF O X X
ACM-CF O O O
SCM-CF O O ©O)
NCM-SF X O O
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