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Abstract: The discontinuous numerical perturbation algorithm (for simplicity, it is called DP
algorithm) is presented and tested by using various convective-di�usion equations. The DP algo-
rithm is constructed by splitting the second order central di�erence schemes of both convective
and di�usion terms of the convective-di�usion equation into upstream and downstream parts, then
the perturbation reconstruction polynomials of grid interval for upstream and downstream con-
vective terms are determined by using higher-order equations deduced from original equation and
eliminating the truncated errors of the modi�ed di�erential equation. The important nature, i.e.
the upwind dominance nature, which is the basis to ensure the DP cetral schemes are stable and
essentially oscillation free, is �rstly presented and veri�ed. Various numerical tests show that the
DP central schemes are e�cient, robust, and more accurate than the original second order central
scheme.

Keywords: Discontinuous Numerical Perturbation Algorithms, Computational Fluid Dynamics,
Convective Di�usion Equation.

1 Introduction

A number of numerical methods have been developed for computational �uid dynamics (CFD). The second
order central di�erence scheme (2-CDS) has the comprehensive advantages of the accuracy, e�ciency, sim-
plicity, and maintainability, hence it is regarded as a good scheme for some CFD applications[1], for example,
it is used for the large eddy simulation in the pressure-based solver in FLUENT. However, the 2-CDS scheme
generates spurious oscillation if the solution contains a large gradient or a discontinuity. How to overcome
this drawback and improve its accuracy and robustness, without increasing any nodes and the complexity,
is no doubt meaningful and practical. The discontinuous numerical perturbation algorithm provides a new
approach to achieve this destination.

The numerical perturbation algorithm is to couple �uid dynamics e�ects with the discretized schemes
of the convective di�usion equation[2, 3]. The main steps of constructing the algorithm are as follows: the
�rst order upwind scheme, the second order central schemes of convective derivative are reconstructed as a
power-series of grid interval; by using the convective-di�usion equation itself, a series of higher-order �uid
mechanics relation are obtained; by eliminating truncated error terms in the modi�ed di�erential equation
of the reconstructed scheme, the coe�cients in the power-series are determined and �nally the numerical
perturbation algorithms are obtained.

Due to its physical preserving idea, and larger stable range and better accuracy than the original scheme,
the numerical perturbation algorithm was applied to reconstruct various schemes with three- and �ve-nodes[4,
5, 6], and formed the high order perturbation di�erence scheme[2] and perturbation �nite volume scheme[3,
7, 8] systems. Recently, based on the second order central di�erence scheme, Gao[9] proposed a stable
perturbation �nite di�erence scheme (in this paper, it is called high resolution numerical perturbation scheme,
or DP scheme) for the convective-di�usion equation. First, the the second order di�erence schemes for both
convetive and di�usion terms are split into two parts with upstream and downstream nodes, respectively,
then the numerical perturbation is applied to reconstruct the split schemes. Numerical examples show that
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the new scheme is oscillation free even on coarse grids, and its errors are greatly less than the second order
central scheme. In this paper, the natures of the DP central schemes are analyzed, and various numerical
cases are calculated to verify the high performance of the DP central schemes.

2 Discontinuous Numerical Perturbation Central Scheme in One-

dimensional Case

A general convective di�usion equation can be written as,

u
∂φ

∂x
= µ

∂2φ

∂x2
(1)

where, u, φ and µ denote the velocity, the transfer variable and the di�usion coe�cient, respectively. If the
second order central di�erence schemes are used to discretize both convective and di�usion terms in (1), the
discretized equation is written as,

ui

2∆x
(φi+1 − φi−1) =

µ

∆x2
(φi+1 − 2φi + φi−1) (2)

As mentioned previously, the second order central di�erence scheme (2) generates oscillation if the solution
contains a large gradient or a discontinuity. The discontinuous numerical perturbation algorithm aims at
eliminating the non-physical numerical oscillation and obtaining higher accurate solution. For completeness,
the numerical perturbation algorithm[9] is brie�y introduced. First, Eq.(2) is rewritten as[ ui

2∆x
(φi − φi−1) +

µ

∆x2
(φi − φi−1)

]
+
[ ui

2∆x
(φi+1 − φi)−

µ

∆x2
(φi+1 − φi)

]
= 0 (3)

The discontinuous numerical perturbation scheme is written as[
uiG

+
i

2∆x
(φi − φi−1) +

µ

∆x2
(φi − φi−1)

]
+
[
uiG

−
i

2∆x
(φi+1 − φi)−

µ

∆x2
(φi+1 − φi)

]
= 0 (4)

The functions G±i are the power series of grid interval ∆x

G±i = 1 +
N∑

n=1

a±n ∆xn (5)

By using the convective-di�usion equation (1) and frozen the coe�cient of the convective term, we can get
the approximate relations of higher order derivatives of the transfer variable φ as the following

∂nφ

∂xn
=
(

ui

µ

)n−1
∂φ

∂x
(6)

Combined the Taylor series expansion and the method of undetermined coe�cients(here, notice that, the
terms of (∆x)−1 and (∆x)0 are eliminated by the corrected Eq.(4) and the convective-di�usion equation (2),
respectively. G+

i and G−i are depended on the �rst and the second parts of (4), respectively.), coe�cients
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a±n are obtained as

a±2n = 0, n = 1, 2, · · ·
a+
1 = −a−1 =

1
3!

ui

µ

a+
3 = −a−3 = − 1

3× 5!

(
ui

µ

)3

a+
5 = −a−5 =

1
3× 7!

(
ui

µ

)5

a+
7 = −a−7 = − 3

5× 9!

(
ui

µ

)7

· · ·

(7)

Hence, the (2N + 1)-th order (since a±2N = 0) perturbation scheme is obtained by applying

G±(N) = 1 +
2N−1∑
n=1

a±n ∆xn (8)

in Eq.(4).
In order to analyze the DP algorithm Eqs.(4) and (8) conveniently, the perturbation function Eq.(8) can

be written as following, for example,

G+(4) = 1 +
1
3!

R∆x −
1

3× 5!
R3

∆x +
1

3× 7!
R5

∆x −
3

5× 9!
R7

∆x (9)

G−(4) = 1− 1
3!

R∆x +
1

3× 5!
R3

∆x −
1

3× 7!
R5

∆x +
3

5× 9!
R7

∆x (10)

where R∆x = ui∆x
µ is the grid Reynolds number.

The numerical perturbation scheme of (4), (9) and (10) has both mechanical and mathematical meanings:
(1) Eq. (4) shows the clear upwind characteristic of the convective �ow by splitting the spatial discretiza-

tion into upstream and downstream parts.
(2) The perturbation functions G±(N) of Eqs. (9) and (10) are the polynomials of the grid Reynolds

number, hence, the properties of DP schemes can be studied by using the grid Reynolds number.
(3) The spatial grid interval, which is the intrinsic small parameter in numerical calculation, is used as

the perturbation parameter to construct the numerical perturbation schemes.
(4) The accuracy of DP schemes is the discretization accuracy of the whole convective di�usion equation,

while the accuracy of traditional di�erence schemes is usually the approximate accuracy of the �rst-order or
second-order derivative in the equation.

By analysing, the properties of the perturbation function G±(N) are listed,
(1) 1

2 [G+(N) + G−(N)] = 1;
(2) if ui > 0, then G+(1) > G−(1), G+(3) > G−(3);

if ui < 0, then G−(1) > G+(1), G−(3) > G+(3);
(3) if 0 < R∆x < Rc(ui > 0), then G+(2) > G−(2);

if 0 > R∆x > −Rc(ui < 0), then G−(2) > G+(2);
G±(4) has the same property as G±(2), except the Rc is di�erent. Rc can be regarded as a critical

grid Reynolds number, which is de�ned as a positive minimum value to make G+(N) = G−(N).
For example, Rc =

√
60 is solved for G±(2).

Fig.1 shows the distribution of the perturbation function G±(N) vs the grid Reynolds number R∆x. The
above properties indicate that the third- and seventh-order DP schemes are upwind dominant, the �fth-
and ninth-order DP schemes are conditionally upwind dominant in a proper range of R∆x. The property of
upwind dominance is the essential nature of the DP schemes, hence the DP schemes are essentially oscillation
free. If G±(N) ≥ 0 is required, the form of DP schemes looks like the weighted scheme of the �rst order
upstream and downstream schemes.
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Figure 1: Perturbation function vs grid Reynolds number.

3 Discontinuous Numerical Perturbation Central Scheme in Two-

dimensional Cases

Two-dimensional convective di�usion equation can be written as,

u
∂φ

∂x
+ v

∂φ

∂y
= µ

(
∂2φ

∂x2
+

∂2φ

∂y2

)
(11)

The second order central di�erence schemes of the equation (11) is written as,

uij

2∆x
(φi+1,j − φi−1,j) +

vij

2∆y
(φi,j+1 − φj,i−1) =

µ

∆x2
(φi+1,j − 2φij + φi−1,j) +

µ

∆y2
(φj,i+1 − 2φij + φj,i−1)

(12)

Scheme (12)'s splitting scheme in both the x- and y-space directions and the upstream-downstream splitting
in the same sapce direction is( uij

2∆x
+

µ

∆x2

)
(φij − φi−1,j) +

( uij

2∆x
− µ

∆x2

)
(φi+1,j − φij)

+
(

vij

2∆y
+

µ

∆y2

)
(φij − φi,j−1) +

(
vij

2∆y
− µ

∆y2

)
(φi,j+1 − φij) = 0

(13)

The discontinuous numerical perturbation scheme is written as(
uijG

+
i

2∆x
+

µ

∆x2

)
(φij − φi−1,j) +

(
uijG

−
i

2∆x
− µ

∆x2

)
(φi+1,j − φij)

+

(
vijG

+
j

2∆y
+

µ

∆y2

)
(φij − φi,j−1) +

(
vijG

−
j

2∆y
− µ

∆y2

)
(φi,j+1 − φij) = 0

(14)

The functions G±i are the power series of grid interval ∆x and G±j are the power series of grid interval ∆y

G±i = 1 +
N∑

n=1

b±n ∆xn, G±j = 1 +
N∑

n=1

c±n ∆yn, (15)

By using the space splitting equations of the convective-di�usion equation (11) and frozen the convective
coe�cient uij and vij , we can deduce the linear approximate relations of higher order derivatives of the
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transfer variable φ as the following

∂nφ

∂xn
=
(

uij

µ

)n−1
∂φ

∂x
,

∂nφ

∂yn
=
(

vij

µ

)n−1
∂φ

∂y
(16)

By using the higher-order approximate relations (16) and eliminating the truncated error terms of the
modi�ed di�erential equations of the DP scheme (14), we deduce all coe�cients b±n and c±n as follows

b±2n = 0, n = 1, 2, · · ·
b+
1 = −b−1 =

1
3!

uij

µ

b+
3 = −b−3 = − 1

3× 5!

(
uij

µ

)3

b+
5 = −b−5 =

1
3× 7!

(
uij

µ

)5

b+
7 = −b−7 = − 3

5× 9!

(
uij

µ

)7

· · ·
c±2n = 0, n = 1, 2, · · ·
c+
1 = −c−1 =

1
3!

vij

µ

c+
3 = −c−3 = − 1

3× 5!

(
vij

µ

)3

c+
5 = −c−5 =

1
3× 7!

(
vij

µ

)5

c+
7 = −c−7 = − 3

5× 9!

(
vij

µ

)7

(17)

Since b±2N = c±2N = 0, hence the (2N + 1)-th order discontinuous perturbation scheme is obtained by letting

G±i (N) = 1 +
2N−1∑
n=1

b±n ∆xn, G±j (N) = 1 +
2N−1∑
n=1

c±n ∆yn (18)

Obvously, the discontinuous perturbation central scheme of three-dimensionla convective di�usion equa-
tion can be deduced similarly.

4 Numerical Examples

Several cases are calculated to demonstrate the e�ciency, robustness and high order accuracy of the DP
schemes. In this paper, the time dependent method is applied to get the steady solution. The fourth order
Runge-Kutta method is used for the time marching.

4.1 The Linear Convective Di�usion Equation

The linear convective di�usion equation is used as the �rst test case and can be written as

∂u

∂t
+

∂u

∂x
=

1
Re

∂2u

∂x2
, 0 ≤ x ≤ 1 (19)

The comparison of the third order DP (3-DP) algorithm and the second order central di�erence scheme
(2-CDS) with grid number N = 160 is shown in Fig. 2. Near the large gradient, 2-CDS causes dramatic
oscillations. The 3-DP scheme is oscillation free and agree well with the exact solution. Table 1 shows the
detailed error comparison of di�erent schemes. In this table, OS denotes the oscillatory solution, OV denotes
over�ow happened in the calculation. It can be seen that, if a large grid interval (means large grid Reynolds
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Figure 2: Linear convective di�usion equation, Re=1000.

number) is used, the second order central scheme is oscillatory. If N = 80 is used, the R∆x equals to 12.5,
which is larger than Rc of G(2) and G(4), hence the 5-DP and 9-DP schemes are over�ow. If N = 160 is
used, the R∆x equals to 6.25, which is close to Rc, the 5-DP and 9-DP schemes are weak upwind dominant
and result in a small oscillation near the large gradient region. Meanwhile, with the large grid Reynolds
number(for example,N = 80), the 7-DP scheme is not necessarily more accurate than the 3-DP scheme.
With the grid number increased, the DP schemes achieve the expected order (it is easy to calculate the
accuracy order from the errors), for example, the third order, �fth order, seventh order, and ninth order,
respectively.

4.2 The Viscous Burgers Equation

The viscous Burgers equation is the second test case. It is written as

∂u

∂t
+ u

∂u

∂x
=

1
Re

∂2u

∂x2
, a ≤ x ≤ b (20)

u(a) = tanh(−aRe/2), u(b) = tanh(−bRe/2) (21)

The steady state solution of Eq. (20) with boundary condition (21) is u(x) = tanh(−xRe/2). At x = 0, the
shock is formed with a large Re number. In our computation, a = −1, b = 1 are used. Based on the analysis
of the 5th-order and 9th-order DP schemes are conditionally upwind dominant and the numerical results of
previous cases, only the 3rd-order and the 7th-order schemes are considered for this case.

First, the case with Re = 10 is tested. Table 2 gives the errors. Since the small Reynolds number is
used, all tested schemes obtain good results. It can also be seen that, the errors of the DP schemes are no
more than one half of the second central scheme. Then, the case with Re = 1000 is calculated, and the
errors are given in Table 3. The second order central scheme is oscillatory even with the �nest grid number
of N = 640. The DP schemes are oscillation free. Fig. 3 gives the comparison of the second order central
scheme and the third order DP scheme with Re = 1000 and N = 160.

It is worth mentioning that, for this nonlinear case, the relation of high order derivatives (6) is ap-
proximate, hence the results of the high order(7th-order) DP scheme are almost the same as the low order
(3rd-order) DP scheme. Hence, for the other cases in this paper, only the 2-CDS scheme and the 3-DP
scheme are compared.
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Table 1: The linear convective di�usion equation, Re = 1000
Scheme N L∞ error L∞ order L1 error L1 order
2-CDS 80 OS

160 OS
320 OS
640 0.8629e-1 0.1948e-3

3-DP 80 0.3743e+0 0.7386e-2
160 0.1479e+0 1.34 0.1083e-2 2.77
320 0.2996e-1 2.30 0.1056e-3 3.36
640 0.3080e-2 3.28 0.7742e-5 3.77

5-DP 80 OV
160 OS
320 0.7078e-2 0.2399e-4
640 0.1782e-3 5.31 0.4460e-6 5.75

7-DP 80 0.8750e+0 0.8639e-1
160 0.1254e+0 2.80 0.8945e-3 6.59
320 0.1687e-2 6.22 0.5771e-5 7.28
640 0.1080e-4 7.29 0.2704e-7 7.74

9-DP 80 OV
160 OS
320 0.4116e-3 0.1405e-5
640 0.6611e-6 9.28 0.1656e-8 9.73

Figure 3: Nonlinear Burgers equation, Re=1000.

4.3 The Variable Coe�cients Convective Di�usion Equation

The variable coe�cients convective di�usion equation,

∂u

∂t
+ x

∂u

∂x
=

1
Re

∂2u

∂x2
, −1 ≤ x ≤ 1 (22)

with the boundary condition
u(−1) = 1, u(1) = −1 (23)

is the third test case. The comparison of the steady state solution with Re = 1000 and N = 160 is given
in Fig. 4. Where, the exact solution is the result calculated by the third order DP scheme with N = 1000.
The second central scheme is still oscillatory, while the third order DP scheme obtains a good solution.
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Table 2: The viscous Burgres equation, Re = 10
Scheme N L∞ error L∞ order L1 error L1 order
2-CDS 80 0.2223e-2 0.6919e-3

160 0.5667e-3 1.97 0.1756e-3 1.98
320 0.1427e-3 1.99 0.4404e-4 2.00
640 0.3517e-4 2.02 0.1080e-4 2.03

3-DP 80 0.9514e-3 0.2498e-3
160 0.2434e-3 1.97 0.6341e-4 1.98
320 0.6093e-4 2.00 0.1575e-4 2.01
640 0.1463e-4 2.06 0.3696e-5 2.09

7-DP 80 0.9522e-3 0.2501e-3
160 0.2434e-3 1.97 0.6343e-4 1.98
320 0.6093e-4 2.00 0.1575e-4 2.01
640 0.1463e-4 2.06 0.3696e-5 2.09

Table 3: The viscous Burgres equation, Re = 1000
N 2-CDS 3-DP 7-DP

L∞ L1 L∞ L1 L∞ L1

80 0.1143e+2 0.5682e+0 0.4688e+0 0.2720e-1 0.7099e+0 0.2713e+0
160 0.5250e+1 0.1133e+0 0.2848e+0 0.5511e-2 0.4374e+0 0.2872e-1
320 0.2129e+1 0.1962e-1 0.1200e+0 0.8816e-3 0.8439e-1 0.6077e-3
640 0.6467e+0 0.2378e-2 0.4734e-2 0.2220e-4 0.3154e-1 0.1031e-3

Figure 4: Variable coe�cients convective di�usion equation, Re=1000.

4.4 The Convective Di�usion Equation with Source Terms

The convective di�usion equation with source terms is the fourth test case,

∂u

∂t
+

∂u

∂x
=

1
Re

∂2u

∂x2
+ επ2 sinπx + π cos πx, 0 ≤ x ≤ 1 (24)

The exact solution is given by u(x) = sinπx + (ex/ε − 1)/(e1/ε − 1). Fig. 5 plots the results of Re = 1000
and N = 320. This case shows that the DP scheme can also solve the convective di�usion equation with
source terms very well.
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Table 4: 2-D nonlinear Burgers equation, Re = 1000
Nx ×Ny 2-CDS 3-DP

L∞ L1 L∞ L1

40× 40 OV 0.6420e+0 0.1434e+0
80× 80 OV 0.4688e+0 0.2597e-1

160× 160 OV 0.2848e+0 0.5440e-2
320× 320 OV 0.1213e+0 0.8887e-3

Figure 5: Convective di�usion equation with source terms, Re=1000.

4.5 The Two Dimensional Nonlinear Burgers Equation

The two dimensional nonlinear Burgers equation is the �fth test case,

∂u

∂t
+ u

∂u

∂x
+ u

∂u

∂y
=

1
Re

(
∂2u

∂x2
+

∂2u

∂y2

)
, −1 ≤ x ≤ 1 (25)

The exact solution is given by u(x, y) = tanh(−Re(x + y)/2). The second order central scheme is over�ow
even the grid of 320 × 320 is used. Table 4 gives the errors of the 3-DP scheme. Fig. 6 is the solution
obtained by the 3-DP scheme with the grid of 160× 160.

Figure 6: 2-D nonlinear Burgers equation, Re=1000, 3-DP scheme.
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Table 5: 2-D convective di�usion equation with variable coe�cients, Re = 40
Nx ×Ny 2-CDS 3-DP

L∞ L1 L∞ L1

40× 40 0.3740e+2 0.1028e+1 0.1199e+0 0.2856e-2
80× 80 0.1077e+2 0.2758e+0 0.8903e-2 0.2022e-3

160× 160 0.2774e+1 0.7072e-1 0.5997e-3 0.1354e-4

4.6 The Two Dimensional Linear Convective Di�usion Equation with Variable

Coe�cients

Finally, the two dimensional linear convective di�usion equation with variable coe�cients is calculated,

∂u

∂t
+
(

y − 1
2

)
∂u

∂x
+
(

x− 1
2

)
∂u

∂y
=

1
Re

(
∂2u

∂x2
+

∂2u

∂y2

)
, 0 ≤ x, y ≤ 1 (26)

The exact solution is given by u(x, y) = exp
[
Re(x− 1

2 )(y − 1
2 )
]
. The case with Re = 40 is calculated. Since

the grid Reynolds number is small relatively, the 2-CDS scheme and the 3-DP scheme can run this case.
However, the errors given in Table 5 show that the second central scheme gives unacceptable results even
with the mesh of 160 × 160, while the third order DP scheme obtains very good solution and it achieves
third order accuracy. Fig. 7 is the solution calculated by the 3-DP scheme with mesh of 80× 80.

Figure 7: 2-D convective di�usion equation with variable coe�cients, Re=40, 3-DP scheme.

5 Conclusions

The nature of upwind dominance or conditionally upwind dominance of the DP schemes is presented and
veri�ed in this paper. It is this nature that makes the DP schemes be essentially non-oscillatory schemes in
the large gradient region or near discontinuity even with a large grid Reynolds number. Various numerical
examples show that the DP schemes are not only e�cient and robust, but also more accurate than the
original second order central scheme. The application to �uid dynamics Navier-Stokes equations and the
multi-nodes DP reconstruction algorithm are currently underway and will be reported at an upcoming paper.
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