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Abstrat: The Euler equations onsist of two aousti waves (u � ), ontat and shear waves

moving at the speed of (u). The aousti waves are an essential ingredient in ompressible �ows,

but trivial in low Mah number �ows. However, most of the upwind shemes treat these waves

in the same fashion. In this paper, we propose a method to separate the aousti waves from the

onvetive waves, resulting in a simple and unique Riemann solver. It is of great advantage for the

two-step method to allow di�erent solution-strategies for eah step.
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1 Introdution

The upwind shemes, proven to be able to monotonely apture a disontinuity with the minimum amount

of arti�ial visosity for the 1-D salar hyperboli equation, have gained great aeptane in industrial ap-

pliations and aademi studies[4℄, espeially in problems assoiated with shok waves. The Euler equations

onsist of two aousti waves, ontat and shear waves moving at the speed of �ow partile. The realization

of a upwind disretization for the system of the Euler equations is not simple, sine the waves are generally

not unidiretional. The Godunov-type approah solves this problem by pursuing an exat or approximate

solution to wave interations, while the �ux vetor splitting approah deomposes the system suh that eah

subsystem is unidiretional. For multi-dimensional Euler equations, the extension based on the 1D Riemann

upwind solvers, whih neglets the ontribution of shear waves, ontains a large amount of empiriism and

must therefore remain suspet, although these shemes have been suessfully applied to pratial problem.

Many Godunov-type shemes ontain subtle �aws that an ause spurious solutions [2℄.

On the other hand, the aousti waves are an essential ingredient in ompressible �ows, but they even do

not expliitly appear in inompressible �ows. The upwind treatment for the aousti waves faes a number

of problems when applied to low Mah number �ows, suh as the loss of auray due to numerial di�usion

of the order of O(1/M), anellation in the pressure variable, sti�ness of the equations. These fats suggest

that the aousti waves should be treated in a di�erent manner, preferably treated separately from the other

waves. However, the ommon upwind shemes treat all waves in the same fashion.

This work tries to onstrut an upwind method that solves the aousti waves and the other waves in

two separate steps. The solution to the aousti waves relies only on the estimation of pressure and veloity

at material interfae.

2 Basi idea and �rst order sheme

Consider the one-dimensional system of onservation laws for any �uids,

U

t

+ F

x

= 0; (1)
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where U, F are vetors of onservative quantities and �uxes. The �ux vetor an be written as

F = uU+P; (2)

where U = (�; �u; �E)

T

and P = (0; p; pu)

T

. The spei� total energy ontains the spei� internal energy

and kineti energy, E = e+u

2

=2. For the numerial solution of (1), we shall onsider a onservative sheme
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where �t and 


i

is the time step and the ell volume respetively. Conservative shemes are di�erent at

the way to de�ne �ux vetor F

�

. In this paper, we onsider a two-step method to approximate it. The

idea is stimulated by the work of Despr�es et al. [1℄, in whih the authors tried to apture a sharp ontat

disontinuity using a downwind advetion sheme.
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Figure 1: Constrution of the two-step Riemann solver

In the �rst step, we onsider a �uid partile oupies ell i bounded by two faes i + 1=2 and i � 1=2.

The onservative quantities of this partile satis�es
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where the tilded variables represent the partile states in the next time step, or the solution in the Lagrangian

frame. The volume of the partile evolves, following

~
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Notie that the �ux vetor is P instead of F. Beause of the motion of the partile, it will be adveted away

from the original Eulerian ell in general, as shown in Fig.1.

In the seond step, the onservative quantities in the Eulerian ell i is found by remapping the Lagrangian

solution. As shown in Fig.1, they are the sum of two portions, AB and BC. Suppose the Lagrangian solution

is pieewise onstant, we get




i

U

n+1

i

= (u

�

i�1=2

�t)

~

U

i�1

+ (

~




i

� u

�

i+1=2

�t)

~

U

i

: (5)

Substituting (4) into (5), we get
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Compared with (3), the numerial �ux of the two-step approah (6) reads,

F
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; (7)

where
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for u
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i+1=2

� 0;

~

U

i+1

for u

�

i+1=2

< 0:

(8)

The numerial �ux relies solely on the estimate of interfaial pressure and veloity, p

�

and u

�

, whih is more

or less simpler than most Riemann solver that an resolve a stationary ontat. Following the three-wave

on�guration proposed by Toro et al. [5℄, and hoosing (u � ) and (u + ) as two wave speeds, we obtain
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the estimates for pressure and veloity
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where I

L

= �

L



L

, and I

R

= �

R



R

are aousti impedanes on two sides.

Remarks on aousti waves in the Lagrange step The Lagrange step updates the onservative quantities

of a moving partile by (4). The equations physially re�et: (a) the mass of the partile remains onstant,

(b) the momentum and the energy evolve with the pressure and veloity at the boundary of the partile. The

�ux vetor P ontains only two salar quantity, pressure p and veloity u. Under the isentropi assumption,

the momentum and the energy equation in the Lagrange frame an be expressed as, respetively

�

Du

Dt

+ p

x

= 0; (11)

and
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where isentropi sound speed 
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. The Jaobian matrix of the system is
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with eigenvalues of (�; ). It is lear that only aousti waves are handled in this step.

3 Seond-order extension

3.1 The Lagrange step

The seond order auray of the Lagrange step in spae is ahieved by following the MUSCL method. The

pressure and veloity at interfaes are interpolated from the ell enter,
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whereM = (p; u)

T

, and the MINMOD slope limiter is used for limiter funtion �

L

i

. Time derivative,M

t

, is

inluded to ahieve seond order auray in time, whih is alulated from (11) and (12) using the values

and gradients at the last time step.

3.2 The remap step

The �rst order remap uses the pieewise onstant state to represent the solution in the Lagrangian frame,

as shown in Fig. 2a. The seond order auray an be ahieved using the pieewise linear reonstrution

of the states (Fig. 2b). This problem is similar to the onstrution of a limiter in the MUSCL approah for

hyperboli equations, but not the same.

For the sake of larity, we hereafter assume a onstant positive veloity u > 0. Instead of using (8), the

onservative states are interpolated from the upstream ell,
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Figure 2: The remap step: (a) �rst order remap; (b) seond-order remap

Notie that the interpolated value is loated not at the ell interfae as ommonly followed in MUSCL-type

shemes, but at the enter between grid and partile interfaes, as denoted by empty irles in Fig. 2b. The

values at this entral point represents the average state of the portion, CD, to seond order auray. One

may also interpolate other set of variables, e.g. R = (�; u; e), and then the onservative states are evaluated

from interpolated variables,
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It is more onvenient to preserve positivity of internal energy in the remap step. The use of non-onservative

state variables neither degenerates the order of auray, nor violates the onservation laws sine the overall

onservation is preserved by following (3).

We shall onstrut the slope limiter �

R

i

suh that the seond-order remap step will not reate numerial

osillations. The remap step is generally expressed as
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whih represents a volume-weighted average of two entral values in portions AB and BC, as shown in Fig.

2b. Funtion � represents a variable to be interpolated. The downstream value is interpolated by
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The upstream value, representing the average state of the remaining quantities between BC in the Eulerian

ell i, is interpolated similarly,
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The slope limiter �

R

is de�ned suh that the remap step does not introdue any new extrema. The following

TVD (Total Variation Diminishing) ondition,
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should be satis�ed. Sine j�
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where the middle values are interpolated from

~

�

i�1=2

�

~

�

i

= �(r

~

�)

i

�x=2; and

~

�

i+1=2

�

~

�

i

= (r

~

�)

i

�x=2.

We devise the following MINMOD slope limiter,
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Figure 3: 1D shok tube problem
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One may show (24) satis�es (22) and (23), after a few algebrai manipulations. No attempt has been made

to devise any anti-di�use limiter, whih violates the seond law of the thermodynamis although it may

resolve a sharper ontat disontinuity numerially.

4 Numerial results and disussion

The ideal gas equation of state is used in numerial simulation. The CFL number is taken as 0.8 for 1D tests,

and 0.45 for 2D tests. The results of the well-known Sod shok tube are shown in Fig 3. The results of the

�rst-order and seond-order shemes are ompared with the Godunov shemes using the exat Riemann solver

in Figs. 3ab. The seond-order Godunov sheme is onstruted based on the MUSCL-Hanok method. It

is seen that the two-step solvers resolve the shok, ontat and expansion waves as well as its Godunov

ounterpart. The �rst order version behaves more di�usive at the loation where the initial disontinuity

breaks. It is just the loation where a upwind sheme may reate an expansion shok.

The present two-step approah allows us to adopt di�erent numerial shemes for the aousti waves and

the ontat disontinuity. For instane, one may onstrut a two-step sheme ombining the seond-order

Lagrange step with the �rst-order Remap, and vise versa. The results of these two partially seond-order

shemes are plotted in Figs. 3d, together with the fully seond-order sheme. With the �rst-order remap,

the ontat wave is widen similarly to the �rst order sheme (Fig. 3a), while other waves are resolved as

well as the seond-order sheme. If the �rst-order Lagrange sheme oupled with the seond-order remap,

the leading front of left traveling expansion waves is smeared, as seen in the �rst order sheme 3a, but the

5



(a) (b)

Figure 4: Unsteady shok wave di�ration over a 90

Æ

orner, isopynis: (a) M

s

= 1:5, (b) M

s

= 8.

ontat hardly hanges. As a 2D illustration, shok wave di�ration over a 90

Æ

orner is onduted, as done

in [3℄. The geometry onsists of three 1� 1 squares, and eah is divided to 128� 128 uniform ells. A shok

wave is initially at 0.5 to the left of the orner point. The results are shown in Fig. 4, for a weak and a

strong shok wave. The results are reasonably good.

5 Conluding remarks

We proposed a two-step approah that separate the aousti waves from the other waves. The resulting

Riemann solver of the two-step approah solely relies on the estimate of interfaial pressure and veloity.

Numerial tests on�rm that one may use di�erent shemes to ontrol arti�ial visosity for eah of them.

This suggest that it is possible to adopt di�erent solution-strategies, say, an impliit method only for the

aousti waves in low Mah number �ow regime, whih are under development. Although the 1D estimates

in the diretion normal to the grid interfae has been followed for multi-dimension extension in the present

work, the approah sheds a new light on the onstrution of a fully multidimensional Riemann solver.
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