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Abstra
t: The Euler equations 
onsist of two a
ousti
 waves (u � 
), 
onta
t and shear waves

moving at the speed of (u). The a
ousti
 waves are an essential ingredient in 
ompressible �ows,

but trivial in low Ma
h number �ows. However, most of the upwind s
hemes treat these waves

in the same fashion. In this paper, we propose a method to separate the a
ousti
 waves from the


onve
tive waves, resulting in a simple and unique Riemann solver. It is of great advantage for the

two-step method to allow di�erent solution-strategies for ea
h step.
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1 Introdu
tion

The upwind s
hemes, proven to be able to monotonely 
apture a dis
ontinuity with the minimum amount

of arti�
ial vis
osity for the 1-D s
alar hyperboli
 equation, have gained great a

eptan
e in industrial ap-

pli
ations and a
ademi
 studies[4℄, espe
ially in problems asso
iated with sho
k waves. The Euler equations


onsist of two a
ousti
 waves, 
onta
t and shear waves moving at the speed of �ow parti
le. The realization

of a upwind dis
retization for the system of the Euler equations is not simple, sin
e the waves are generally

not unidire
tional. The Godunov-type approa
h solves this problem by pursuing an exa
t or approximate

solution to wave intera
tions, while the �ux ve
tor splitting approa
h de
omposes the system su
h that ea
h

subsystem is unidire
tional. For multi-dimensional Euler equations, the extension based on the 1D Riemann

upwind solvers, whi
h negle
ts the 
ontribution of shear waves, 
ontains a large amount of empiri
ism and

must therefore remain suspe
t, although these s
hemes have been su

essfully applied to pra
ti
al problem.

Many Godunov-type s
hemes 
ontain subtle �aws that 
an 
ause spurious solutions [2℄.

On the other hand, the a
ousti
 waves are an essential ingredient in 
ompressible �ows, but they even do

not expli
itly appear in in
ompressible �ows. The upwind treatment for the a
ousti
 waves fa
es a number

of problems when applied to low Ma
h number �ows, su
h as the loss of a

ura
y due to numeri
al di�usion

of the order of O(1/M), 
an
ellation in the pressure variable, sti�ness of the equations. These fa
ts suggest

that the a
ousti
 waves should be treated in a di�erent manner, preferably treated separately from the other

waves. However, the 
ommon upwind s
hemes treat all waves in the same fashion.

This work tries to 
onstru
t an upwind method that solves the a
ousti
 waves and the other waves in

two separate steps. The solution to the a
ousti
 waves relies only on the estimation of pressure and velo
ity

at material interfa
e.

2 Basi
 idea and �rst order s
heme

Consider the one-dimensional system of 
onservation laws for any �uids,

U

t

+ F

x

= 0; (1)
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where U, F are ve
tors of 
onservative quantities and �uxes. The �ux ve
tor 
an be written as

F = uU+P; (2)

where U = (�; �u; �E)

T

and P = (0; p; pu)

T

. The spe
i�
 total energy 
ontains the spe
i�
 internal energy

and kineti
 energy, E = e+u

2

=2. For the numeri
al solution of (1), we shall 
onsider a 
onservative s
heme




i

U

n+1

i

= 


i

U

n

i

��t(F

�

i+1=2

� F

�

i�1=2

); (3)

where �t and 


i

is the time step and the 
ell volume respe
tively. Conservative s
hemes are di�erent at

the way to de�ne �ux ve
tor F

�

. In this paper, we 
onsider a two-step method to approximate it. The

idea is stimulated by the work of Despr�es et al. [1℄, in whi
h the authors tried to 
apture a sharp 
onta
t

dis
ontinuity using a downwind adve
tion s
heme.
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Figure 1: Constru
tion of the two-step Riemann solver

In the �rst step, we 
onsider a �uid parti
le o

upies 
ell i bounded by two fa
es i + 1=2 and i � 1=2.

The 
onservative quantities of this parti
le satis�es

~
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i
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i
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n

i

��t(P

�

i+1=2

�P

�

i�1=2

); (4)

where the tilded variables represent the parti
le states in the next time step, or the solution in the Lagrangian

frame. The volume of the parti
le evolves, following

~




i

= 


i

+�t(u

�

i+1=2

� u

�

i�1=2

):

Noti
e that the �ux ve
tor is P instead of F. Be
ause of the motion of the parti
le, it will be adve
ted away

from the original Eulerian 
ell in general, as shown in Fig.1.

In the se
ond step, the 
onservative quantities in the Eulerian 
ell i is found by remapping the Lagrangian

solution. As shown in Fig.1, they are the sum of two portions, AB and BC. Suppose the Lagrangian solution

is pie
ewise 
onstant, we get




i

U

n+1

i

= (u

�

i�1=2

�t)

~

U

i�1

+ (

~




i

� u

�

i+1=2

�t)

~

U

i

: (5)

Substituting (4) into (5), we get




i

U

n+1

i
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i

U

n

i

��t(

~

U

i

u

�

i+1=2

+P

�

i+1=2

�

~

U

i�1

u

�

i�1=2

�P

�

i�1=2

): (6)

Compared with (3), the numeri
al �ux of the two-step approa
h (6) reads,

F

�

= U

�

i+1=2

u

�

i+1=2

+P

�

i+1=2

; (7)

where

U

�

i+1=2

=

(

~

U

i

for u

�

i+1=2

� 0;

~

U

i+1

for u

�

i+1=2

< 0:

(8)

The numeri
al �ux relies solely on the estimate of interfa
ial pressure and velo
ity, p

�

and u

�

, whi
h is more

or less simpler than most Riemann solver that 
an resolve a stationary 
onta
t. Following the three-wave


on�guration proposed by Toro et al. [5℄, and 
hoosing (u � 
) and (u + 
) as two wave speeds, we obtain
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the estimates for pressure and velo
ity

p

�

=

I

R

p

L

+ I

L

p

R

I

L

+ I

R

+

I

L

I

R

I
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+ I
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L
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) (9)

u
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=

I
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I
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+ I

R
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) (10)

where I

L

= �

L




L

, and I

R

= �

R




R

are a
ousti
 impedan
es on two sides.

Remarks on a
ousti
 waves in the Lagrange step The Lagrange step updates the 
onservative quantities

of a moving parti
le by (4). The equations physi
ally re�e
t: (a) the mass of the parti
le remains 
onstant,

(b) the momentum and the energy evolve with the pressure and velo
ity at the boundary of the parti
le. The

�ux ve
tor P 
ontains only two s
alar quantity, pressure p and velo
ity u. Under the isentropi
 assumption,

the momentum and the energy equation in the Lagrange frame 
an be expressed as, respe
tively

�

Du

Dt

+ p

x

= 0; (11)

and

1

�


2

Dp

Dt

+ u

x

= 0; (12)

where isentropi
 sound speed 


2

= (

Dp

D�

)

s

. The Ja
obian matrix of the system is

�

�

�

�

0 �


2

1=� 0

�

�

�

�

;

with eigenvalues of (�
; 
). It is 
lear that only a
ousti
 waves are handled in this step.

3 Se
ond-order extension

3.1 The Lagrange step

The se
ond order a

ura
y of the Lagrange step in spa
e is a
hieved by following the MUSCL method. The

pressure and velo
ity at interfa
es are interpolated from the 
ell 
enter,

M

i+1=2

=M

i

+�

L

i

[(rM)

i

�x

2

+ (M

t

)

i

�t

2

℄ (13)

whereM = (p; u)

T

, and the MINMOD slope limiter is used for limiter fun
tion �

L

i

. Time derivative,M

t

, is

in
luded to a
hieve se
ond order a

ura
y in time, whi
h is 
al
ulated from (11) and (12) using the values

and gradients at the last time step.

3.2 The remap step

The �rst order remap uses the pie
ewise 
onstant state to represent the solution in the Lagrangian frame,

as shown in Fig. 2a. The se
ond order a

ura
y 
an be a
hieved using the pie
ewise linear re
onstru
tion

of the states (Fig. 2b). This problem is similar to the 
onstru
tion of a limiter in the MUSCL approa
h for

hyperboli
 equations, but not the same.

For the sake of 
larity, we hereafter assume a 
onstant positive velo
ity u > 0. Instead of using (8), the


onservative states are interpolated from the upstream 
ell,

U

�

i+1=2

=

~

U

i

+�

R

i

(r

~

U)

i

�

+

i

; (14)

where �

R

i

is the slope limiter that modi�es the gradient (r

~

U)

i

, to be de�ned later, and

�

+

i

= ~x

i

+ � ~x

i

= (x

i+1=2

+ u�t=2)� (x

i

+ u�t) = (x

i+1=2

� x

i

)� u�t=2: (15)
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Figure 2: The remap step: (a) �rst order remap; (b) se
ond-order remap

Noti
e that the interpolated value is lo
ated not at the 
ell interfa
e as 
ommonly followed in MUSCL-type

s
hemes, but at the 
enter between grid and parti
le interfa
es, as denoted by empty 
ir
les in Fig. 2b. The

values at this 
entral point represents the average state of the portion, CD, to se
ond order a

ura
y. One

may also interpolate other set of variables, e.g. R = (�; u; e), and then the 
onservative states are evaluated

from interpolated variables,

U

�

i+1=2

=

~

U(R

i

+�

R

i

(r

~

R)

i

�

+

i

): (16)

It is more 
onvenient to preserve positivity of internal energy in the remap step. The use of non-
onservative

state variables neither degenerates the order of a

ura
y, nor violates the 
onservation laws sin
e the overall


onservation is preserved by following (3).

We shall 
onstru
t the slope limiter �

R

i

su
h that the se
ond-order remap step will not 
reate numeri
al

os
illations. The remap step is generally expressed as




i

�

i

= 


AB

~

�

(i�1)

+
+


BC

~

�

i

�
; (17)

whi
h represents a volume-weighted average of two 
entral values in portions AB and BC, as shown in Fig.

2b. Fun
tion � represents a variable to be interpolated. The downstream value is interpolated by

~

�

i

+
=

~

�

i

+�

R

i

(r

~

�)

i

�

+

i

: (18)

The upstream value, representing the average state of the remaining quantities between BC in the Eulerian


ell i, is interpolated similarly,

~

�

i

�
=

~

�

i

+�

R

i

(r

~

�)

i

�

�

i

; (19)

where

�

�

i

= ~x

i

�
� ~x

i

= (x

i

+ u�t=2)� (x

i

+ u�t) = �u�t=2: (20)

The slope limiter �

R

is de�ned su
h that the remap step does not introdu
e any new extrema. The following

TVD (Total Variation Diminishing) 
ondition,

min(

~

�

i�1

;

~

�

i

) � �

i

� max(

~

�

i�1

;

~

�

i

); (21)

should be satis�ed. Sin
e j�

+

i

j; j�

�

i

j � �x=2 for u�t=�x � 1, it is su�
ient to ful�ll (21), if two interpolated

values at 
ell boundaries satisfy, for all i,

min(

~

�

i�1

;

~

�

i

) �

~

�

i�1=2

� max(

~

�

i�1

;

~

�

i

); (22)

min(

~

�

i

;

~

�

i+1

) �

~

�

i+1=2

� max(

~

�

i

;

~

�

i+1

); (23)

where the middle values are interpolated from

~

�

i�1=2

�

~

�

i

= �(r

~

�)

i

�x=2; and

~

�

i+1=2

�

~

�

i

= (r

~

�)

i

�x=2.

We devise the following MINMOD slope limiter,

�

R

i

=

�

0 r

+

� 0 _ r

�

� 0;

min(1; r

+

; r

�

) otherwise;

(24)
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Figure 3: 1D sho
k tube problem

where

r

�

=

~

�

i�1

�

~

�

i

~

�

i�1=2

�

~

�

i

; r

+

=

~

�

i+1

�

~

�

i

~

�

i+1=2

�

~

�

i

: (25)

One may show (24) satis�es (22) and (23), after a few algebrai
 manipulations. No attempt has been made

to devise any anti-di�use limiter, whi
h violates the se
ond law of the thermodynami
s although it may

resolve a sharper 
onta
t dis
ontinuity numeri
ally.

4 Numeri
al results and dis
ussion

The ideal gas equation of state is used in numeri
al simulation. The CFL number is taken as 0.8 for 1D tests,

and 0.45 for 2D tests. The results of the well-known Sod sho
k tube are shown in Fig 3. The results of the

�rst-order and se
ond-order s
hemes are 
ompared with the Godunov s
hemes using the exa
t Riemann solver

in Figs. 3ab. The se
ond-order Godunov s
heme is 
onstru
ted based on the MUSCL-Han
o
k method. It

is seen that the two-step solvers resolve the sho
k, 
onta
t and expansion waves as well as its Godunov


ounterpart. The �rst order version behaves more di�usive at the lo
ation where the initial dis
ontinuity

breaks. It is just the lo
ation where a upwind s
heme may 
reate an expansion sho
k.

The present two-step approa
h allows us to adopt di�erent numeri
al s
hemes for the a
ousti
 waves and

the 
onta
t dis
ontinuity. For instan
e, one may 
onstru
t a two-step s
heme 
ombining the se
ond-order

Lagrange step with the �rst-order Remap, and vise versa. The results of these two partially se
ond-order

s
hemes are plotted in Figs. 3
d, together with the fully se
ond-order s
heme. With the �rst-order remap,

the 
onta
t wave is widen similarly to the �rst order s
heme (Fig. 3a), while other waves are resolved as

well as the se
ond-order s
heme. If the �rst-order Lagrange s
heme 
oupled with the se
ond-order remap,

the leading front of left traveling expansion waves is smeared, as seen in the �rst order s
heme 3a, but the
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(a) (b)

Figure 4: Unsteady sho
k wave di�ra
tion over a 90

Æ


orner, isopy
ni
s: (a) M

s

= 1:5, (b) M

s

= 8.


onta
t hardly 
hanges. As a 2D illustration, sho
k wave di�ra
tion over a 90

Æ


orner is 
ondu
ted, as done

in [3℄. The geometry 
onsists of three 1� 1 squares, and ea
h is divided to 128� 128 uniform 
ells. A sho
k

wave is initially at 0.5 to the left of the 
orner point. The results are shown in Fig. 4, for a weak and a

strong sho
k wave. The results are reasonably good.

5 Con
luding remarks

We proposed a two-step approa
h that separate the a
ousti
 waves from the other waves. The resulting

Riemann solver of the two-step approa
h solely relies on the estimate of interfa
ial pressure and velo
ity.

Numeri
al tests 
on�rm that one may use di�erent s
hemes to 
ontrol arti�
ial vis
osity for ea
h of them.

This suggest that it is possible to adopt di�erent solution-strategies, say, an impli
it method only for the

a
ousti
 waves in low Ma
h number �ow regime, whi
h are under development. Although the 1D estimates

in the dire
tion normal to the grid interfa
e has been followed for multi-dimension extension in the present

work, the approa
h sheds a new light on the 
onstru
tion of a fully multidimensional Riemann solver.
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