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Abstract: The Euler equations consist of two acoustic waves (u £ ¢), contact and shear waves
moving at the speed of (u). The acoustic waves are an essential ingredient in compressible flows,
but trivial in low Mach number flows. However, most of the upwind schemes treat these waves
in the same fashion. In this paper, we propose a method to separate the acoustic waves from the
convective waves, resulting in a simple and unique Riemann solver. It is of great advantage for the
two-step method to allow different solution-strategies for each step.
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1 Introduction

The upwind schemes, proven to be able to monotonely capture a discontinuity with the minimum amount
of artificial viscosity for the 1-D scalar hyperbolic equation, have gained great acceptance in industrial ap-
plications and academic studies[4], especially in problems associated with shock waves. The Euler equations
consist of two acoustic waves, contact and shear waves moving at the speed of flow particle. The realization
of a upwind discretization for the system of the Euler equations is not simple, since the waves are generally
not unidirectional. The Godunov-type approach solves this problem by pursuing an exact or approximate
solution to wave interactions, while the flux vector splitting approach decomposes the system such that each
subsystem is unidirectional. For multi-dimensional Euler equations, the extension based on the 1D Riemann
upwind solvers, which neglects the contribution of shear waves, contains a large amount of empiricism and
must therefore remain suspect, although these schemes have been successfully applied to practical problem.
Many Godunov-type schemes contain subtle flaws that can cause spurious solutions [2].

On the other hand, the acoustic waves are an essential ingredient in compressible flows, but they even do
not explicitly appear in incompressible flows. The upwind treatment for the acoustic waves faces a number
of problems when applied to low Mach number flows, such as the loss of accuracy due to numerical diffusion
of the order of O(1/M), cancellation in the pressure variable, stiffness of the equations. These facts suggest
that the acoustic waves should be treated in a different manner, preferably treated separately from the other
waves. However, the common upwind schemes treat all waves in the same fashion.

This work tries to construct an upwind method that solves the acoustic waves and the other waves in
two separate steps. The solution to the acoustic waves relies only on the estimation of pressure and velocity
at material interface.

2 Basic idea and first order scheme
Consider the one-dimensional system of conservation laws for any fluids,

U, +F, =0, (1)



where U, F are vectors of conservative quantities and fluxes. The flux vector can be written as

F=uwU+P, (2)

where U = (p, pu, pE)T and P = (0,p,pu)T. The specific total energy contains the specific internal energy
and kinetic energy, E = e +u?/2. For the numerical solution of (1), we shall consider a conservative scheme

QiU?H =0, U7 — Ay( :+1/2 - :71/2), (3)
where At and (2; is the time step and the cell volume respectively. Conservative schemes are different, at
the way to define flux vector F*. In this paper, we consider a two-step method to approximate it. The

idea is stimulated by the work of Després et al. [1], in which the authors tried to capture a sharp contact
discontinuity using a downwind advection scheme.
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Figure 1: Construction of the two-step Riemann solver

In the first step, we consider a fluid particle occupies cell ¢ bounded by two faces i + 1/2 and i — 1/2.
The conservative quantities of this particle satisfies

0 U = QU7 — At(P], ), — Py 1), (4)

where the tilded variables represent the particle states in the next time step, or the solution in the Lagrangian
frame. The volume of the particle evolves, following

Q= Qi + At (Ui p = Ui_y/2)-

Notice that the flux vector is P instead of F. Because of the motion of the particle, it will be advected away
from the original Eulerian cell in general, as shown in Fig.1.

In the second step, the conservative quantities in the Eulerian cell 7 is found by remapping the Lagrangian
solution. As shown in Fig.1, they are the sum of two portions, AB and BC'. Suppose the Lagrangian solution
is piecewise constant, we get

QU = (uj_y o A) Uiy + (R — ufyy AN, (5)

Substituting (4) into (5), we get

0,U = 0,07 — At(fbuiﬂ/z +Prn = Uimiu_y ) =PIy )5). (6)

Compared with (3), the numerical flux of the two-step approach (6) reads,

F* = U:+1/2uf+1/2 + P:+1/27 (7)
where -
U; fo * >0,
Uiyp=1 ¢ © i = (8)
Ui+1 for U:+1/2 < 0.

The numerical flux relies solely on the estimate of interfacial pressure and velocity, p* and u*, which is more
or less simpler than most Riemann solver that can resolve a stationary contact. Following the three-wave
configuration proposed by Toro et al. [5], and choosing (u — ¢) and (u + ¢) as two wave speeds, we obtain



the estimates for pressure and velocity
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where I = plcl, and I = pfcP are acoustic impedances on two sides.

Remarks on acoustic waves in the Lagrange step The Lagrange step updates the conservative quantities
of a moving particle by (4). The equations physically reflect: (a) the mass of the particle remains constant,
(b) the momentum and the energy evolve with the pressure and velocity at the boundary of the particle. The
flux vector P contains only two scalar quantity, pressure p and velocity u. Under the isentropic assumption,
the momentum and the energy equation in the Lagrange frame can be expressed as, respectively

p% +p. =0, (11)
and | Dp
2 Dt +u, =0, (12)
where isentropic sound speed ¢ = (g—i)s. The Jacobian matrix of the system is
‘ 0 pc
1/p 0 |’

with eigenvalues of (—c¢,¢). It is clear that only acoustic waves are handled in this step.

3 Second-order extension

3.1 The Lagrange step

The second order accuracy of the Lagrange step in space is achieved by following the MUSCL method. The
pressure and velocity at interfaces are interpolated from the cell center,

Az At
M1/ =M, + -1>£[(v1v[)i7 + (M) (13)
where M = (p,u)T, and the MINMOD slope limiter is used for limiter function <I'iL. Time derivative, My, is
included to achieve second order accuracy in time, which is calculated from (11) and (12) using the values
and gradients at the last time step.

3.2 The remap step

The first order remap uses the piecewise constant state to represent the solution in the Lagrangian frame,
as shown in Fig. 2a. The second order accuracy can be achieved using the piecewise linear reconstruction
of the states (Fig. 2b). This problem is similar to the construction of a limiter in the MUSCL approach for
hyperbolic equations, but not the same.

For the sake of clarity, we hereafter assume a constant positive velocity u > 0. Instead of using (8), the
conservative states are interpolated from the upstream cell,

Uf+1/2 =Ui+ ‘I’f(Vﬂ)iA?_a (14)
where <I>zR is the slope limiter that modifies the gradient (VU);, to be defined later, and
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Figure 2: The remap step: (a) first order remap; (b) second-order remap

Notice that the interpolated value is located not at the cell interface as commonly followed in MUSCL-type
schemes, but at the center between grid and particle interfaces, as denoted by empty circles in Fig. 2b. The
values at this central point represents the average state of the portion, C'D, to second order accuracy. One
may also interpolate other set of variables, e.g. R = (p,u,€), and then the conservative states are evaluated

from interpolated variables,

* T R o +

i+1/2 — U(Ri + @; (VR)iAi ) (16)
It is more convenient to preserve positivity of internal energy in the remap step. The use of non-conservative
state variables neither degenerates the order of accuracy, nor violates the conservation laws since the overall
conservation is preserved by following (3).

We shall construct the slope limiter <I>fﬂ such that the second-order remap step will not create numerical
oscillations. The remap step is generally expressed as

Q& = Qupi+ + e, (17)

which represents a volume-weighted average of two central values in portions AB and BC, as shown in Fig.
2b. Function £ represents a variable to be interpolated. The downstream value is interpolated by

& =&+ OR(VE)AT (18)

The upstream value, representing the average state of the remaining quantities between BC' in the Eulerian
cell 4, is interpolated similarly, } } R
& =&+ e (VEA;, (19)

where
A7 =3 — 3 = (1, + ult)2) — (2; + uAt) = —ult/2. (20)

2

The slope limiter ®% is defined such that the remap step does not introduce any new extrema. The following
TVD (Total Variation Diminishing) condition,

min(§;_1,&) < & < max(&-1,&), (21)

should be satisfied. Since |A]|,|A]| < Az/2 for uAt/Azx < 1, it is sufficient to fulfill (21), if two interpolated
values at cell boundaries satisfy, for all i,

min(&-1,&) < &_1/2 < max(§-1,&), (22)

min(&;, &i41) < &y1/2 < max(és, &ir1), (23)

where the middle values are interpolated from &_1/2 —§& = —(Vg)iAx/Q, and £i+1/2 —§& = (Vg)iAac/Z
We devise the following MINMOD slope limiter,

L —

(3

0 rt <0VvVr <0, (24)
min(

1,77,77) otherwise,
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Figure 3: 1D shock tube problem
where ~ ~ ~ ~
— §i1—& 4+ &ir1—& (25)

== —, 7 = = :
§ic1y2 — & Siv1/2 — &
One may show (24) satisfies (22) and (23), after a few algebraic manipulations. No attempt has been made

to devise any anti-diffuse limiter, which violates the second law of the thermodynamics although it may
resolve a sharper contact discontinuity numerically.

4 Numerical results and discussion

The ideal gas equation of state is used in numerical simulation. The CFL number is taken as 0.8 for 1D tests,
and 0.45 for 2D tests. The results of the well-known Sod shock tube are shown in Fig 3. The results of the
first-order and second-order schemes are compared with the Godunov schemes using the exact Riemann solver
in Figs. 3ab. The second-order Godunov scheme is constructed based on the MUSCL-Hancock method. It
is seen that the two-step solvers resolve the shock, contact and expansion waves as well as its Godunov
counterpart. The first order version behaves more diffusive at the location where the initial discontinuity
breaks. It is just the location where a upwind scheme may create an expansion shock.

The present two-step approach allows us to adopt different numerical schemes for the acoustic waves and
the contact discontinuity. For instance, one may construct a two-step scheme combining the second-order
Lagrange step with the first-order Remap, and vise versa. The results of these two partially second-order
schemes are plotted in Figs. 3cd, together with the fully second-order scheme. With the first-order remap,
the contact wave is widen similarly to the first order scheme (Fig. 3a), while other waves are resolved as
well as the second-order scheme. If the first-order Lagrange scheme coupled with the second-order remap,
the leading front of left traveling expansion waves is smeared, as seen in the first order scheme 3a, but the
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Figure 4: Unsteady shock wave diffraction over a 90° corner, isopycnics: (a) Ms = 1.5, (b) M, = 8.

contact hardly changes. As a 2D illustration, shock wave diffraction over a 90° corner is conducted, as done
in [3]. The geometry consists of three 1 x 1 squares, and each is divided to 128 x 128 uniform cells. A shock
wave is initially at 0.5 to the left of the corner point. The results are shown in Fig. 4, for a weak and a
strong shock wave. The results are reasonably good.

5 Concluding remarks

We proposed a two-step approach that separate the acoustic waves from the other waves. The resulting
Riemann solver of the two-step approach solely relies on the estimate of interfacial pressure and velocity.
Numerical tests confirm that one may use different schemes to control artificial viscosity for each of them.
This suggest that it is possible to adopt different solution-strategies, say, an implicit method only for the
acoustic waves in low Mach number flow regime, which are under development. Although the 1D estimates
in the direction normal to the grid interface has been followed for multi-dimension extension in the present
work, the approach sheds a new light on the construction of a fully multidimensional Riemann solver.

References

[1] Després B, Lagoutiere F, Contact discontinuity capturing schemes for linear advection and compressible
gas dynamics, J of Scientific Computing, 16 (2001) 479-524

[2] Quirk JJ, A contribution to the great Riemann solver debate, Intl. J. for Numer. Methods in Fluids,
18, 555, (1994)

[3] Sun M, Takayama K, Conservative smoothing on an adaptive quadrilateral grid, J. Comput. Phys, 150,
143, (1999)

[4] Toro E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction,
Springer; 2nd edition (1999)

[5] Toro EF, Spruce M, Speares W, Restoration of the contact surface in the HLL-Riemann solver, Shock
Waves, 4, 25, (1994)



