
Seventh International Conference on
Computational Fluid Dynamics (ICCFD7),
Big Island, Hawaii, July 9-13, 2012

ICCFD7-2603

E�cient Implementation of the CPR Formulation for the

Navier-Stokes Equations on GPUs

Malte Ho�mann∗, Claus-Dieter Munz∗ and Z. J. Wang∗∗

Corresponding author: ho�mann@iag.uni-stuttgart.de

∗ Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

Pfa�enwaldring 21, 70569, Germany
∗∗ Department of Aerospace Engineering and CFD Center, Iowa State University

50011 Ames, USA

Abstract: The correction procedure via reconstruction (CPR) formulation for the Euler and
Navier-Stokes equations is implemented on a NVIDIA graphics processing unit (GPU) using CUDA
C with both explicit and implicit time-stepping schemes for 2D unstructured triangular grids. For
the implicit time integration, a �rst order time approximation with Newton iteration and Gauÿ
elimination is used to solve the system of equations, while for explicit time-stepping a 3-stage
Runge-Kutta scheme is used. For the implicit time-stepping on the GPU a preconditioned mesh
coloring algorithm is developed, which is derived from the Four Color Theorem known from the
graph theory.
For the speed-up, compared to a single core of an Intel Xeon CPU, a factor up to 112-130 for
explicit time-stepping is achieved, varying on the polynomial degree k and the chosen numerical
�ow. For the implicit time-stepping the maximum speed-up is between 47 and 89. All calculations
are made in double precision using a single NVIDIA Tesla C2050.
b
Keywords: GPU Computing, Euler and Navier-Stokes equations, 2D unstructured triangular grids,
implicit time integration, double precision, correction procedure via reconstruction, high-order.

1 Introduction

Recently a unifying discontinuous formulation named the correction procedure via reconstruction (CPR)
was proposed for 2D and 3D unstructured grids[1]. This high-order method uses an element-local operator
and one with only element-to-element coupling. These make this high-order methods ideal suited to the
architecture of a graphic processing unit (GPU). GPUs, over the last three decades, where mostly used for
graphic acceleration to calculate images shown by a computer screen. The calculation of the pixel color is
done by the many-core GPU in parallel. But during the last years the GPUs became capable of calculating
general purpose problems, like CFD calculations. A GPU is much cheaper then a CPU cluster with the
same performance of peak operations per second. This makes GPU computing interesting especially for
small companies and research groups with a small �nancial budget.
In this study the two topics, the high-order CPR formulation and GPU computing are combined. The CPR
formulation for Euler and Navier-Stokes equations is implemented on the GPU, with both an explicit and an
implicit time integration scheme. For the implicit time integration a cell coloring, derived from the four color
theorem, is used to split the mesh. The aim of this study is to show that the CPR formulation is suitable for
GPU computing and can be implemented in a way easy to understand. The implementation for the GPU
should reduce the computation time dramatically compared to a not parallelized CPU implementation.
bla
This paper is ordered as follows: At �rst the CPR formulation for the Euler and Navier-Stokes equation
on arbitrary high-order triangular elements is explained. After explaining the CPR formulation the imple-

1

mentation for this method is described including the four color theorem and the cell coloring. Then the
numerical results and the discussion of these results are shown. A conclusion is given in the last part of this
paper.

2 High-Order CPR Method

The high-order CFD method, which is used in this study, is the so called Correction Procedure via Recon-
struction (CPR). The CPR method was developed to improve the e�ciency or stability of several well-known
high-order methods, including staggered grid multi-domain (SG), spectral volume (SV), spectral di�erences
(SD) and nodal discontinuous Galerkin (DG) methods. As a matter of fact, it uni�es all these methods into
a simple nodal or collocation-type formulation. In the CPR method, the degrees-of-freedom (DOFs) are the
state variables at a pre-de�ned nodal set named solution points (SPs), where the di�erential form of the
governing equation is solved [1]. In the following we shortly review Ref. [1].

2.1 CPR for a Linear Triangle

In the �rst part, CPR for the Euler equations (inviscid �ux) is described. In the second part, the discretization
for the Navier-Stokes equations is presented (viscous �ux).

2.1.1 Discretization of the Inviscid-Equation

The hyperbolic conservation law is given by

∂Q

∂t
+ ~∇ · ~F (Q) = 0, (1)

with proper boundary- and initial-conditions. Q is the state vector and ~F (Q) = (F (Q) , G (Q)) is the �ux
vector. In two dimensions the solution vector Q is

Q =

ρ
ρu
ρv
e

 , (2)

where ρ is the density of the �uid, u the velocity of the �uid in X-Direction, v the velocity of the �uid in
Y-Direction and e the total energy per unit volume. So the number of variables is Nv = 4. The inviscid-�ux
vector ~F (Q) is

~F (Q) = (F (Q) , G (Q)) =

ρu
ρu2 + p
ρuv

u (e+ p)

 ,

ρv
ρuv

ρv2 + p
v (e+ p)

 , (3)

with p = (γ − 1)
(
e− 1

2ρ
(
u2 + v2

))
the pressure of the �uid (γ is the ratio of speci�c heats for ideal gas).

If one splits the computational area Ω into NC non-overlapping triangular cells {Vi}NCi=1 and let W be any
weighting function, then the weighted residual formulation of Eq. (1) on an cell Vi can be written as∫

Vi

(
∂Q

∂t
+ ~∇ · ~F (Q)

)
W dV =

∫
Vi

∂Q

∂t
W dV +

∫
∂Vi

W ~F (Q) · ~ndS −
∫
Vi

~∇W · ~F (Q) dV = 0. (4)

In order to approximate the exact solution Q on Vi, Qi is introduced. The approximate solution Qi belongs
on each cell Vi to the space of polynomials of degree k or less: Qi ∈ P k (Vi). These polynomials may be
discontinuous across cell interfaces. The dimension of P k is K = (k + 1)(k + 2)/2. For now the numerical
solution Qi must satisfy Eq. (4)∫

Vi

∂Qi
∂t

W dV +

∫
∂Vi

W ~F (Qi) · ~ndS −
∫
Vi

~∇W · ~F (Qi) dV = 0. (5)

2

In this equation the surface integral
∫
∂Vi

W ~F (Qi) · ~n has to be approximated in a proper way because the

numerical solution is discontinuous over cell interfaces. For this the normal �ux term ~F (Qi) in Eq. (5) is
replaced by a common Riemann �ux,

Fn (Qi) ≡ ~F (Qi) · ~n ≈ Fncom (Qi, Qi+, ~n) ,

in which Qi+ stands for the solution in the adjacent cell of Vi. Now instead of Eq. (5), the approximate
solution must satisfy ∫

Vi

∂Qi
∂t

W dV +

∫
∂Vi

WFncom dS −
∫
Vi

~∇W · ~F (Qi) dV = 0.

The last term of the above left hand side can be integrated by parts again∫
Vi

~∇W · ~F (Qi) dV =

∫
Vi

W ~∇ · ~F (Qi) dV −
∫
∂Vi

W Fn (Qi) dS,

which leads to ∫
Vi

∂Qi
∂t

W dV +

∫
Vi

W ~∇ · ~F (Qi) dV +

∫
∂Vi

W [Fncom − Fn (Qi)] dS = 0. (6)

The term ~∇ · ~F (Qi) contains no information about the data in the neighbor cells. The boundary integral∫
∂Vi

W [Fncom − Fn (Qi)] dS represents the in�uence of these data. To cast the above boundary integral into

a volume integral a �correction �eld� on Vi, δi ∈ P k (Vi) is introduced,∫
∂Vi

W [Fncom − Fn (Qi)] dS =

∫
Vi

W δi dV. (7)

The above equation is sometimes called �lifting operator� [2], which gets the normal �ux di�erences on the
boundary as an input and produces a member of P k (Vi) as an output. Substituting Eq. (7) in Eq. (6) leads
to ∫

Vi

(
∂Qi
∂t

+ ~∇ · ~F (Qi) + δi

)
W dV = 0. (8)

Because of (3) the conservation law is nonlinear, ~∇ · ~F (Qi) is usually not an element of P k (Vi). To make

it a member of P k(Vi) the most obviously choice is to project ~∇ · ~F (Qi) onto P k (Vi). By introducing

Π
(
~∇ · ~F (Qi)

)
as the projection of ~∇ · ~F (Qi) onto P

k (Vi) one choice is∫
Vi

(
∂Qi
∂t

+ Π
(
~∇ · ~F (Qi)

)
+ δi

)
W dV = 0. (9)

Eq. (9) can easily be reduced to
∂Qi
∂t

+ Π
(
~∇ · ~F (Qi)

)
+ δi = 0. (10)

Introducing the correction �eld δi and a projection of ~∇· ~F (Qi) for nonlinear conservation laws, the weighted
residual formulation can be reduced to a di�erential formulation.
By introducing the degrees of freedom (DOFs), which are the solutions at a set of solution points {~pi,j} (j
runs from 1 to K), Eq. (10) can be written as

∂Qi,j
∂t

+ Πj

(
~∇ · ~F (Qi)

)
+ δi,j = 0. (11)

Here Πj

(
~∇ · ~F (Qi)

)
are the values of Π

(
~∇ · ~F (Qi)

)
at the SP j. For the computation of the correction

�eld δi,j , k + 1 �ux points (FPs) are de�ned on each cell face. At these FPs the normal �ux di�erences

3

[Fncom − Fn (Qi)] are computed. For e�ciency the solution points are chosen to coincide with the �ux points
along cell faces to avoid any polynomial evaluation. In Fig. 2 the positions of the solution points and �ux
points for k = 1 to k = 5 for the standard triangle are shown (FPs are only located on the cell edges). The
normal �ux di�erence [Fncom − Fn (Qi)] is approximated with a degree k interpolation polynomial along each
face,

[Fncom − Fn (Qi)]f ≈ Ik [Fncom − Fn (Qi)]f ≡
∑
l

[Fncom − Fn (Qi)]f,l L
FP
l ,

where f is a face index and l is the FP index. LFPl is the value of the Lagrange interpolation polynomial
based on the FP in a local face coordinate. For linear triangles with straight edges, once the solution points
and �ux points are chosen, the correction at the SPs can be written as

δi,j =
1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l [F
n
com − Fn (Qi)]f,l Sf , (12)

where αj,f,l are lifting constants independent of the solution, Sf is the face length and |Vi| is the cell area.
δi,j for one SP j is a linear combination of all the normal �ux di�erences on all the faces of the cell.

To compute Πj

(
~∇ · ~F (Qi)

)
e�ciently the chain rule approach (CR) is chosen,

~∇ · ~F (Qi,j) =
∂F (Qi,j)

∂x
+
∂G (Qi,j)

∂y

=
∂F (Qi,j)

∂Q

∂Qi,j
∂x

+
∂G (Qi,j)

∂Q

∂Qi,j
∂y

(13)

=
∂ ~F (Qi,j)

∂Q
· ~∇Qi,j ,

where
∂ ~F (Qi,j)
∂Q can be computed analytically.

The derivative ∇Qi,j can be calculated with the Lagrange interpolation polynomial

~∇Qi,j =
∑
j

Qi,j ~∇LSPj .

The projection is approximated by the values of the Lagrange interpolation polynomial and the �ux vector
divergence at the solution points, i.e.

Πj

(
~∇ · ~F (Qi)

)
≈
∑
j

LSPj ~∇ · ~F (Qi,j) .

We note that the CR approach is not exactly conservative [3].
Substituting Eq. (12) in Eq. (11) the following CPR formulation is obtained

∂Qi,j
∂t

+ Πj

(
~∇ · ~F (Qi)

)
+

1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l [F
n
com − Fn (Qi)]f,l Sf = 0.

2.1.2 Formulation for Viscous-Flux

The Navier-Stokes equations can be written as

∂Q

∂t
+ ~∇ · ~F (Q)− ~∇ · ~F ν(Q, ~∇Q) = 0, (14)

4

where ~F ν(Q, ~∇Q) is the viscous �ux vector

~F ν(Q, ~∇Q) =
(
F ν(Q, ~∇Q), Gν(Q, ~∇Q)

)
=

0
τxx
τxy

uτxx + vτxy − qx

 ,

0
τyx
τyy

uτyx + vτyy − qy

 . (15)

The viscous stress tensor can be represented as

τ = µ

(
~∇~u+ (~∇~u)T − 2

3

(
~∇ · ~u

)
I

)
,

where µ is the molecular viscosity coe�cient, I is the identity matrix and ~u = (u, v) is the ve;ocity vector.
The derivatives of the viscous stress tensor τ are given by (see [4], page 599)

τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y

)
,

τyy =
2

3
µ

(
2
∂v

∂y
− ∂u

∂x

)
,

τxy = τyx = µ

(
∂u

∂y
− ∂v

∂x

)
.

The heat �ux is given as

~q = −cp
µ

Pr
~∇T.

Here, cp is the speci�c heat capacity at constant pressure, T is the temperature and Pr is the Prandtl number
and the components for qi are (see [4] page 599)

qx = −cp
µ

Pr

∂T

∂x
and qy = −cp

µ

Pr

∂T

∂y
.

The variable ~R is introduced and de�ned by
~R = ~∇Q. (16)

Let ~Ri be an approximation of ~R on a linear triangular cell Vi, and ~Ri ∈
(
P k, P k

)
. The obvious choice of

~Ri = ~∇Qi is not appropriate due to the jump at the interface. Instead, the computation of ~Ri needs to
involve data from neighboring cells. The CPR formulations of Eq. (14) and Eq. (16) on a linear triangle Vi
can be written as

∂Qi,j
∂t

+ Πj

(
∇ · ~F (Qi)

)
−Πν

j

(
∇~F ν(Qi, ~Ri)

)
+

1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l

(
[Fncom − Fn (Qi)]f,l − [F ν,ncom − F ν,n(Qi, ~Ri)]f,l

)
Sf = 0,

~Ri,j = (~∇Qi)j +
1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l [Q
com −Qi]f,l ~nfSf ,

where Πν is the projection operator for the divergence of the viscous �ux vector to P k, and[
F ν,ncom − F ν,n(Qi, ~Ri)

]
f,l
≡ ~F ν(Qcomf,l ,

~∇Qcomf,l) · ~nf,l − ~F ν(Qi, ~Ri)
∣∣∣
f,l
· ~nf,l,

with Qcomf and ~∇Qcomf the common solution and gradient on face f respectively, and Qi,f,l is the solution

within cell i on FP l of face f. The computation of Πν
(
∇ · ~F ν(Qi, ~Ri)

)
follows the Lagrange polynomial

5

approach. First, the viscous �ux vector at each solution point is evaluated using

~F νi,j = ~F ν
(
Qi,j , ~Ri,j

)
.

After that, a Lagrange polynomial for the viscous �ux vector is built with the values at all the solution
points, i.e.

Ik

(
~F νi

)
=
∑
j

~F νi,jL
SP
j .

Finally the divergence of this polynomial is used as the projection

Πν
j

(
∇ · ~F ν

(
Qi, ~Ri

))
≈ ~∇ · Ik

(
~F νi,j

)
=
∑
j

~F νi,j · ~∇LSPj . (17)

Various schemes for viscous �uxes di�er in how the common solution Qcomf and the common gradient ~∇Qcomf
are de�ned [5, 6, 7, 8]. Here the Bassi-Rebay 2 method [5] (BR2) is described.
The common solution in BR2 is simply the average of the solutions at both sides of a FP

Qcomf,l =
Qi

∣∣∣
f,l

+Qi+

∣∣∣
f,l

2
. (18)

The common gradient is computed with

~∇Qcomf,l =
1

2

(
~∇Qi

∣∣∣
f,l

+ ~ri

∣∣∣
f,l

+ ~∇Qi+
∣∣∣
f,l

+ ~ri+

∣∣∣
f,l

)
, (19)

where ~∇Qi
∣∣∣
f,l

and ~∇Qi+
∣∣∣
f,l

are the gradients of the solution at the left and right cells without corrections,

while ~ri

∣∣∣
f,l

and ~ri+

∣∣∣
f,l

are the corrections to the gradients due to the di�erence between the common solution

and the solution at each side of the face f at �ux point l. More speci�cally,

~ri

∣∣∣
f,l

=
1

|Vi|

NFP∑
m=1

βl,m

[
Qcom

∣∣∣
f,m
−Qi

∣∣∣
f,m

]
~nf,mSf ,

~ri+

∣∣∣
f,l

=
1

|Vi+|

NFP∑
m=1

βl,m

[
Qcom

∣∣∣
f,m
−Qi+

∣∣∣
f,m

]
(−~nf,m)Sf ,

where NFP is the number of �ux points on the face f which is k + 1 in 2D, l is a �ux point on face f and
βl,m is the coe�cient of correction due to face f . Because of the choice that the solution points and �ux
points are the same βl,m = αj,f,m, where index j is the solution point corresponding to �ux point l on face
f . For triangular cells, all βl,m are identical for any face f with a �xed distribution of �ux points.

2.2 Extension to High Order Cells

To calculate arbitrary triangular cells, including high-order cells all cells are transformed from the physical
domain (x, y) into a standard cell in the computational domain (ξ, η). The standard triangle is

T =
{
~ξ = (ξ, η) |ξ, η ≥ 0; ξ + η ≤ 1

}
,

shown in Fig. 1.
The transformation can be written as[

x
y

]
=

K∑
j

Mj(ξ, η)

[
xj
yj

]
,

6

T

f = 1

f = 3

f = 2

(1, 0)

(0, 1)

(0, 0)

Figure 1: Transformation of general cells to the standard cell

where K equals the number of solution points de�ning the physical cell and Mj(ξ, η) is the shape function
which is based on a set of locations of nodes de�ning the shape of the standard cell. The Jacobian matrix
J takes the following form

J =
∂(x, y)

∂(ξ, η)
=

[
xξ xη
yξ yη

]
.

The metrics can be computed according to

ξx =
yη
|J |

, ξy = − xη
|J |

, ηx = − yξ
|J |

, ηy =
xη
|J |

,

and the inverse of the Jacobian is

J−1 =

[
ξx ξy
ηx ηy

]
.

The transformed equation takes the following form for the inviscid �ux

∂Q̃

∂t
+
∂F̃

∂ξ
+
∂G̃

∂η
= 0, (20)

and for the viscous �ux
∂Q̃

∂t
+
∂F̃

∂ξ
+
∂G̃

∂η
− ∂F̃ ν

∂ξ
− ∂G̃ν

∂η
= 0, (21)

where

Q̃ = |J |Q,
F̃ = |J | (ξxF + ξyG) ,

G̃ = |J | (ηxF + ηyG) , (22)

F̃ ν = |J | (ξxF ν + ξyG
ν) ,

G̃ν = |J | (ηxF ν + ηyG
ν) .

The locations of the SPs and FPs on the standard triangle can be seen in Fig. 2 and are chosen to be the
Gauss-Lobatto points.

2.2.1 Inviscid Flux

Let ~Sξ = |J |~∇ξ, ~Sη = |J |~∇η, F̃ = ~F · ~Sξ and G̃ = ~F · ~Sη. Then Equation (20) can be written in the following
form

∂Q̃

∂t
+ ~∇ξ · ~̃F = 0,

7

•1 •2

•3

•1 •2

•3

•
4

•5•6

•1 •2

•3

•
4

•
5

•6

•7•8

•9
•
10

•1 •2

•3

•
4

•
5

•
6

•7

•8

•9•10

•11

•12
•
13

•
14

•
15

•1 •2

•3

•
4

•
5

•
6

•
7

•8

•9

•10

•11•12

•13

•14

•15
•
16

•
17

•
18

•
19

•
20

•
21

Figure 2: SPs ((k+1)(k+2)
2) and FPs (k + 1) for P k (k = 1 to k = 5)

where ~̃F =
(
F̃ , G̃

)
and ~∇ξ is the the divergence operator in the computational domain. Since the standard

cell (see Fig 1 on page 7) is a linear triangle, the CPR formulation can be directly applied

∂Q̃i,j
∂t

+ Πj

(
~∇ξ · ~̃F (Q̃i)

)
+

1

|V ξi |

∑
f∈∂Vi

∑
l

αj,f,l

[
F̃ncom − F̃n(Q̃i)

]
f,l
Sξf = 0, (23)

where the superscript ξ means that the variables or operations are evaluated on the computational domain.
By introducing a transformation from the physical to the computational domain we get[

~̃Fncom −
~̃Fn(Qi)

]
f,l
Sξf =

([
~̃Fcom − ~̃F (Q̃i)

]
f,l
· ~nξf

)
Sξf

=

([
~Fcom − ~F (Qi)

]
f,l
· ~Sξ
∣∣∣
f,l
nξ

∣∣∣
f,l

)
Sξf +

([
~Fcom − ~F (Qi)

]
f,l
· ~Sη

∣∣∣
f,l
nη

∣∣∣
f,l

)
Sξf

=
[
~Fcom − ~F (Qi)

]
f,l
· ~Snf,l

= [Fncom − Fn(Qi)]f,l |~S
n
f,l|, (24)

where ~nξ = (nξ, nη) and ~Snf,l =

[
~Sξnξ

∣∣∣
f,l
, ~Sηnη

∣∣∣
f,l

]T
Sξf . The face length S

ξ
f , for the standard cell equals to

Sξ1 = 1, Sξ2 =
√

2 and Sξ3 = 1 as seen in Fig. 1 on page 7. The transformation |~Snf,l| does not depend on the

solution. Taking into account that for the standard triangle |V ξi | = 1/2 and

1

|J |
~∇ξ · ~̃F (Q̃i) = ~∇ · ~F (Qi),

8

then with Eq. (24), the Eq. (23) can be further expressed as

∂Qi,j
∂t

+ Πj

(
~∇ · ~F (Qi)

)
+

2

|J |i,j

∑
f∈∂Vi

∑
l

αj,f,l [F
n
com − Fn (Qi)]f,l |~S

n
f,l| = 0. (25)

αj,f,l is the lifting constant in the computational domain.

2.2.2 Viscous Flux

Let

~Sξ = |J |~∇ξ,
~Sη = |J |~∇η,

F̃ = ~F · ~Sξ,

G̃ = ~F · ~Sη,

F̃ ν = ~F ν · ~Sξ,

G̃ν = ~F ν · ~Sη,

then Equation (21) can be written in the following form

∂Q̃

∂t
+ ~∇ξ · ~̃F − ~∇ξ · ~̃F ν = 0,

where ~̃F =
(
F̃ , G̃

)
, ~̃F ν =

(
F̃ ν , G̃ν

)
and ~∇ξ is the divergence operator in the computational domain. Since

the standard cell (see Fig. 1 on page 7) is a linear triangle, the CPR formulation can be directly applied

∂Q̃i,j
∂t

+ Πj

(
~∇ξ · ~̃F

(
Q̃i

))
−Πν

j

(
~∇ξ ~̃F ν(Q̃i,

~̃Ri)
)

+
1

|V ξi |

∑
f∈∂V ξi

∑
l

αj,f,l

([
F̃ncom − F̃n

(
Q̃i

)]
f,l
−
[
F̃ ν,ncom − F̃ ν,n

(
Q̃i,

~̃Ri

)]
f,l

)
Sξf = 0, (26)

~̃Ri,j = (~∇ξQ̃i)j +
1

|V ξi |

∑
f∈∂V ξi

∑
l

αj,f,l

[
Q̃com − Q̃i

]
f,l
~nξfS

ξ
f . (27)

Transforming [F̃ ν,ncom − F̃ ν,n(Q̃i,
~̃Ri)]f,l into the physical domain using the same approach as in Eq. (24) and

taking into account |V ξi | = 1/2,

1

|J |
~∇ξ · ~̃F (Q̃i) = ~∇ · ~F (Qi) and

1

|J |
~∇ξ · ~̃F ν(Q̃i,

~̃Ri) = ~∇ · ~F ν(Qi, ~Ri),

Equation (26) can be further expressed as

∂Qi,j
∂t

+ Πj

(
∇ · ~F (Qi)

)
−Πν

j

(
∇~F ν(Qi, ~Ri)

)
+

2

|J |i,j

∑
f∈∂Vi

∑
l

αj,f,l

(
[Fncom − Fn (Qi)]f,l − [F ν,ncom − F ν,n(Qi, ~Ri)]f,l

)
|~Snf,l| = 0, (28)

with
1

|J |i,j

(
~∇ξQ̃i,j · J−1

i,j −Qi,j ~∇|J |i,j
)

= ~∇Qi,j , (29)

9

where

∇ξQ̄i,j =

[
∂Q̄i,j
∂ξ

∂Q̄i,j
∂η

]
=

[∑K
m c

ξ
j,mQi,m |J |i,m∑K

m c
η
j,mQi,m |J |i,m

]
.

The coe�cients cξj,m and cηj,m can be calculated analytically. With Eq. (29) and the transformation in Eq.
(24), the Equation (27) can be further expressed as

~Ri,j = ~∇Qi,j +
2

|J |i,j

∑
f∈∂Vi

∑
l

αj,f,l [Q
com −Qi]f,l ~nf,l|~S

n
f,l|.

According to the BR2 method Qcom = (Qi +Qi+)/2, the previous equation becomes

~Ri,j = ~∇Qi,j +
1

|J |i,j

∑
f∈∂Vi

∑
l

αj,f,l [Qi+ −Qi]f,l ~nf,l|~S
n
f,l|. (30)

Also the common gradient can be calculated in the computational domain and transformed to the physical
domain. With |Vi| = |Vi+| = 1/2 Eq. (19) can be further expressed

~∇Qcomi
∣∣∣
f,l

=
1

2

(
~∇Qi

∣∣∣
f,l

+ ~∇Qi+
∣∣∣
f,l

)
+

1

|J |f,l

NFP∑
m=1

βl,m [Qi+ −Qi]f,m ~nf,m|~S
n
f,m|. (31)

3 Time-Stepping

In the last sections, the focus was on how the space discretization is calculated. To complete the fully discrete
scheme the focus is on the time discretization in this section. The CPR formulation for the inviscid �ux can
also be written as (see Eq. (25))

∂Qi,j
∂t

= −Πj

(
~∇ · ~F (Qi)

)
− 2

|J |i,j

∑
f∈∂Vi

∑
l

αj,f,l[F
n
com − Fn(Qi)]f,l|~Snf,l|, (32)

and the viscous �ux (see Eq. (28))

∂Qi,j
∂t

=−Πj

(
~∇ · ~F (Qi)

)
+ Πν

j

(
~∇ · ~F ν(Qi, ~Ri)

)
− 2

|J |i,j

∑
f∈∂Vi

∑
l

αj,f,l

(
[Fncom − Fn (Qi)]f,l − [F ν,ncom − F ν,n(Qi, ~Ri)]f,l

)
|~Snf,l|. (33)

The vector ∂Q
∂t from all solution points at every cell is also known as the residual Res(Q). In the next

subsections an explicit and an implicit way to integrate with respect to time are described.

3.1 Explicit

For the explicit time integration, a 3-stage Runge-Kutta scheme from Ref. [9] is used. To step from Qti (the
solution at the old time), to Qt+1

i (the solution at the new time), the following equations must be solved

Q
(1)
i = Qti + ∆tResi(Q

t),

Q
(2)
i =

3

4
Qti +

1

4
Q

(1)
i +

1

4
∆tResi(Q

(1)),

Qt+1
i =

1

3
Qti +

2

3
Q

(2)
i +

2

3
∆tResi(Q

(2)),

where ∆t is the chosen time step. The explicit time discretization has to satisfy a time step restriction and
is appropriate for unsteady problems.

10

3.2 Implicit

In Ref. [10] is shown that for an implicit time integration the following equation(
I

∆t
− ∂Resi

∂Qi

)(
Q

(w+1)
i −Qwi

)
= Resi(Q

∗)− ∆Q∗i
∆t

, (34)

must be solved. The superscript w is an iteration index and the superscript ∗ indicates the most recently
updated solution.
The matrix

Di =

(
I

∆t
− ∂Resi

∂Qi

)
,

is the cell matrix. Since the residual for one solution point is calculated by including the solutions of all the
other solution points, ∂Resi∂Qi

is a K ∗Nv ×K ∗Nv matrix and I is the K ∗Nv ×K ∗Nv identity matrix.

∂Resi
∂Qi

=

∂Resi,1,1
∂Qi

∂Resi,1,2
∂Qi

∂Resi,1,3
∂Qi

. . .
∂Resi,1,m
∂Qi

∂Resi,2,1
∂Qi

∂Resi,2,2
∂Qi

∂Resi,2,3
∂Qi

. . .
∂Resi,2,m
∂Qi

∂Resi,3,1
∂Qi

∂Resi,3,2
∂Qi

∂Resi,3,3
∂Qi

. . .
∂Resi,3,m
∂Qi

...
...

...
. . .

...
∂Resi,j,1
∂Qi

∂Resi,j,2
∂Qi

∂Resi,j,3
∂Qi

. . .
∂Resi,j,m
∂Qi

,

where
∂Resi,j,m
∂Qi

is calculated by using the following numerical approach based on the de�nition

∂Resi,j,m
∂Qi

≈ Resi,j,m({qi,m + ε}, Q \ qi,m)− Resi,j(Q)

ε
,

where ε = 10−4 and m runs from 1 to K. In the above equation qi,m ∈ [ρ, ρu, ρv, e]i,m are the solutions of the
cell i and SP m, and is changed by the amount of ε, and all the other solutions are not changed. The residual
Resi,j(Q) is the residual without any changes made to the solution vector Q. This makes ∂Resi,j,m/∂Qi a
Nv ×Nv matrix (4× 4 in 2D).
For steady state problems the last term of Eq. (34) can often be dropped resulting in a faster convergence
rate.

4 Implementation

It is important to note, that the pre- and post-processing for the solver itself, for example, reading the grid
and calculating the values for the transformation from the physical domain into the computational domain,
as well as setting up the initial data to the SPs and writing the output �les is done by the CPU and was not
coded by the author.
The implementation was done in a way that for polynomial degrees from P 1 to P 5 the code only has to
be compiled once. Then the degree can be set in an input �le. For this paper a NVIDIA C2050 was
used to perform the calculations. The block size for a kernel call was set to be a multiply of 14 to �t the
numbers of streaming multiprocessors on the C2050. In each block multiple cells were calculated. Since the
polynomial degree can vary the maximum for the thread grid, ~t, in X direction must be determined. So
tx = max(NSP , NFP ∗ Nf). The complete thread grid is then ~t = [tx, 64/tx]. Here a total thread number
around 64 was chosen which gives a good calculation speed for all P k. In other words the number of cells
calculated per SM in parallel vary with the chosen degree k. The number of cells goes from (k = 5) 3 cells
to (k = 1) 10 cells.
The following points were important in this study to get a good performance

• The needed amount of shared memory is kept as low as possible by reusing it

• The synchronization of threads is done at a good code position

11

• Use of textured memory

• Only one global memory write per thread

• Multiple cells have to be calculated on one SM

4.1 Explicit Time Stepping

For the explicit time stepping one kernel to calculate the residual is used. This kernel is solving Eq. (32) or
Eq. (33). For the viscous �ux a additional kernel is implemented to calculate the derivatives of Q. For time
integration the 3-Stage-Runge-Kutta-scheme from subsection 3.1 is used, where a kernel solves one stage of
the Runge-Kutta-scheme on the GPU in parallel.

4.2 Implicit Time-Stepping

In this section the way how to solve Eq. (34) (p. 11) with the GPU is described. The algorithm to solve this
equation is di�erent with the CPU and with the GPU. For the CPU a lower-upper symmetric Gauss-Seidel
(LU-SGS) scheme is implemented which is described in Ref. [10] and will not be further reviewed here. For
the GPU implementation Eq. (34) is modi�ed and the modi�cation is described in the following subsection.

4.2.1 Implicit Time-Stepping on a GPU

For the implementation on the GPU only steady state problems are calculated in this study. This reduces
Eq. (34) to (

I

∆t
− ∂Resi

∂Qi

)(
Q

(w+1)
i −Q(w)

i

)
= Resi(Q

∗). (35)

Lets keep in mind that the cell matrix is

Di =

(
I

∆t
− ∂Resi

∂Qi

)
. (36)

Now Eq. (35) can be written as

Q
(w+1)
i = D−1

i Resi(Q
∗) +Q

(w)
i , (37)

where, as mentioned before, w is an iteration index and the superscript ∗ stands for the most recently
updated solution. If calculated in a serial way, i is the index for a cell and runs from 0 to (NC − 1), and the
Resi is a function containing the neighbor cells solutions. This means that for the �rst cell the old solutions
are used to calculate the residual for the �rst cell. The solution for the �rst cell is then updated as shown in
the equation (37). This updated solution is included into the calculation of the new solution for the second
cell and this is then included to calculate the new solution for the third and so on, until all solutions for each
cell are updated.
The advantage of using a GPU to calculate the solutions in parallel makes it impossible to calculate the
solution of one cell and update the overall solution Q, to calculate then a solution of another cell with the
updated overall solution. For the GPU implementation a di�erent approach must be found.
Since the Resi, for cell i, needs only the solutions from cell i and the solutions from the neighbor cells Qnb,
the Resi(Q

∗) can be reduced to Resi(Qi, Q
∗
nb). By including this to Eq. (37), the equation becomes

Q
(w+1)
i = D−1

i Resi(Qi, Q
∗
nb) +Q

(w)
i . (38)

This means for the GPU implementation, it must be assured, that neighbor cells are not updated at the
same time. For the GPU implementation it is also important to calculate as many cells at the same time
as possible. This means that a way must be found to split the mesh into as few segments as possible, but
ensure that neighbor cells are not in the same segment. Next a way is described how this can be done.

12

4.2.2 Mesh Coloring

The solution how to split the mesh into as few segments as possible, with no neighbor cells in the same
segment, can be found in the Graph-Theory.

Four Color Theorem: Every planar graph can be colored with maximal four colors,

in a way that no connected vertices share the same color[11, 12, 13].

A graph contains vertices which are connected by edges. A planar graph is a graph that can be drawn on
the plane in such a way that no edges cross each other.[14] An example for a planar graph can be seen in
Fig. 3 and one for a non planar graph in Fig. 4.

Figure 3: Planar graph Figure 4: Non-Planar graph

Now every 2D mesh can be transformed to a planar graph. The cell center is representing a vertex, and the
face, which connected cells share, can be seen as an edge (see Fig. 5).

Figure 5: 2D mesh overlapped with its planar graph

This implies that every 2D mesh (structured, unstructured, any shape and hanging nodes) can also be colored
with maximal four colors, with neighbor cells not having the same color. An example can be seen in Fig. 6.
The Eq. (38) p. 12 can now be solved with the symmetric forward and backward sweeps. The sweeps can

13

Figure 6: 2D triangular mesh colored with four colors (994 cells: 313 Red, 257 Yellow, 252 Blue and 172
Green)

be written in a row as

Red→ Yellow→ Blue→ Green→ Green→ Blue→ Yellow→ Red.

This must be done to make sure that all the solutions are calculated with the updated solutions from the
neighbor cells.

4.2.3 Inverting the cell matrix D

Since the LU-SGS approach, which is used for a CPU version of the code, is not suitable for a GPU
parallelization a simple Gauss-Jordan elimination is used instead. The method is modi�ed to avoid that the
D matrix and its inverse is stored. Normally to invert a matrix we have a system that looks like the following
example

[DI] =

 2 −1 0 1 0 0
−1 2 −1 0 1 0
0 −1 2 0 0 1

⇒
 1 − 1

2 0 1
2 0 0

0 3
2 −1 1

2 1 0
0 −1 2 0 0 1

⇒
 1 0 0 3

4
1
2

1
4

0 1 0 1
2 1 1

2
0 0 1 1

4
1
2

3
4

 = [ID−1].

(39)
As said before this needs double the amount of memory than the D matrix alone. On the GPU the shared
memory is used to avoid double data storage. The algorithm ,which has D as an input and D−1 as an output
at the same memory address, is shown in the following example

D =

 2 −1 0
−1 2 −1
0 −1 2

∣∣∣∣∣∣
1
0
0

⇒
 1 − 1

2 0
0 3

2 −1
0 −1 2

∣∣∣∣∣∣
1
2
1
2
0

⇒
 1

2 − 1
2 0

1
2

3
2 −1

0 −1 2

∣∣∣∣∣∣
0
1
0

⇒ (40)

 2
3 0 − 1

3
1
3 1 − 2

3
1
3 0 4

3

∣∣∣∣∣∣
1
3
2
3
2
3

⇒
 2

3
1
3 − 1

3
1
3

2
3 − 2

3
1
3

2
3

4
3

∣∣∣∣∣∣
0
0
1

⇒
 3

4
1
2 0

1
2 1 0
1
4

1
2 1

∣∣∣∣∣∣
1
4
1
2
3
4

⇒
 3

4
1
2

1
4

1
2 1 1

2
1
4

1
2

3
4

 = D−1.. (41)

The one column from inverse of each matrix is stored in shared memory and the rest of the matrix is stored
in global memory. The row and columns operation are done in parallel. The size of the element matrix
depends on the degree of the polynomial for P 1 it is 12 × 12 and for P 5 it is 84 × 84. The matrix vector
multiplication in Eq. (38) can be easy implemented for a GPU.

5 Numerical Results and Discussions

In this chapter the �rst section shows the results of the GPU code, compared to the CPU version. Results
for the CPU version, which is coded at the Iowa State University, and the proof that it is working correctly
can be seen in Ref. [1]. The second section shows performance tests comparing the Tesla C2050 and one

14

core from a Intel Xeon CPU (X5650@2.67GHz). The CPU version is compiled with the gcc-Compiler and
the optimization �ag �-O3�.

5.1 Veri�cation

This sections shows the results of the GPU and the CPU version for di�erent test cases. Since the CPU
version is proofed to be correct, the GPU version should be correct when its results are the same. The �rst
subsection shows calculations with explicit time-stepping for both �ows, and the second subsection shows
results for implicit time-stepping.

5.1.1 Explicit Time-Stepping

For the explicit time-stepping a small test case is chosen. The mesh of the test case (sine bump) can be seen
in Fig. 7 page 15. The length of the mesh in X-Direction is 4 and in the height in Y-Direction is 1. The
highest point of the bump is located in the middle with a height of 0.1 and the bump has a length of 1. To

Figure 7: 2D triangular mesh with 994 cells

show that the GPU version is working correctly the residuals from both versions are compared.

Inviscid Flow Simulation

For the inviscid �ow the Mach number in both coordinate directions are u = 0.5 Ma and v = 0. For ideal gas
γ = 1.4. To proof that the GPU version works correctly it is not necessary that the calculation converges
to machine zero, instead the calculation is aborted after the residual is smaller or equal to 1 ∗ 10−3. The
Rusanov �ux is used for solving the Riemann problem and ∆t is the chosen time step for the Runge-Kutta
scheme (see Subsection 3.1). The results for P 1 to P 5 are shown in Tab. 1. This shows that the residual

Table 1: Sine bump test case on the CPU and GPU for inviscid �ow with explicit time-stepping (∆Res =
|Residual CPU-Residual GPU|)

bla
∆t Residual CPU Residual GPU ∆Res

P 1 9 ∗ 10−3 9.8885479621984998 ∗ 10−4 9.8885479621338749 ∗ 10−4 6.46 ∗ 10−15

P 2 4.9 ∗ 10−3 1.0000527084353045 ∗ 10−3 1.0000527083855000 ∗ 10−3 4.98 ∗ 10−14

P 3 3.265 ∗ 10−3 9.7753546418898420 ∗ 10−4 9.7753546406587760 ∗ 10−4 1.23 ∗ 10−13

P 4 2.2 ∗ 10−3 9.9807573426047768 ∗ 10−4 9.9807573401956796 ∗ 10−4 2.41 ∗ 10−13

P 5 1.6 ∗ 10−3 1.0000958713101862 ∗ 10−3 1.0000958710186937 ∗ 10−3 2.91 ∗ 10−13

for the CPU and GPU version are exactly the same except for a di�erence around machine zero.

Viscous Flow Simulation

For the viscous �ow the same parameters are chosen: the velocity in X-Direction u = 0.5 Ma, v = 0 and
γ = 1.4. The Reynolds number is Re = 50. For this test-case it is again not necessary that the calculation

15

converges to machine zero, instead in this case the calculation is aborted after 2000 iterations. The results
for P 1 to P 5 are shown in Tab. 2. This shows that the residual of the CPU and GPU version are exactly

Table 2: Sine bump test case on the CPU and GPU for viscous �ow with explicit time-stepping(∆Res =
|Residual CPU-Residual GPU|)

bla
∆t Residual CPU Residual GPU ∆Res

P 1 4 ∗ 10−3 5.1013428220563111 ∗ 10−3 5.1013428220572244 ∗ 10−3 9.0 ∗ 10−16

P 2 1 ∗ 10−3 3.4752654702877042 ∗ 10−2 3.4752654702867425 ∗ 10−2 1.0 ∗ 10−14

P 3 5 ∗ 10−4 6.5738716205786585 ∗ 10−2 6.5738716205772041 ∗ 10−2 1.4 ∗ 10−14

P 4 3 ∗ 10−4 8.4765734239744359 ∗ 10−2 8.4765734239742596 ∗ 10−2 2.0 ∗ 10−15

P 5 8 ∗ 10−5 8.6143727408424978 ∗ 10−2 8.6143727408467388 ∗ 10−2 4.3 ∗ 10−14

the same except of a di�erence around machine zero.
bla
For both �ows the GPU version works correctly, compared to the results from the CPU. The small di�erence
in values of the residual could be caused by di�erent rounding on the CPU and GPU. If the Roe �ux is used
for solving the Riemann problem the result is the same.

5.1.2 Implicit Time-Stepping

Inviscid Flow Simulation

The inviscid �ow calculation with implicit time-stepping uses the same mesh as seen in Fig. 7 (p. 15).
The coloring of the mesh can be seen in Fig. 6 (p. 14). The test-case variables are the same as before:
u = 0.5 Ma, v = 0 and for ideal gas γ = 1.4. Here ∆t is the chosen time-step for the �rst iteration, the ratio
r is the factor the time-step grows at each iteration and ∆tmax is the maximum time step allowed for this
calculation. For this test-case the residual must converge to a value smaller than 10−11, to show that both
versions would converge to machine zero. The results for P 1 to P 5 are shown in Tab. 3. Both calculations

Table 3: Sine bump test case on the CPU and GPU for inviscid �ow with implicit time-stepping
bla

∆t Ratio r ∆tmax Iterations CPU Iterations GPU
P 1 9 ∗ 10−3 1.05 1 ∗ 10−1 1320 1760
P 2 4.9 ∗ 10−3 1.05 1 ∗ 10−1 640 740
P 3 3.265 ∗ 10−3 1.05 1 ∗ 10−1 1060 1330
P 4 2.2 ∗ 10−3 1.05 1 ∗ 10−1 770 890
P 5 1.6 ∗ 10−3 1.05 1 ∗ 10−1 1090 1320

compared visually show exactly the same result, even the values of the solution vectors are identical except
of a di�erence around machine zero.

Viscous Flow Simulation

For the viscous �ow simulation a di�erent mesh is chosen. The test-case is the �ow around a sphere (see Fig.
8) with u = 0.5 Ma, v = 0 and γ = 1.4. The Reynolds number is Re = 50. The radius of the sphere is 1 and
the radius for the far �eld is 20. The coloring of the cells can be seen in Fig. 9. The residual again must
converge to a value smaller than 10−11. The results for P 1 to P 5 are shown in Tab. 4. Also in this case,
both calculations compared by eye show exactly the same result, even the values of the solution vectors are
identical except of a di�erence around machine zero.

16

Figure 8: Mesh for the sphere test case with 992 cells Figure 9: Coloring of the mesh

Table 4: Sphere test case on the CPU and GPU for viscous �ow with implicit time-stepping
bla

∆t Ratio r ∆tmax Iterations CPU Iterations GPU
P 1 9 ∗ 10−3 1.05 1 ∗ 10−1 1040 1480
P 2 4.9 ∗ 10−3 1.05 1 ∗ 10−1 1830 2670
P 3 6 ∗ 10−4 1.05 1 ∗ 10−1 4030 5090
P 4 5 ∗ 10−4 1.05 1 ∗ 10−1 5220 6410
P 5 1 ∗ 10−4 1.05 1 ∗ 10−2 10110 12620

5.2 Visual Veri�cation

To show that the GPU version calculates the correct results, a test-case with a �ow around a NACA0012
pro�le is calculated. The �ow speed is |~u| = 0.5 Ma under an angle of attack of one degree. For the viscous
�ow the Reynolds number is Re = 2500. The calculation is made with P 2 and this leads to 411840 DOFs.
In Fig. 10 and Fig. 11 the Mach contour for inviscid and viscous �ow, respectively, are shown. Dark red
means a higher Mach number and dark blue means a lower Mach number. The GPU version works correctly
for steady state problems compared to the results of the CPU. There is a di�erence in the iteration numbers
because two di�erent implementations are used on the CPU and on the GPU.

5.3 Performance

In this section the performance of the GPU version compared to the CPU version is described. At �rst the
speed-up for the GPU code is shown on very small and very large mesh's for explicit and implicit time-
stepping. For this tests the convergence is not important, only the same amount of calculations needed are
compared. In the second subsection the convergence speed-up for implicit time-stepping is shown. The third
subsection shows the speed-up for the Tesla C2050 compared to a Tesla C1060 and the performance of the
GPU code in single precision.

17

Figure 10: Inviscid Flow around a NACA0012 with
an angle of attack of one degree (red=higher Mach
number, blue=lower Mach number)

Figure 11: Viscous Flow around a NACA0012 with
an angle of attack of one degree (red=higher Mach
number, blue=lower Mach number)

5.3.1 Speed-Up for the GPU

For the performance tests simple test cases are chosen. The �ow around a cylinder is calculated on di�erent
mesh sizes. In these tests the convergence is not important because only the calculation time is measured.
The cylinder has a radius of 1 and the far �eld has a radius of 20.
1000 steps are calculated to get a good average time per step. The time step for all calculations is ∆t = 1∗10−9

and for the implicit time-stepping the ratio is set to 1.0. This is necessary to avoid divergence. All unnecessary
data output is avoided at both the GPU and the CPU calculations. The time between start of the �rst step
and end of the last step is measured.
At �rst the results for explicit time-stepping are shown and later the ones for implicit time-stepping.

Inviscid Flow Simulation with Explicit Time-Stepping

In Tab. 5 the speed-up for the inviscid �ux is shown. The mesh size vary from 64 cells to 1088830 cells.
Some P k can not be calculated on the biggest mesh because the memory on the GPU is not enough. As it

Table 5: Speed-Up between CPU and GPU for inviscid �ux with explicit time-stepping
bla

P k\NC 64 412 992 1620 2804 5308 10304 22652 43732 50022 447944 1088830
P 1 5 23 48 65 72 84 108 104 110 109 111 112
P 2 9 33 63 73 84 92 100 106 109 110 111 112
P 3 14 49 80 89 96 103 110 114 112 116 113 114
P 4 13 59 86 101 105 117 121 128 130 129 121 �
P 5 19 76 104 108 112 118 121 124 124 124 117 �

is seen, the speed-up depends on the mesh size, but after a certain amount of cells the speed-up is for all P k

a factor above 100. For big mesh sizes the speed-up between one CPU and the GPU for all P k is a factor
around 110-130 for the explicit time-stepping inviscid �ux.

18

Viscous Flow Simulation with Explicit Time-Stepping
The same mesh sizes are used to calculate the speed-up for the viscous �ux (64-1088830 cells). The results
can be seen in Tab. 6. Again the speed-up depends on the mesh size. For bigger meshes the speed-up is

Table 6: Speed-Up between CPU and GPU for viscous �ow with explicit time-stepping
bla

P k\NC 64 412 992 1620 2804 5308 10304 22652 43732 50022 447944 1088830
P 1 8 29 49 67 77 87 88 104 102 113 107 111
P 2 11 37 63 69 80 90 97 104 107 109 117 116
P 3 17 49 77 83 87 98 104 110 112 111 119 118
P 4 14 59 82 92 97 108 115 119 125 127 127 �
P 5 18 74 98 100 104 114 119 123 125 125 129 �

between 109 and 129 for the viscous �ux with explicit time-stepping.

Inviscid Flow Simulation with Implicit Time-Stepping
In this part the speed-up of the implicit time-stepping is shown for the case that the two versions have to
carry out the same amount of calculations. This means the same number of steps are solved for both the
CPU and the GPU version. The results can be seen in Tab. 7. In this test the higher polynomial degrees

Table 7: Speed-Up between CPU and GPU for inviscid �ow with implicit time-stepping
bla

P k\NC 64 412 992 1620 2804 5308 10304 22652 43732 50022 183648 447944
P 1 1 8 14 18 27 44 62 74 84 85 85 89
P 2 3 9 17 26 38 51 60 66 69 70 70 69
P 3 3 10 22 32 41 48 53 56 57 58 60 �
P 4 5 14 29 38 44 51 52 53 54 57 � �
P 5 4 19 34 40 43 45 46 47 47 47 � �

(P 3−P 5) do not have a performance as good as the lower degrees (P 1−P 2) because the implementation of
updating the solution is more time consuming for higher degrees. But still the speed-up for bigger meshes
is between 47 and 89.

Viscous Flow Simulation with Implicit Time-Stepping
The speed-up for the viscous �ux can be seen in Tab. 8. This time the speed-up for all P k is higher

Table 8: Speed-Up between CPU and GPU for inviscid �ux with implicit time-stepping
bla

P k\NC 64 412 992 1620 2804 5308 10304 22652 43732 50022 183648 447944
P 1 2 11 17 27 35 52 60 76 79 79 83 88
P 2 3 11 21 31 44 56 64 69 75 74 79 84
P 3 4 14 28 40 49 59 63 67 71 74 71 �
P 4 5 16 34 43 51 57 63 63 65 65 � �
P 5 5 21 38 45 52 56 60 62 63 63 � �

compared to the inviscid �ow, because the updating of the solutions does not take so much percentage of
the overall calculation, since the viscous �ux calculation is more expensive under the aspect of calculation
time than the inviscid �ux calculation. The speed-up is between 60 and 88 for bigger meshes.

5.3.2 Implicit Convergence Speed-Up
In this subsection the convergence speed-up is calculated for the inviscid and the viscous �ow. This time the
�ow around a NACA0012 with an angle of attack at one degree is chosen. The chord length of the airfoil is
one and the far-�eld radius is 50. The number of cells are chosen from Tab. 7 and Tab. 8 in a way that the
speed-up di�erence between the chosen mesh size and the highest speed-up are around 10. For this test the
time to reach a residual lower than 10−11 was measured. The setup (∆t, r and ∆tmax) for both, the CPU

19

and the GPU version, where the same. The beginning time step is ∆t = 1 ∗ 10−3, the ratio is r = 1.05 and
the maximal time step is ∆tmax = 1 ∗ 10−1. The �ow speed under one degree is |~u| = 0.5 Ma.

Inviscid Flow Simulation
The results can be seen in Tab. 9. The convergence speed-up is mostly not as high as the speed-up with

Table 9: Convergence speed-up between CPU and GPU for inviscid �ow with implicit time-stepping
bla

NC Iterations CPU Time CPU (s) Iterations GPU Time GPU (s) Speed-up
P 1 43768 3195 2909.235 3736 38.753 75
P 2 21576 2775 2523.489 3090 37.166 68
P 3 11270 2365 2156.122 2604 36.279 59
P 4 5434 2405 1780.75 2426 33.968 52
P 5 3820 2235 1964.954 2240 41.308 47

the same amount of calculations. This is because the CPU version for implicit time-stepping convergences
with a lower amount of iterations (see Fig. 5.3.2).

Viscous Flow Simulation

The results can be seen in Tab. 10. In the Fig. 12 the convergence rate is plotted over iteration number. In

Table 10: Convergence speed-up between CPU and GPU for viscous �ow with implicit time-stepping
bla

NC Iterations CPU Time CPU (s) Iterations GPU Time GPU (s) Speed-up
P 1 43768 3345 7597.375 3891 103.689 73
P 2 43768 3425 13597.59 3871 187.444 72
P 3 21576 3135 9148.825 3476 153.713 59
P 4 11270 2595 6573.779 2688 110.685 59
P 5 5434 2555 5065.542 2580 92.594 55

the case of the iterations the CPU version converges faster, but under the aspect of time the GPU converges
much faster.

Figure 12: The convergence plotted for the inviscid and viscous �ow for the GPU and CPU version

5.3.3 Single Precision Calculation and Calculation using C1060

In this subsection a couple of di�erent tests are performed. At �rst the calculation accuracy is reduced to
single precision. In the last part of this subsection an older generation of a NVIDIA-GPU is compared with

20

a newer one, to compare the calculation times. For all these calculations the number of cells are chosen from
the tables 1 - 4. The mesh with the highest speed up is chosen for every P k. This leads to the mesh sizes
seen in Tab.11.

Table 11: Mesh-Sizes for the calculation
bla

Explicit, Inviscid Explicit, Viscous Implicit, Inviscid Implicit, Viscous
P 1 1088830 50022 447944 447944
P 2 1088830 447944 183648 447944
P 3 50022 447944 183648 50022
P 4 43732 447944 50022 50022
P 5 43732 447944 50022 50022

Single Precision

For this section the code is changed in a way that only single precision arrays are used in the code. The code
is compiled with the nvcc compiler, the �ag �-arch=sm_12� is set to make sure that all operations are single
precision �oating point operations. With the mesh sizes seen in Tab. 11 the calculation in single precision is
made. The speed-up is calculated between the CPU version (keep in mind that the CPU always calculates
in double precision) and the double precision version of the GPU implementation. The results are seen in
Tab. 12. The speed-up for the NVIDIA Tesla C2050 in single precision compared to the double precision

Table 12: Speed-Up between CPU with DP and GPU with SP (and in brackets the speed-up between SP
and DP version on the GPU)

bla
Explicit, Inviscid Explicit, Viscous Implicit, Inviscid Implicit, Viscous

P 1 192 (1.7) 228 (2.0) 144 (1.6) 176 (2.0)
P 2 184 (1.6) 214 (1.8) 113 (1.6) 154 (1.8)
P 3 184 (1.6) 203 (1.7) 93 (1.5) 120 (1.8)
P 4 184 (1.4) 196 (1.5) 89 (1.6) 102 (1.6)
P 5 174 (1.4) 193 (1.5) 62 (1.3) 87 (1.4)

calculations on this GPU is around the factor of 1.3 to 2.0. This speed-up gain is bought with a big loss of
accuracy.

C1060

In this subsection two generations of NVIDIA-GPUs are compared. The C2050 as used before and one of
one generation older, named C1060. The calculations are made in double and single precision and afterwards
compared to the CPU version. Also the speed-up between these two cards is shown. The mesh sizes are the
same as in the section above (Tab. 11 on page 21). First the calculation is done with double precision and
the results can be seen in Tab. 13. This shows that for double precision the C2050 is around 3 times faster
than the C1060. When the theoretical maximum double precision �oating point calculation capability is
compared the C2050 is at the most 4.2 times faster [15]. But since in this calculation a lot of memory reads
and writes are needed the speed-up is only 3.7 and lower.
Also the calculation with single precision is done and the results can be seen in Tab. 14 (keep in mind that
the CPU version is calculating in double precision). For this calculations in SP the C2050 is around 1.6 to
2 times faster than the C1060.

21

Table 13: Speed-Up between CPU and the C1060 with double precision (and in brackets the speed-up
between the C2050 and the C1060 in DP)

bla
Explicit, Inviscid Explicit, Viscous Implicit, Inviscid Implicit, Viscous

P 1 31 (3.6) 41 (2.7) 29 (3.1) 36 (2.4)
P 2 31 (3.6) 41 (2.8) 27 (2.6) 35 (2.4)
P 3 32 (3.6) 41 (2.9) 25 (2.4) 30 (2.5)
P 4 35 (3.7) 41 (3.1) 26 (2.2) 27 (2.4)
P 5 33 (3.7) 41 (3.1) 23 (2.0) 28 (2.2)

Table 14: Speed-Up between CPU with DP and the C1060 with SP (and in brackets the speed-up between
the C2050 and the C1060 in SP)

bla
Explicit, Inviscid Explicit, Viscous Implicit, Inviscid Implicit, Viscous

P 1 125 (1.5) 123 (1.8) 73 (2.0) 94 (1.9)
P 2 118 (1.5) 124 (1.7) 57 (2.0) 84 (1.8)
P 3 117 (1.6) 122 (1.7) 48 (1.9) 66 (1.8)
P 4 120 (1.5) 121 (1.6) 46 (1.9) 56 (1.8)
P 5 116 (1.5) 121 (1.6) 41 (1.5) 56 (1.5)

6 Conclusion and Future Work

This study of the implementation of the CPR formulation on GPUs shows, that a high-order method can
get a huge performance gain running on one GPU instead of CPUs. With the Euler and Navier-Stokes
equations solved with an explicit and an implicit time integration scheme for di�erent polynomial of degree
k, the implementation on a GPU is �exible and can be used for a wide range of 2D CFD calculations. The
adaption from a CPU version to a GPU version is not di�cult and the version for the GPU is understandable
without much background information of GPU computing. The high parallel computation performance of a
GPU shows speed-up factors of two orders of magnitude for the explicit time integration compared to a non
parallelized CPU code. The capability of the GPU implementation to calculate all cells of a mesh apparently
at once is the reason for this high performance gain. Using the implicit time-stepping scheme the speed-up
factor is between 47 and 89 depending on the degree k of the polynomial and the used numerical �ux. It
must be said, that the developing of the cell coloring approach was the breakthrough to gain these results.
With this concept a GPU is able to calculate each color apparently at once and so can use its high capability
of parallel computing.
The comparison between two GPU generations and also the comparison between DP- and SP -implementation
shows, that this GPU implementation has a memory bound, which means, that the ratio between global
memory data access and kernel-instructions reaches not the theoretical optimum. The study shows that the
CPR formulation can be implemented on a GPU in an e�cient and �exible way because this formulation is
very well suited for the GPU architecture.
Since the implementation of the CPR formulation on one GPU works so well for 2D triangular meshes the
extension for quadrangular cells should give a similar performance speed-up. The extension to 3D grids is
of course more complicated, but the results from this study can help for the 3D implementation. It should
be considered to run these calculations on multiple GPUs because one might not have enough memory to
store a reasonable sized 3D calculation. The coloring of course must be adapted to 3D if possible and if not,
a similar way could be used.
The coloring algorithm that is implemented now could be the reason for the slower convergence (in terms of
iteration numbers) on the GPU. A new algorithm could be implemented that trys to get always the same
color pattern for the cells, which means red in the middle and the other colors equally around it. Of course
this only works for triangular cells.

22

References

[1] T. Haga Z.J. Wang, H. Gao. A unifying discontinuous formulation for hybrid meshes. World Scienti�c

Review Volume, (15):423�453, 2010.
[2] F. Bassi and S. Rebay. A high-order accurate discontinuous �nite element method for the numerical

solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131:267�279, 1997.
[3] H. Gao Z.J. Wang. A unifying lifting collecation penalty formulation including the discontinuous

galerkin, spectral volume/di�erence methods for conservation laws on mixed grids. J. Comput. Phys.,
(228):8161�8186, 2009.

[4] C. Hirsch. Numerical Computations of Internal and External Flows: Volume 2 Computational Methods

for Inviscid and Viscous Flows. John Wiley and Sons, 1st edition, 1990.
[5] S. Rebay F. Bassi. GMRES discontinuous galerkin solution of the compressible Navier-Stokes equations.

In Discontinuous Galerkin methods: Theory, Computations and Apllications, pages 197�208. Springer-
Verlag Berlin, 2000.

[6] H. T. Huynh. A reconstruction approach to high-order schemes including discontinuous Galerkin meth-
ods. AIAA-2009-403, 2009.

[7] Gregor Gassner, Frieder Lörcher, and Claus-Dieter Munz. A contribution to the construction of dif-
fusion �uxes for �nite volume and discontinuous galerkin schemes. Journal of Computational Physics,
224(2):1049 � 1063, 2007.

[8] P.-O. Perrson J. Peraire. The compact discontinuous galerkin (CDG) method for elliptic problems.
SIAM J. Sci. Comput., (30):1806�1824, 2008.

[9] C. W. Shu S. Gottlieb. Total variation diminishing Runge-Kutta schemes. Math. Comput., (67):73�85,
1998.

[10] Y. Liu Y. Sun, Z.J. Wang. E�cient implicit non-linear LU-SGS approach for compressible �ow compu-
tation using high-order spectral di�erence method. Commun. Comput. Phys., (5):760�778, 2009.

[11] W. Haken K. Appel. Every map is four colourable. Bulletin of the American Mathematical Society,
(82):711�712, 1976.

[12] P. Seymour R. Thomas N. Robertson, D. Sanders. The four-colour theorem. J. Combinatorial Theory,
Series B, (70):2�44, 1997.

[13] G. Gonthier. Formal proof - the four-color theorem. Notices of the American Mathematical Society,
(55):1382�1393, 2008.

[14] D. B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2000.
[15] NVIDIA Corporation. Nvidia's next generation cuda compute architecture: Fermi. Whitepaper,

NVIDIA, Santa Clara, 2009.

23

