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Abstract: The two-dimensional incompressible viscous flow equations are solved 
by iterating on the kinematics, pressure and momentum equations producing a 
solution that satisfies source and vorticity definitions up to machine accuracy. 
Given a vorticity and mass fields, a functional is constructed to measure the 
kinematic imbalance of a velocity field. The velocity equations are produced by 
minimizing a discrete functional, subject to constrains imposed by boundary 
conditions. A suitable preconditioning and interpolation technique are used to 
balance precision and computation speed. The Poisson equation for pressure is 
solved similarly by minimizing a suitable functional. The momentum equations are 
then solved using a finite volume approach. A controlled amount of artificial 
viscosity is added according to mesh size and Reynolds number, resulting in a 
stable calculation implemented using a direct solver. 
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1. Introduction 
 
Classically, formulations of the incompressible Navier-Stokes equations using a scalar stream 
function and vorticity are computationally attractive and conserve mass automatically but 
generalization to three dimensional flows are nontrivial  [1]. Other techniques like velocity-vorticity 
formulations aim to simplify the gap between two and three dimensions, but they impose mass 
conservation explicitly as an extra equation. New challenges arise with these techniques, such as 
checkerboard decoupling of the velocity equations and complications in multiply-connected domains 
[2], [3], [4]. Velocity-pressure methods have proven practical as in [5], but they rely on a pressure and 
velocity correction. Moreover, most incompressible flow solvers do not guarantee that mass and 
vorticity definitions are preserved in the discrete sense. Consequently, their solutions are corrupted by 
small amounts of mass and vorticity generated in the flow field. 
The present work develops a new approach using a velocity-pressure-vorticity formulation. A Poisson 
equation for pressure is solved, so no pressure/velocity relation or artificial compressibility is 
necessary. Further techniques deal with artificial velocity decoupling and to accelerate convergence, 
leading to a one-parameter family of schemes that balance decoupling precision and convergence 
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speed depending on the geometry. Similarly, the vorticity is obtained from the curl of the velocity, 
which is obtained from the momentum equation. Proper up-winding can be tuned to achieve stability. 
The technique is presented for steady two dimensional flows, but it can be generalized to unsteady 
three-dimensional and compressible flows. 
 
2. Formulation 
 
Separate formulations are constructed for the kinematics, pressure and momentum equations. After 
discretization, a solution method is implemented alternating velocity, pressure and vorticity iterations 
in a segregated manner. On every iteration, each separate solution field is solved independently using 
the PARDISO direct solver (see [6], [7] and [8]), taking advantage of its parallelization, memory 
efficiency and Bunch-Kaufmann pivoting. Matrix coefficients are stored using the sparse Yale format. 
The only limitation on the size of the problem is given by memory constraints. 
The kinematics and pressure equations are linear and their coefficient matrices depend only on the 
grid. For them, most of the solution process can be pre-computed resulting in a very time-efficient 
formulation. The right-hand-side of these equations is also efficiently implemented using 
vectorization.  
On the other hand, for the momentum equation the PARDISO pre-process step optimizes the solution 
order based on the structure of the coefficient matrix. In order to reduce compute time, advection and 
diffusion terms are computed in parallel using OpenMP. 
The three sets of equations to be solved are described below. 
 
2.1 Kinematics Equations 
 
In the differential level, given a fixed source ݏ and vorticity ࣓ fields on a volume Ω, the kinematic 
velocity field ࢂ must satisfy the mass and vorticity relations; ∇ ∙ ࢂ = ,ݏ ∇ × ࢂ = ࣓. 
The classical solution of this problem is obtained using calculus of variations, by minimizing the 
functional ܧ = ඵሺ∇ ∙ ࢂ − ሻଶݏ + ‖∇ × ࢂ − ࣓‖ଶ݀ܣஐ , 
In the discrete context of a computational grid, analogous conditions are imposed. The velocities are 
defined at the nodes of the grid. The derivatives are computed as line integrals on the polygonal 
boundary of each cell (Gauss theorem) and the mass and vorticity fields are defined as values on each 
cell of the grid. 
The differential solution method is completely reproduced at the discrete level. The discrete 
functional takes the form ܧ = ෍ሺ∇௞ ∙ ࢂ − ௞ሻଶݏ + ‖∇௞ × ࢂ − ࣓௞‖ଶ௞ , 
where the summation ranges over all grid cells. In the present work ݏ௞ vanishes identically. 
Further analysis shows that the discrete terms must be preconditioned by the inverse of a discrete cell 
area in order for it to yield a correct Laplace formula. Moreover, checkerboard decoupling is avoided 
by introducing a one-parameter family of discrete radial interpolation schemes that balances 
decoupling precision and convergence speed [9]. The kinematic equations are finally obtained 
through a Lagrange multipliers technique minimizing the discrete functional with respect to the 
velocity values, constrained by suitable boundary conditions. 
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2.2 Pressure Equations 
 
Given a velocity field ࢂ, a quadratic functional is built to measure the pressure imbalance; ܨ = ඵ‖∇P − ஐܣଶ݀‖ࢌ , 
where the vector term ࢌ is obtained from the momentum equation (as discussed below) and simplified 
using the mass conservation equation. Numerically, the term ࢌ is evaluated based on the velocity field 
obtained from the solution of the kinematics equation. 
This process is again reproduced in the discrete level, where the pressure values are given at the cell 
centers and derivatives are similarly computed as line integrals along the boundary of dual cells 
(around each node). The lack of physical boundary conditions on the pressure equation arises 
naturally. The fact that there are no pressure variables located at the boundary of the physical domain Ω is a consequence of dual grid nature of the pressure computation.  
Preconditioning and radial interpolation schemes are again implemented to improve performance. 
Algebraic minimization yields the discrete Poisson pressure equation. 
 
2.3 Momentum Equations 
 
Given an advection velocity field ࢂ and a pressure field ܲ, the vorticity equation is typically obtained 
by taking the curl of the vector form of the momentum equation; ∇ ∙ ൫ࢂ ⊗ ൯ࢂ = −∇ܲ + 1Re ∇ଶࢂഥ. 
However, such techniques may compromise the robustness of the solution, especially in terms of its 
dependence on the boundary geometry. For that reason, the full momentum equation is instead 
discretized using a direct finite volume technique and solved for the velocity ࢂഥ. Furthermore, proper 
up-winding is applied to guarantee stability of the calculations. The vorticity is computed a posteriori 
from the velocity field obtained from the solution of the momentum equation. 
 
3. Numerical Results 
 
All cases presented here have no sources in the field (ݏ =  0). The results below show incompressible 
external flow solutions around a solid body. All simulations were performed on a desktop pc with an 
Intel Xeon CPU (2.67 GHz). The results can be divided in five categories: inviscid cylinder, inviscid 
airfoil, viscous cylinder, rotating viscous cylinder and viscous airfoil. 
 
3.1 Inviscid Cylinder 
 
The equations were solved for inviscid flow around a cylinder on a structured O-grid with 160×120 
nodes. Thanks to the smoothness of the geometry (constant curvature). This case shows no 
decoupling, so no interpolation was applied. As the equation to solve is linear and it is solved using a 
direct solver, all solutions were calculated without the need to iterate, reaching the solution in less 
than one second in all cases studied.  
Multiple boundary conditions were studied including rotating cylinders and cylinders with a boundary 
flux. It was verified a posteriori that in all cases the error in the mass and vorticity definitions were of 
the order of round-off error, showing that the method is exact at the discrete level and the accuracy 
depends only on the grid resolution. As this case has an exact solution, the solution error can be 
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