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Abstract: The two-dimensional incompressible viscous flow equations are solved
by iterating on the kinematics, pressure and momentum eguations producing a
solution that satisfies source and vorticity definitions up to machine accuracy.
Given a vorticity and mass fields, a functional is constructed to measure the
kinematic imbalance of a velocity field. The velocity equations are produced by
minimizing a discrete functional, subject to constrains imposed by boundary
conditions. A suitable preconditioning and interpolation technique are used to
balance precision and computation speed. The Poisson equation for pressure is
solved similarly by minimizing a suitable functional. The momentum equations are
then solved using a finite volume approach. A controlled amount of artificial
viscosity is added according to mesh size and Reynolds number, resulting in a
stable calculation implemented using a direct solver.
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1. Introduction

Classicaly, formulations of the incompressible Navier-Stokes equations using a scalar stream
function and vorticity are computationally attractive and conserve mass automatically but
generalization to three dimensiona flows are nontrivial [1]. Other techniques like velocity-vorticity
formulations aim to simplify the gap between two and three dimensions, but they impose mass
conservation explicitly as an extra equation. New challenges arise with these techniques, such as
checkerboard decoupling of the velocity equations and complications in multiply-connected domains
[2], [3], [4]. Veocity-pressure methods have proven practical asin [5], but they rely on a pressure and
velocity correction. Moreover, most incompressible flow solvers do not guarantee that mass and
vorticity definitions are preserved in the discrete sense. Consequently, their solutions are corrupted by
small amounts of mass and vorticity generated in the flow field.

The present work develops a new approach using a velocity-pressure-vorticity formulation. A Poisson
equation for pressure is solved, so no pressure/velocity relation or artificia compressibility is
necessary. Further techniques deal with artificial velocity decoupling and to accelerate convergence,
leading to a one-parameter family of schemes that balance decoupling precision and convergence
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speed depending on the geometry. Similarly, the vorticity is obtained from the curl of the velocity,
which is obtained from the momentum equation. Proper up-winding can be tuned to achieve stability.
The technique is presented for steady two dimensiona flows, but it can be generalized to unsteady
three-dimensional and compressible flows.

2. Formulation

Separate formulations are constructed for the kinematics, pressure and momentum equations. After
discretization, a solution method isimplemented alternating velocity, pressure and vorticity iterations
in a segregated manner. On every iteration, each separate solution field is solved independently using
the PARDISO direct solver (see [6], [7] and [8]), taking advantage of its parallelization, memory
efficiency and Bunch-Kaufmann pivoting. Matrix coefficients are stored using the sparse Y ale format.
The only limitation on the size of the problem is given by memory constraints.

The kinematics and pressure equations are linear and their coefficient matrices depend only on the
grid. For them, most of the solution process can be pre-computed resulting in avery time-efficient
formulation. The right-hand-side of these equations is also efficiently implemented using
vectorization.

On the other hand, for the momentum equation the PARDISO pre-process step optimizes the solution
order based on the structure of the coefficient matrix. In order to reduce compute time, advection and
diffusion terms are computed in parallel using OpenMP.

The three sets of equations to be solved are described below.

2.1 Kinematics Equations

In the differential level, given afixed source s and vorticity w fields on avolume Q, the kinematic
velocity field V must satisfy the mass and vorticity relations;

V-V=s, VXV =w.
The classical solution of this problem is obtained using calculus of variations, by minimizing the
functional

E=ﬂ(v-V—s)2+||V><V—w||2dA,
Q

In the discrete context of a computational grid, analogous conditions are imposed. The velocities are
defined at the nodes of the grid. The derivatives are computed as line integral s on the polygonal
boundary of each cell (Gauss theorem) and the mass and vorticity fields are defined as values on each
cell of the grid.

The differential solution method is completely reproduced at the discrete level. The discrete
functional takes the form

E= ) (Ve V=5 + 1V x V =y
k

where the summation ranges over al grid cells. In the present work s, vanishesidentically.

Further analysis shows that the discrete terms must be preconditioned by the inverse of a discrete cell
areain order for it to yield a correct Laplace formula. Moreover, checkerboard decoupling is avoided
by introducing a one-parameter family of discrete radial interpolation schemes that balances
decoupling precision and convergence speed [9]. The kinematic equations are finally obtained
through a Lagrange multipliers technique minimizing the discrete functional with respect to the
velocity values, constrained by suitable boundary conditions.



2.2 Pressure Equations

Given avelocity field V, aquadratic functional is built to measure the pressure imbalance;

F = y IVP — fl12dA,

where the vector term f is obtained from the momentum equation (as discussed below) and simplified
using the mass conservation equation. Numerically, the term f is evaluated based on the velocity field
obtained from the solution of the kinematics equation.

This process is again reproduced in the discrete level, where the pressure values are given at the cell
centers and derivatives are similarly computed as line integrals along the boundary of dual cells
(around each node). The lack of physical boundary conditions on the pressure equation arises
naturally. The fact that there are no pressure variables located at the boundary of the physical domain
Q isaconsequence of dual grid nature of the pressure computation.

Preconditioning and radial interpolation schemes are again implemented to improve performance.
Algebraic minimization yields the discrete Poisson pressure equation.

2.3 Momentum Equations

Given an advection velocity field V and a pressure field P, the vorticity equation istypically obtained
by taking the curl of the vector form of the momentum equation;
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V-(VQV) VP + V2V,

However, such techniques may compromise the robustness of the solution, especialy in terms of its
dependence on the boundary geometry. For that reason, the full momentum equation is instead
discretized using a direct finite volume technique and solved for the velocity V. Furthermore, proper
up-winding is applied to guarantee stability of the calculations. The vorticity is computed a posteriori
from the velocity field obtained from the solution of the momentum equation.

3. Numerical Results

All cases presented here have no sourcesin thefield (s = 0). The results below show incompressible
external flow solutions around a solid body. All simulations were performed on a desktop pc with an
Intel Xeon CPU (2.67 GHz). The results can be divided in five categories: inviscid cylinder, inviscid
airfoil, viscous cylinder, rotating viscous cylinder and viscous airfail.

3.1 Inviscid Cylinder

The equations were solved for inviscid flow around a cylinder on a structured O-grid with 160x120
nodes. Thanks to the smoothness of the geometry (constant curvature). This case shows ho
decoupling, so no interpolation was applied. As the equation to solveislinear and it is solved using a
direct solver, al solutions were calculated without the need to iterate, reaching the solution in less
than one second in all cases studied.

Multiple boundary conditions were studied including rotating cylinders and cylinders with a boundary
flux. It was verified a posteriori that in all cases the error in the mass and vorticity definitions were of
the order of round-off error, showing that the method is exact at the discrete level and the accuracy
depends only on the grid resolution. Asthis case has an exact solution, the solution error can be



directly computed. In al cases the relative error was 0.00086%. Vel ocity contours around a solid
fixed cylinder are shown in Figure 1.
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Figure 1. Velocity contours for inviscid flow around a cylinder.

The order of accuracy is studied by analyzing the magnitude of the error on grids of different
resolutions. A coarse grid is successively refined. The number of nodes and cells of every successive
refinement is shown in Table 1. The maximal error of the solution is seen in Figure 2 . The order of
accuracy r of every subsequent grid refinement is obtained from the equation E¢ /E. = (1/2)", where
E; and E, are the errors on the fine and coarse grid respectively and the factor 1/2 is the order of the
refinement. Figure 3 shows that the method is in fact second order accurate as predicted by theory.

Grid Nodes Cells
1 20x 16 20x 15
2 40 x 31 40 x 30
3 80 x 61 80 x 60
4 | 160x 121 | 160 x 120
5 | 320 x 241 | 320 x 240
6 | 640 x 481 | 640 x 480

Table 1. Grid refinements for accuracy anaysis.
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Figure 2. Maximal error for successive grid refinements.
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Figure 3. Accuracy order for successive grid refinements.
3.2 Inviscid Airfoil

The solution method is now applied to find the inviscid flow around an airfoil NACA 0012. A
structured O-grid of 158%240 nodes was used. Numerically, the solution for inviscid flow around an
airfoil shows decoupling originating from the singularity at the trailing edge, so the radial
interpolation parameter was reduced to 1/2, eliminating decoupling at the cost of sacrificing discrete
numerical precision. The disturbance introduced in the velocity field by interpolating was small
enough to go unnoticed in this study. Moreover, as the method is second order, this disturbance can be
further reduced by refining the grid, as shown in the previous section.

Inviscid flows were computed for angles of attack between 0 and 14. Velocity results for an angle of
attack of 10 degrees are shown in Figure 4. Pressure profiles were also computed and compared with
Xfoil results as presented in Figure 5. The curves produced by both methods are in excellent
agreement. Lift was calculated from the pressure and compared to Xfoil values. Results are presented
in Table 2. It is seen that the both methods are practically identical and the error remains below 0.1%.
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Figure 4. Velocity contours for inviscid flow around an airfoil

NACA 0012 at an angle of attack of 10°.
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Figure 5. Pressure profile for an inviscid flow around an airfoil

NACA 0012 at an angle of attack of 10°.

a | Circulation | Lift (computed) | Lift (Xfoil) | % Error
2 -0.1207 0.2415 0.2416 0.04
4 -0.2412 0.4826 0.4826 0.06
6 -0.3614 0.7232 0.7236 0.06
8 -0.4812 0.9628 0.9634 0.06
10 | -0.6004 1.2012 1.2021 0.07
12| -0.7188 1.4381 1.4393 0.08
14| -0.8364 1.6731 1.6748 0.10

Table 2. Airfoil lift for different angles of attack.



3.3 Viscous Cylinder

Flow around a cylinder was computed for several Reynolds numbers. The equations were solved to
machine accuracy on a structured O-grid with 160x120 nodes. Due to the smoothness of the
geometry, this case shows no decoupling, so no interpolation was applied. Artificial viscosity was not
necessary because the Reynolds numbers were low. Most of the cases were solved in afew dozen
iterations, the exception being the computation for Re = 50 due to numerical instabilities (the caseis
on the borderline between steady and unsteady flows). The number of iterations and clock time are
presented in Table 3.

Re | Number of Iterations | Clock Time (mm:ss)
10 38 0:09
20 39 0:09
30 55 0:12
40 104 0:21
50 388 1:17

Table 3. Solver performance for flow around a cylinder
at several Reynolds numbers.

Results for a Reynolds number of 40 are shown in the figures below. Figure 7 shows the convergence
history to machine accuracy. The velocity and vorticity contours are presented in Figure 6. It can be
noted that a separation bubble arises behind the cylinder. The size of the separation region and the
coefficient of drag for different Reynolds numbers are presented in Figure 8 together with some other
numerical [10], [11] and experimental results[12]. The quantities computed show good agreement
with the results published in literature.
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Figure 6. Velocity and vorticity around a cylinder at Re = 40.
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Figure 8. Size of the separation region and coefficient of drag for
acylinder at several Reynolds numbers.

3.4 Rotating Viscous Cylinder

Using the same grid as the previous case, the flow is now computed over arotating cylinder at several
Reynolds numbers and rate of rotation, where the non-dimensional rotation rate « is normalized using
the cylinder radius and the velocity of the undisturbed flow. As before, no interpolation or artificial
viscosity is necessary. The performance of the solver is of the same order as the non-rotating cases
presented before.

Several results for Re = 20 are shown in Figure 9 and Figure 10. The dimensionless values for lift and
drag are computed by adding the contributions from pressure and shear stress over the surface of the
cylinder. The values of both forces are in good agreement with references [13] and [14] as shownin
Figure 11.
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3.5 Viscous Airfoil

The solution method is now applied to find the flow around an airfoil NACA 0012 at Re = 500. A
structured O-grid of 158x240 nodes was used. A preliminary solution shows decoupling in the
neighborhood of the sharp trailing edge. Decoupling was eliminated by radial interpolation of the
scheme. Another obstacle to overcome was numerical instability produced by the dominant advection
terms as a consequence of a higher Reynolds number. Artificial viscosity was introduced to maintain
adiagona dominant system of equations and improve stability and convergence speed.

a | Number of iterations | Clock Time (mm:ss)
0 37 00:27
2 39 00:28
4 42 00:30
6 66 00:46
8 257 02:54
10 1762 17:02

Table 4. Solver performance for flow around an airfoil NACA 0012
at several angles of attack.

The flow was computed for different angles of attack. The number of iterations and clock time are
presented in Table 4. For low angles of attack (six or less) the solver converged in afew dozen
iterations, taking less than a minute of clock time. For larger angles of attack, numerical stability and
non-linearity undermined the solver performance and smaller artificial time steps were required to
reach convergence. As a consequence, the solver needed more iterations and time to find a solution to
machine accuracy.
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Figure 12. Velocity contours for an airfoil NACA 0012
at 10° angle of attack and Re = 500.

The results for an angle of attack of 10° are presented below. The contours for velocity, pressure and
vorticity are shown in in Figure 12 and Figure 13. The dimensionless surface pressure coefficient is
plotted together with results from [15] and [16] in Figure 14. All the results are in very good
agreement with the literature sources.
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4. Concluding Remarks

The present formulation is applied to severa flow problems and proves to be a promising technique
for numerical simulations of incompressible flow, thanks to the use of an efficient direct solver. In
most cases convergence to machine accuracy is achieved in a few dozen iterations and requiring
usually 10 to 30 seconds of compute time in a standard PC architecture. It was verified that the mass
and vorticity definitions are satisfied to round-off error and that the accuracy of the method depends
only on the grid. Boundary singularities that lead to numerical chessboard pattern solutions are
eliminated by use of the radial interpolation scheme. Extensions to unsteady and compressible flow
with third order accuracy will be presented in an upcoming publication.
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