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Abstract: In this paper, a number of methods are described that enable a more accurate
and more e�cient computation of the viscous �ow e�ects with the CFD tool ComFLOW.
The intended application area is the o�shore environment, where �ows are characterized by
Reynolds numbers of at least O(106). A symmetry-preserving regularization model will be
used to model turbulence. In the near-wall region, an extension of the 2-D LSSTAG immersed
boundary method is described and tested for Hagen-Poiseuille �ow. To account for a turbu-
lent boundary layer near solid boundaries, the e�ective wall-shear stress near boundaries is
adjusted according to the Werner-Wengle model. In order to compute the �ows e�ciently, a semi-
structured local grid re�nement method is implemented, which is tested for a number of �ow cases.
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1 Introduction

The CFD tool ComFLOW as described in [1, 2] is used to predict free-surface �ows in o�shore environments.
In ComFLOW, the Navier�Stokes equations can be solved for one-phase incompressible �ow and for two-
phase �ow (for details on the latter part, see [3]). In o�shore applications, extreme events of wave impact
on rigid and �oating structures are of high interest. There are also important applications where details of
viscous �ow e�ects become relevant, e.g. when predicting drag forces on the pillars of oil drilling rigs, or the
sloshing modes in drilling holes in �oating production units.

Making progress in more accurately modeling and e�ciently computing the details of viscous �ow e�ects
in high Reynolds number �ows requires (i) an accurate turbulence model, (ii) an accurate discretization of
di�usion near solid walls, (iii) modeling of the wall-shear stress accounting for an underresolved turbulent
boundary layer, and (iv) local grid re�nement to locally achieve a high grid resolution in a computationally
e�cient manner.

The structure of this paper is as follows. First, the symmetry preserving discretization of the Navier�
Stokes will be described. After this, the symmetry-preserving turbulence modeling approach is explained in
Section 3. The discretization of the wall-shear stress model that accounts for a turbulent boundary layer is
the topic of Section 4. The discretization of di�usion in cut-cells is described in Section 5. Finally, the local
grid re�nment approach that is pursued in ComFLOW is presented in Section 6.
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2 Symmetry-preserving discretization of the Navier�Stokes equa-

tions

An excellent model for incompressible �uid �ow is provided by the Navier-Stokes equations. The set of
equations consists of the continuity equation

Mu = 0, (1)

whereM = ∇· is the divergence operator, and the momentum equation

∂u

∂t
+ C(u,u) + Gp− 1

Re
Du = f (2)

based on the convection operator C(u,v) = u · ∇v, the pressure gradient operator G = ∇, the di�usion
operator Du = ∇ · ∇u and force term f .

The governing equations are discretized using a second-order �nite-volume discretization on a staggered
Cartesian grid (the Arakawa C-grid) as illustrated in �g. 1.

For time integration one can choose between a second-order Adams-Bashforth time integration scheme
or a �rst-order Forward-Euler method [1, 2]. For simplicity, the discrete system below will be formulated in
terms of the Forward-Euler time integration scheme.

The continuity equation (1) is implicitly discretized at the new time level as

Mun+1
h = −MΓun+1

h , (3)

where M acts on the internal of the �uid domain and MΓ acts on the boundaries of the domain.
Convection and di�usion are discretized explicitly in time. As for the divergence, the pressure gradient is

discretized at the new time level. Denoting the momentum control volumes by the diagonal matrix Ω gives
the discretized momentum equation as

Ω
un+1
h − unh

∆t
= −C(unh)unh +Dunh −Gpn+1

h . (4)

The discrete convection operator is skew-symmetric, i.e.

C(unh) + C(unh)∗ = 0. (5)

Let us introduce an auxiliary variable u∗h as

Ωu∗h ≡ Ωunh −∆t C(unh)unh + ∆t Dunh, (6)

such that we can write

Ω
un+1
h − u∗h

∆t
= −Gpn+1

h (7)

After substitution of equation (7) in the continuity equation (3) the discrete pressure Poission equation is
obtained:

∆tMΩ−1Gpn+1
h = Mu∗h +MΓun+1

h . (8)

This equation can be regarded as a discretization of the equation MGp = Mu. Note that the composed
operatorM◦G is not directly discretized here, but only its separate parts. Hence of sole importance for the
accuracy of (8) is the discretization of the divergence and gradient operators M and G, respectively. This
should be kept in mind when assessing the accuracy of the method.
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2.1 Divergence and pressure gradient
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Figure 1: Staggered grid cell

The �nite volume discretization of the divergence operator in the pressure cell in �g. 1 with indices i, j
is given by

(Muh)i,j = ∆y`(ui,j − ui−1,j) + ∆x`(vi,j − vi,j−1) (9)

At the discrete level we require the divergence and gradient operators to satisfy the adjoint property, i.e.

G = −M∗ (10)

2.2 Note on energy conservation

Denoting the convection operator by C(u,v) = u·∇v, the skew-symmetry property of the operator is written
as

(C(u,v),w) = − (v, C(u,w)) . (11)

The skew-symmetry ensures the conservation of energy of the operator, (u, C(u,u) = 0, as well as the
conservation of helicity, (ω,u)) , where ω = ∇× u. In 2-D, additionally it holds that

(C(u,v),∆v) = − (u, C(∆v,v)) , (12)

ensuring conservation of enstrophy in 2-D.
As indicated in equation (5) our discrete convection operator is also skew-symmetric, which implies that

on the discrete level the same quantities are conserved by the convective term.
It should be noted that the di�usion operator is discretized such that its symmetric part is negative

de�nite. The adjointness relation (10) and skew-symmetry of the convective term allows to write the time
evolution of the kinetic energy as

d

dt
‖u∗h Ωuh‖ = u∗h (D +D∗)uh ≤ 0. (13)

This shows that the time evolution of the discrete kinetic energy is only a�ected by the di�usion mechanism.
No arti�cial/numerical di�usion is added to the discrete system, which guarantees that the discretization will
not interfere with the subtle balance between convection and di�usion that is important for the simulation
of turbulent �ow.

3 Symmetry-preserving regularization modeling

In typical o�shore environments, �uid �ows are characterized by a high Reynolds number, O(106) or higher,
and �ows are highly turbulent, making it computationally impossible to resolve the full range of scales of
motion. Therefore, an approximation of the solution to the original Navier�Stokes equations is sought that is
dynamically less complex. Smoothing the convection term restrains the production of small scale structures,
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and stops the forward energy cascade that takes place at a cut-o� length scale that is typically (much) larger
than the smallest scale that is present in the �ow: the Kolmogorov length scale.

Approaches in this direction can be traced back to the work of Leray [4], who proved that smoothing the
advective velocity �eld in the convection term regularizes the 3-D Navier�Stokes equations. Leray's approach
has inspired a number of approaches to modeling turbulent �ow. A well-known example is the Navier�Stokes
α-model [5]. Another class of models that has emerged in the last couple of years is the class of symmetry-
preserving regularization turbulence models, �rst formulated in [6]. The importance of a symmetry-preserving
discretization of the Navier�Stokes equations (the one that has been outlined above) has been assessed in
[7]. In this paper, simulations of a turbulent channel �ow were seen to give good results on coarse grids,
without using an explicit turbulence model. The symmetry-preserving regularization approach combines
these two ideas by replacing the original convection term by a skew-symmetric regularized convection term.
The problem that results is well-posed from a mathematical perspective and does not interfere with the
subtle balance between convection and di�usion in a turbulent �ow on resolved scales.

3.1 Regularization models: analytical formulation

In order to smooth the convection operator a �lter operation is introduced. The �lter is a smoothing
operation u 7→ u, and more precisely an integral kernel operation

u(x, t) =

∫
Ω

φε(x− y)u(y, t) dΩ, (14)

for y ∈ Ω. The time-dependency is denoted explicitly to stress that the kernel operator φε is a purely
spatial operator. The operator smooths the signal over a length scale ε. The operator φε is self-adjoint
and normalized. The residual is de�ned as the di�erence between the un�ltered and the �ltered quantity:
u′ = u− u.

This de�nition of the �lter allows for an expansion of the convection operator in terms of u and u′. The
application of the self-adjoint �lter to the convection term allows for the construction of a skew-symmetry
preserving model. This family of regularization models has been proposed in [6]. The three resulting models
are

C2(u,v) = C(u,v), (15)

C4(u,v) = C(u,v) + C(u,v′) + C(u′,v), (16)

C6(u,v) = C(u,v) + C(u,v′) + C(u′,v) + C(u′,v′). (17)

The subscript n indicates how accurate (namely, of order O(εn)) the model approximates the original con-
vection term.

In order for the Cn operator to satisfy the important skew-symmetry condition that holds for C in eq.
(11), the �lter operation should be self-adjoint. With this in mind, we turn to the discrete formulation of
the regularization model.

3.2 Regularization models: numerical formulation

The discrete �lter operation as it is applied to the discrete velocity �eld is de�ned as the linear operation
uh = Fuh, and can be viewed as the discrete analogon of (14). The boundary conditions that apply to the
Navier�Stokes equations, are applied to the �ltered velocity uh as well. The �lter F has to satisfy a number
of properties:

I Symmetry: (ΩF )∗ = ΩF , which guarantees the self-adjointness of the �lter on the discrete level.

II Normalization: F1h = 1h, i.e. a constant (discrete) velocity �eld (1h) should not be a�ected by the
�lter operation.

III Incompressibility: for an incompressible velocity �eld uh, the �ltered velocity uh has to be divergence-
free as well.
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IV Low-pass �ltering: only high-frequency components that occur in the discrete �eld should be removed
by the �lter.

The skew-symmetry of the discrete convection operator relies on the symmetry of the �lter, but also on
the velocity �eld being divergence-free. In a discrete setting, however, the �lter cannot be guaranteed to
satisfy Property III. Therefore a projection of the �ltered velocity �eld u on the space of solenoidal velocity
�elds is proposed. The solenoidal projection of the �ltered velocity �eld is given by uPh = uh − M∗qh,
where the correction term qh follows from the Poisson equation MM∗qh = Muh. Note that solving an
extra Poisson equation makes the computation roughly twice as expensive. The discrete implementation of

the C2 model reads C(uPh )uh and the discrete convection term is skew-symmetric as in the original discrete
convection term in eq. (5). Similar expressions for C4 and C6 are readily derived.

Following [8], on an equidistant grid with grid spacing h, the discrete �lter F is de�ned in polynomial form

in terms of the operator D̃m = Ω−1α
1/m
m h2D, where D = MΩ−1

C M∗ is the usual discrete di�usion operator

(ΩC denotes the diagonal matrix containing the volumes of the cell-centered variables.) The constant α
1/m
m

represents the square of the ratio between the �lter length ε and the local grid size h. The �lter operation
now reads

F = 1 +

M∑
m=1

D̃m
m
. (18)

Note that this is the discrete analogon of an approximate deconvolution of the general class of elliptic
di�erential �lters; see [9] for an extensive review of this and other types of �lters.

As will be shown later, depending on the physical properties of the �ow �eld, the �lter parameters αm will
be determined locally. Also, the �lter will have to be generalized to non-uniform grids. Denote by Am

1/mH2

the diagonal matrix containing the local values of the �lter length, i.e. the local values of αm
1/mh2, which

may now vary throughout the computational domain. The generalized form of the operator D̃m for staggered
quantities reads

D̃m = Ω−1MAm
1/mH2Ω−1

C M∗, (19)

which resembles the form of a similar operator for cell-centered quantities that is de�ned in [10]. As before,
M is the discrete divergence operator and −M∗ the discrete gradient operator.

The �lter F that follows from (18) and (19) can be seen to satisfy Properties I, II, IV, all of which are
properties that the �lter inherits from the discrete di�usion operator.

3.3 Vortex-stretching and the dynamic determination of �lter parameters

Vortex stretching is the mechanism that drives the forward energy cascade. It has been shown by Leray in
[4] that a local intensi�cation of vorticity can be prevented if the convection operator is regularized. The L2

inner product of the vorticity vector ω = ∇ × u with the curl of the Navier-Stokes momentum equations,
gives the time evolution of the enstrophy:

d

dt
|ω|2 = (ω, Cn(ω,u)) +

1

Re
(ω,∆ω) . (20)

The evolution of enstrophy is seen to be determined by the vortex stretching and/or compression by the
convection term and the (natural) dissipation rate due to di�usion.

3.3.1 Stopping the vortex-stretching mechanism

At the scale set by the grid, the intensi�cation of the vorticity has to be prevented, i.e. the di�usion
damping at the grid size should be enough to prevent the production of scales beyond the cut-o� wave
number kc = π/h. In spectral space, this means that the following inequality (see [6]) has to be respected:

ωkc
· Cn(ωkc

,u)

ωkc
· ωkc

≤ 1

Re
k2
c . (21)
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If the transfer function Ĝk is de�ned as ûk = F̂uk = Ĝkûk, then the action of the turbulence model at
cut-o� wave number kc can be written in terms of the damping function fn = fn(Ĝkc , Ĝp, Ĝq) such that

ωkc
·∑q=p−kc

fn(Ĝkc , Ĝp, Ĝq) ûp iqûq

ωkc
· ωkc

≤ 1

Re
k2
c . (22)

Note that the damping function, describing the action of the regularization model in spectral space, is written
as fn = fn(Ĝkc , Ĝp, Ĝq). It is clear from expression (22) that it is di�cult to control the damping e�ect of
the �lter at cut-o� scale kc, as the function fn cannot be taken out of the summation. Therefore another
requirement has to be added to our list of �lter properties:

V. The �lter parameters should be chosen such that the damping function fn(Ĝkc , Ĝp, Ĝq) ≈ fn(Ĝkc), i.e.
the damping e�ect is almost independent of the interacting pair.

If the �lter satis�es this property, then the damping function can be taken out of the summation, enabling
the model to control the damping e�ect. As is shown in [11], condition (21) can now be transformed to
physical space, giving

fn(Ĝkc)
ω · S(u) ω

ω · ω ≤ |λ∆|
Re

, (23)

where S(u) = 1
2 (∇u + (∇u)∗) is the rate-of-strain tensor and λ∆ < 0 is the largest negative eigenvalue of

the Laplacian operator ∆ closest to zero.
As has been shown [12, 13], the left-hand side of (23) is related to invariants of the rate-of-strain tensor

as Q ≡ − 1
2Tr S(u)2 = (ω,ω), and R ≡ −detS(u) = (ω, S(u)ω). This combines to give

fn(Ĝkc)
R+

Q
≤ |λ∆|

Re
, (24)

As R might become negative, the quantity R+ = max {R, 0} is used to determine the necessary damping.
In the discrete setting, the invariants of the discrete rate-of-strain tensor are used in criterion (24). As

suggested by [13], the amount of natural damping by the di�usion operator at the cut-o� scale set by the
grid is the maximum amount of damping that is provided to the highest frequency that can be represented
on the computational grid. Therefore, in the discrete setting λ∆ is taken to equal the eigenvalue of the
di�usion operator corresponding to the {+1,−1,+1,−1, . . . }-mode on the computational grid. This results
in −λ∆ = 4

δx2 + 4
δy2 + 4

δz2 .

3.3.2 Determining �lter parameters

The computation of the �lter parameters is now straightforward. As suggested in [8], it is su�cient to
choose M = 2 in (18) to satisfy Property V. Locally, the invariants of the rate-of-strain tensor {R+, Q} are
computed, which determine the transfer function Ĝkc through inequality (24). For all the regularization

models, the local parameters {α1, α2} are expressed in terms of the transfer function Ĝkc .

3.4 Test cases

The regularization model as described above has been tested for a number of test cases. In [6] the classical
benchmark of turbulent channel �ow has successfully been addressed. Furthermore, in [11] it has been shown
that the regularization method is capable of predicting the turbulent �ow in a di�erentially heated cavity
accurately on a coarse computational grid. Currently, the aim is to test the model for another canonical test
case: the �ow around a square cylinder, at a Reynolds number of 22, 000.

To illustrate the regularization approach, the model C2 is considered. In �g. 2 the horizontal velocity
pro�le at midplane height is plotted. The computational domain are as indicated in the �gure, and the grid
is stretched from the cylinder boundaries to the boundaries of the computational domain. The Reynolds
number, based on the diameter of the cylinder is 10, 000. Although the boundary conditions that apply to
the square cylinder have not been implemented in the �lter operation yet, the in�uence of the �lter in the
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(a) C2 turbulence model (b) no turbulence model applied

Figure 2: The instantaneous horizontal velocity pro�le at a midheight plane, illustrating the action of the
regularization turbulence model C2.

interior domain is visible. The model smooths the solution for the velocity �eld in front of and in a band
around the cylinder, and numerical wiggles in the solution are suppressed. In order to improve the solution
and predict proper values for the lift and drag forces, however, the near-wall implementation of the �lter
should be improved.

4 The turbulent boundary layer

The turbulent �ows under consideration will be characterized by a Reynolds number of O(106) or higher,
making it computationally impossible to re�ne the grid to the level at which the boundary layer is resolved.
Therefore, it is necessary to model the in�uence of the turbulent boundary layer. We will use the Werner-
Wengle model as described in [14]. In this model, depending on the wall-tangential momentum �ux, the
e�ective wall shear stress τw is computed using a simple power-law approximation of the universal average
velocity pro�le in the boundary-layer. The Werner�Wengle model reads, in terms of the dimensionless
tangential velocity u+, and the dimensionless wall-normal coordinate z+,

u+ = z+ for z+ ≤ zm,
u+ = A (z+)

B
for z+ > zm,

(25)

where the constants A = 8.3 and B = 1/7 result from �tting the curve to the universal velocity pro�le. In
terms of the tangential momentum velocity component Ū in the �rst o�-wall cell-face we obtain an expression
for the `e�ective' wall-shear stress:√

τw
ρ

=

[
1−B

2
A

B+1
1−B

( ν

∆z

)B+1

+
B + 1

A

( ν

∆z

)B ∣∣Ū ∣∣] 1
B+1

, (26)

If the boundary layer is resolved, then the �rst cell spacing is well within the viscous sublayer, i.e. z+ < zm
in eq. (25), and the original discretization of the wall-shear stress is obtained.

5 Discretization of di�usion in cut-cells

ComFLOW solves the Navier�Stokes equations on a Cartesian staggered grid. In general, the boundaries
are not grid-conforming and therefore it is a challenge to represent the immersed boundary and to provide
proper boundary conditions on the computational grid. The discretization of the normal and shear stresses
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in the deformed control volumes need most attention, as currently they are approximated through a staircase
representation of the geometrical object. The problem of the careful discretization of viscous stresses has
been discussed in many proposals for immersed boundary methods, see [15].

For the computation of the di�usion term in the Navier�Stokes equations, the normal and shear stresses
in the cut-cells are discretized in a similar fashion as the 2-D LSSTAG method that is described in [16].
The method has been extended to con�gurations that are aligned with one of the principal spatial directions
(x, y, z) that de�ne the Cartesian grid arrangement. An example of such an arrangement is given by �g. 3;
it will be called quasi�3-D. The �gure shows a geometrical shape cutting a computational cell, which is
locally approximated by a plane cutting the computational cell. All the relevant geometrical information is
contained in the local grid size, open cell face fractions, and �uid volume fractions.

y

x

z

x

x

wi+1,j,k

wi,j,k

ui,j,k

vi+1,j−1,k

vi,j,k

Figure 3: A possible quasi�3-D cut cell con�guration.

5.1 Normal-stress discretization

Due to the staggered variable positioning that is used, the normal and shear stresses are discretized at
di�erent positions. The normal stresses ∂u∂x ,

∂v
∂y ,

∂w
∂z are discretized as a cell-centered variable, like the pressure.

Requiring that the Gaussian identity ∫
V

∇ · u dV =

∮
∂V

n · u dS (27)

holds in the discrete pressure cell, gives a natural discretization of the normal stress in terms of the geometrical
information. Denoting the open cell-face fraction that is oriented normal to the u-component of the velocity
by Ax, we obtain

∂u

∂x

∣∣∣∣
i,j,k

= (ΩC)−1
i,j,k

(
ui,j,kA

x
i,j,k − ui−1,j,kA

x
i−1,j,k

)
δyjδzk. (28)

5.2 Shear-stress discretization

In order to discretize the shear-stress contribution we should distinguish between di�erent alignments of the
momentum vector with the geometry. If the velocity vector is not parallel to the direction with which the
geometry is aligned, e.g. u, v in �g. 3, the problem same problems occur as in 2-D. The cell-face fraction can
be used straightforwardly to determine the wall shear stress at the position of the square as

∂u

∂y

∣∣∣∣
ib

=
ui,j,k − uib
1
2A

x
i,j,kδyj

.

Similarly, the shear stresses due to the other neighbours can be derived.
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The situation is di�erent if the discretization of the shear stresses for the velocity aligned with the
principle direction of the geometry is considered. These con�gurations have no counterpart in 2-D. Consider
the discretization of the shear stress ∂w

∂x on the position indicated by the square in �g. 4. If the velocities
are assumed to be positioned on the barycenter of the open cell face, then the line connecting the w-velocity
components is not normal to the cell face. A similar problem occurs for the discretization of the pressure
gradient in a momentum control volume. The shear stress ∂w

∂x is therefore discretized consistent with the
discretization of the pressure gradient. This gives

∂w

∂x

∣∣∣∣
i−1,j,k

=
αi−1,j,k (wi,j,k − wi−1,j,k)

1
2

(
Azi−1,j,kδxi−1 +Azi−1,j,kδxi

) . (29)

The performance of this scheme will be assessed below.
The wall-shear stress for the velocity w is obtained through computing the distance of the barycenter of

the open cell-face to the wall-normal distance dib, i.e.

∂w

∂x

∣∣∣∣
ib

=
wi,j,k − wib

dib
. (30)

wi−1,j,k

wi,j,k

αi−1,j,k δyj

δyj

δxi

y

x

Figure 4: Two adjacent velocity vectors in cut-cell faces.

5.3 Test case: Hagen-Poiseuille �ow

A suitable test case for the quasi�3-D discretization is the Hagen-Poiseuille �ow, where a (constant) pressure
di�erence drives the �ow through a circular cylinder that has no-slip boundaries. The cylinder is aligned
with the z-direction. In the numerical method, the circular cylinder is represented by cut cells, and the
numerical solution can easily be compared with the analytical solution. The test case is set up as indicated
in �g. 5. Periodic boundary conditions are applied in the z direction, in conjunction with a prescribed
pressure di�erence between in�ow and out�ow. The computational domain has dimensions, Lx×Ly ×Lz =
1.0×1.0×2.0. The diameter of the cylinder is D = 2R = 1, and the Reynolds number based on the cylinder
diameter ReD = 2000. The computational grid has a constant number of grid spacings in the z-direction and
is re�ned in x- and y-direction. In �g. 6, the grid convergence results are presented for two cases: the original
staircase discretization, and the immersed boundary method that has been outlined above. The improvement
of the proposed quasi�3-D immersed boundary technique with respect to the original discretization of the
di�usion in cut-cells is immediate, as the error in any norm is less. In the L∞ norm both methods show
�rst order behaviour. In the L2 norm, however, the proposed discretization shows a signi�cantly better
convergence behaviour, with a convergence behaviour that is somewhere between �rst- and second-order,
whereas the original staircase discretization shows a truly �rst-order convergence behaviour.
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∂p
∂z

= ∆p0, (u, v, w) periodic

w(r = R) = 0

R

w(r) = wmax(1 − r/R)

Figure 5: The Hagen-Poiseuille problem with indicated boundary conditions
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Figure 6: Convergence rate for Hagen-Poiseuille �ow through a circular cylinder, with improved discretization
of di�usion (blue dots) and without (red diamonds).
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6 Local grid re�nement

2i 2i + 1

` ` + 1

2j

2j + 1

7→j

i

Figure 7: From coarse to �ne indices

i

j

` `− 1

7→ bj/2c

bi/2c

Figure 8: From �ne to coarse indices

Remark: for the sake of presentation we only consider the two-dimensional case. Extension to three
dimensions is straightforward.

A semi-structured approach is followed in which a cell (i, j) at re�nement level ` is replaced by a set of 4
smaller cells at re�nement level `+1 having indices (2i+m, 2j+n) at o�sets m,n ∈ {0, 1}. On block-shaped
re�nement regions the method is locally structured, hence the computational e�ciency of the original array-
based solution methods can be exploited as much as possible. The semi-structured indexing is illustrated in
�gs. 7 and 8. Only at the boundaries of the re�nement regions, where the actual re�nement takes place, a
new treatment is required. For describing the grid layout an auxiliary array is introduced, storing only one
integer for each potentially occuring cell (i, j; `) pointing at the memory location of the subgrid in which it
is contained (or null if the cell does not exist). The auxiliary array has a length of N(1− rij)`max)/(1− rij),
where `max is the highest re�nement level occuring on the grid, rij the product of the re�nement ratios and
N the number of cells on the unre�ned grid. Altogether a data structure results that allows for fast and
e�cient look-up when compared with typical tree-based storage methods. A similar concept has been used
in for example [17].

• •

• •
• II

I

I

I

I

N

N

N

N

N

N

N

N

Figure 9: Arrangement of computational variables near a re�nement interface (indicated with a gray line)

Typically, a large stencil is used for the approximation of missing pressure or velocity variables along the
re�nement interface. Interpolation of missing variables increases the number of non-zero coe�cients in the
pressure Poisson matrix and possibly makes the matrix non-symmetric, putting higher demands on the linear
solver. Most authors use a non-overlapping and apply linear (or even higher-order) interpolation for missing
variables on the other side of the interface [18]. Another approach is to apply linear interpolation inside an
overlapping interface [19]. In all cases the discretization results in a non-symmetric system of equations.

In the present approach, we seek to maintain symmetry of the discretization scheme in order to exploit
the use of e�cient and robust symmetric iterative solvers. The idea of using a compact discretization scheme
that maintains the symmetry of the discrete Poisson equation can also be found in for example [20, 21].

6.1 Divergence and pressure gradient at the interface

A compact discretization scheme is designed, which results in a small and symmetric scheme for the discrete
composition M ◦G, making it possible to employ an e�cient linear solver. Following ideas presented in [21],
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the pressure gradient is set constant along a re�ned cell face. Correspondingly, we use a uniform velocity
across the entire re�ned cell face and only place coarse computational velocity variables at the interface (see
�g. 9).

For the discretization of the divergence at the �ne side of re�nement interfaces, an approximation is
needed for the missing �ne velocities. As a �rst approach, missing velocities are simply approximated using
constant extrapolation (see �g. 10). Assuming a uniform grid spacing for brevity, gives ∆x` = ∆y` ≡ ∆`,
where it is remarked that the subscript ` is used to indicate the local re�nement level. Then

ũi,j;` := ubi/2c,bj/2c;`−1 = u(xui,j;`) +O(∆), (31a)

ũi,j+1;` := ubi/2c,bj/2c;`−1 = u(xui,j+1;`) +O(∆). (31b)

By imposing the discrete adjoint property (10) we obtain the following approximation for missing coarse
pressure variables, e.g. (see �g. 10)

p̃i−1,j,k;` :=
p2i−1,2j;`+1 + p2i−1,2j+1;`+1

2
= p(xpi−1,j`) +O(∆2), (32)

which is a simple average of the neighbouring �ne pressure values. Writing out the discretization of the
pressure gradient at the re�nement interface we get

pi,j;` − p̃i−1,j;`
1
2 (∆x` + ∆x`+1)

=
2pi,j;` − p2i−1,2j;`+1 − p2i−1,2j+1;`+1

∆x` + ∆x`+1
=
∂p

∂x
(xui−1,j;`) +O(∆). (33)

Note that the approximation for the missing pressure variable is second-order accurate, but an order of
accuracy is lost due to the loss of symmetry in the central scheme. Hence the approximation of the pressure
gradient across the re�nement interface is �rst order accurate.

Similarly, it can be seen that the scheme for the divergence operator is not consistent yet. A �rst order
approximation of the missing velocity is used, which due to the loss of symmetry in the central di�erence
scheme introduces a zero-th order error term,

ũi,j;` − ui−1,j;`

∆x`
=
ubi/2c,bj/2c;`−1 − ui−1,j;`

∆x`
=
∂u

∂x
(xpi,j;`) +O(1),

which will be corrected for below. More precisely, when writing out the discretization of the divergence
operator it can be seen that

1

∆x`∆y`
(Muh)i,j;` =

∂u

∂x
(xpi,j;`) +

∂v

∂y
(xpi,j;`) +

1

2

∆y`
∆x`

∂u

∂y
(xui,j;`) +O(∆)

1

∆x`∆y`
(Muh)i,j+1;` =

∂u

∂x
(xpi,j+1;`) +

∂v

∂y
(xpi,j+1;`)−

1

2

∆y`
∆x`

∂u

∂y
(xui,j+1;`) +O(∆)

The inconsistency becomes particularly visible in the presence of large pressure gradients tangential to the
re�nement interface (e.g. hydrostatic pressure). As far as we know this issue is not addressed in the literature.

I

IB

ubi/2c,bj/2c;`−1

ui,j+1;`

ui,j;`

IB

•
pi,j;`•◦

•

•
pi−1,j;`

p2i−1,2j;`+1

p2i−1,2j+1;`+1

Figure 10: Left: missing variables (IB) for the divergence operator, together with the variable used for constant
extrapolation (I). Right: Missing variable (•◦) for the gradient operator, together with the variables used
for linear interpolation (•)
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In order to remove this inconsistency, a linear correction term is added to the divergence operator in cells
behind re�nement interfaces. For the situation depicted in �g. 10 we write(

M+uh
)
i,j;`

= −1

4
∆y` (δyuh)bi/2c,bj/2c;`−1 (34)(

M+uh
)
i,j+1;`

=
1

4
∆y` (δyuh)bi/2c,bj/2c;`−1 (35)

where the derivative is approximated using a central di�erencing operator1, which is applied along the
re�nement interface

(δyuh)bi/2c,bj/2c;`−1 :=
(
ubi/2c,bj/2c+1;`−1 − ubi/2c,bj/2c−1;`−1

)
/2. (36)

The di�erencing operator is similar for other interface orientations. Note that in the three-dimensional case
the operator would also include a di�erence term in the secondary direction tangential to the interface.
Through this linear correction term, the approximation of the divergence in �ne cells becomes �rst order
accurate again. In words, the amount of divergence of the auxiliary vector �eld u∗h in �ne cells behind the
interface is approximated by M +M+ instead of the original operator. Therefore, we need only to apply the
correction M+ for the divergence operator to the right hand side of the pressure correction equation. Hence
equation (8) is changed into:

∆tMΩ−1Gpn+1
h = (M +M+)u∗h +MΓun+1

h . (37)

After solving the above equation and substituting pn+1
h in equation (7), a velocity �eld un+1

h is obtained
that satis�es the following equations (see �gs. 11a to 11c):(

Mun+1
h

)
i,j+1;`

+ (M+u∗h)i,j+1;` = 0 (38a)(
Mun+1

h

)
i,j;`
− (M+u∗h)i,j;` = 0 (38b)(

Mun+1
h

)
i,j+1;`

+
(
Mun+1

h

)
i,j;`

= 0 (38c)

Note that by summing over the entire region behind the interface, the contribution to the divergence is
exactly zero, as expressed in equation (38c). Hence a consistent discretization of the continuity equation is
obtained for the coarse cell underlying the two �ne cells.

(38a)I
I

N

N

(a) Lower cell

(38b)I
IN

N

(b) Upper cell

(38a)+(38b)=0
I

I
I

N

N

(c) Total area

Figure 11: Divergence Mun+1
h in cells along a re�nement interface.

To conclude we remark that extension to the three-dimensional case is straightforward. In that case
corrections have to be made in two directions tangential to the interface and the divergence sums up to zero
again for each set of 4 �ne cells.

6.2 Consequences for the pressure Poisson stencil

By placing coarse velocity variables un+1
h at the interface and by only applying linear interpolation procedures

to the auxiliary variable u∗h in the right hand side of the Poisson equation, we avoid the need of interpolating

1the interpolation is simpli�ed by considering only the special case of uniform grids, hence ∆` = 2∆`+1; reformulation into

a linear interpolation for non-uniform grids is straightforward

13



un+1
h (and hence pn+1

h ), which would have resulted in a larger pressure Poisson stencil (see e.g. [19, 18]). If
we were to apply a correction M+ to the operator on the left hand side of the pressure Poisson equation, we
would have been interpolating the velocities un+1

h . Now, instead, we are interpolating the auxiliary variable
u∗h. The current approach can be interpreted as an interpolation of the �amount of necessary divergence
correction�. Using the operators M and G on the left hand side, as described above, leads to a compact
numerical scheme for the discrete pressure Poisson scheme near re�nement interfaces (as illustrated in �g. 12),
avoiding the need for large interpolation stencils or overlapping grid regions. Furthermore, the number of
stencil variations near corners of re�nement grids or boundaries is reduced signi�cantly.

•

•

•

•
•

•
I I

N

N

•
•

•

•

•

•
I

I
N

N

IB

IB

Figure 12: Visualization of the pressure Poisson stencil for the discretization given by (37). The velocity
variables I and N are used in Mun+1

h . The actual Poisson stencil for MGpn+1
h consists of the pressure

variables •. Note that the variables IB are only used on the right hand side in the term M+u∗h.

To solve (37), we need the resulting Poisson matrix to be positive de�nitite in order to guarantee con-
vergence of the SOR-solver as currently implemented in ComFLOW. It is not straightforward to �nd a
theoretical proof of the (in)existence of this matrix property. A range of grid con�gurations of moderate size
has been tested for this property and all cases resulted in positive de�nite matrices. The scheme is diagonally
dominant in coarse interface cells and away from interfaces, but this is not the case for �ne interface cells.
Fortunately, in all practical test cases considered so far, this did not have a negative e�ect on the convergence
speed.

6.3 Convection and di�usion

Missing velocities that are needed in the convection and di�usion scheme are approximated using bi-linear
interpolation. Due to this interpolation, the standard second-order discretization schemes for convection
and di�usion reduce to �rst-order accuracy at re�nement interfaces. We note that in smooth regions of the
solutions this does not pose a signi�cant problem. Higher-order interpolation could be used for re�nement
interfaces in less smooth regions. However, the numerical error would then be dominated by the locally
�rst-order behaviour of the divergence operator. Because it is di�cult to make the divergence operator both
mass conservative and higher-order accurate (as is also observed in [18]) this part puts limitations on the
design of a higher-order scheme.

6.4 Convergence rate

To illustrate the spatial convergence behaviour of the numerical scheme, the method is applied to the following
steady state vortex �ow in two dimensions, at a Reynolds number of 20

u = − cosx sin y,

v = sinx cos y,

p = cosx+ cos y

Appropriate forcing terms are added to the right-hand side of the momentum equations in order to make
the solution exact (these are identical to the forcing terms in [19]). The solution is discretized on a periodic
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Figure 13: Top: convergence rate for the pressure, bottom: convergence rate for the x-component of the
velocity. The results for the other velocity components are similar and are not presented here.

domain 0 ≤ x, y < 2π for a sequence of uniform grid spacings, ranging from ∆ = π/10 to ∆ = π/320. The
time step is �xed at ∆t = 0.0004, ensuring a CFL number smaller than one for all considered grid con�gura-
tions. The mesh interface scheme is exact for linear �ow and the �rst-order error terms are proportional to
the second-order derivatives of the local solution. Hence, re�nement interfaces should be placed in regions of
the domain where the solution has small second-order derivatives. As variations in the velocity or pressure
gradient become larger, the convergence rate degrades to �rst order.

Since we are primarily interested in the error behaviour near the re�nement interfaces, in the present test
case, the re�nement region is located in the region 1.35π ≤ x, y ≤ 1.65π, which is a reasonably smooth part
of the �ow domain.

The numerical results show that convergence is initially second order in the L∞ norm. Only upon
extensive re�nement the local convergence order of the pressure starts to degrade towards �rst order. The
interface scheme for the pressure gradient introduces �rst-order errors that are proportional to the second
derivatives of the pressure. Although these derivatives are small, they are not zero, hence the �rst-order
error terms will eventually dominate the convergence behaviour. Note that, on the other hand, the global
convergence rate of the pressure remains second order, even upon extensive re�nement. This characteristic
can be explained by the fact that the local error is only made at re�nement interfaces, which is of lower
dimension than the computational domain.

When looking at the approximation of the velocities, the convergence rate is roughly second order on
coarse grids. Upon grid re�nement, the local as well as the global convergence rate slowly degrade to
�rst order, because on �ne grained grids the �rst order error terms (which are propertional to the second
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Figure 14: Left: Description of the manufactured solution (39) in the ns-plane. Right: Location of the
re�nement regions in the xy-plane. In the locally re�ned series, the grid is twice as coarse outside the
re�nement region whereas in the uniform series the same resolution is used outside the re�nement regions.

derivatives of the solution) of the mesh interface scheme become more dominant. The results are comparable
to those presented in [19], where an overlapping grid region has been used.

6.5 A more practical example

In order to test the local grid re�nement approach for more practical situations, it is used to simulate a
steady �ow with logarithmic velocity pro�le. The �ow is placed under an angle; we write uh = (us, un),
where us and un denote the streamwise and perpendicular velocity components respectively, which are given
by

us = α log(1 + βn)

un = 0
, 0 ≤ n ≤ 1 (39)

The parameters α and β are chosen such that the velocity ranges from 0 at n = 0 (i.e. the location of the
wall) to 0.5 m s−1 at n = 1. The slope of the �ow is set to approximately 14 degrees. In order to reduce
the e�ect of in- and out�ow boundaries we consider a periodic domain. The �ow is driven by a Dirichlet
velocity boundary located at n = 1. At the left and right part of the domain periodic boundaries are used
with an appropriate o�set matching the slope of the wall.

A forcing term fs is added to the momentum equation in streamwise direction to satisfy the Navier-Stokes
equations exactly:

ν
∂2us
∂n2

− ∂p

∂s
= fs(n)

Along the bottom of the channel, re�nement regions are placed in order to obtain high resolution near the
wall. The size and location of the re�nement grids are chosen such that the interfaces are located in smooth
parts of the �ow (see e.g. �g. 14).

The numerical results presented in �g. 15 demonstrate the validity of the re�nement method. If the
re�nements are correctly placed, the numerical errors introduced at the interfaces are negligible compared
to the errors introduced in the rest of the domain (e.g. high gradients, irregular �ow) and by the rest of the
numerical scheme (e.g. boundary conditions, shear stresses, surface tension).

Remark It is important to observe that errors at re�nement interfaces are not only introduced because
of the modi�ed discretization scheme. In coarse cells typically larger errors are introduced (or at least
di�erent), by which the solution can be a�ected. Note that also the incompressibility of the solution can
play a role. Furthermore, errors can be di�used or advected with the �ow. Re�nement interfaces always
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Figure 15: Numerical results for the manufactured solution (39) upon grid re�nement. As starting point a
uniform grid is used (red diamonds) and a locally coarsened grid (blue dots)

have one dimension less that the solution domain itself. This suggests that interface errors are best observed
in the L∞ norm.

7 Concluding remarks

In this paper, four ingredients have been presented to make e�cient and accurate simulations of viscous �ow
e�ects possible. First, the regularization model as described in this paper is able to restrain the production
of small-scale structures in the �ow, making it possible to accurately simulate turbulent �ow up to a grid
resolution that can be a�orded. The existing implementation has to be improved in order to enable a good
prediction of wall-bounded �ows. Secondly, in order to take the turbulent boundary layer into account, we
use the Werner-Wengle model [14].

Thirdly, an immersed boundary technique has been proposed that extends the 2-D LSSTAG method
from [16] to make quasi�3-D arrangements possible. The novel approach showed clear improvement over the
existing staircase, in terms of actual accuracy as well as order of convergence.

It should be noted that these three subjects are intimately connected. An improved discretization of
di�usion in cut cells gives important information on how to construct the regularization-�lter operation near
immersed boundaries. The immersed boundary technique might also allow us to extend the Werner-Wengle
model to more general immersed boundaries than the grid-aligned boundaries for which it has originally
been developed.

Finally, a local grid re�nement approach for e�ciently modeling viscous �ow e�ects has been proposed,
with special emphasis on the discretization across the re�nement boundaries. A compact scheme is presented
which reduces the overhead introduced by the re�nement interfaces. Although the interface scheme is �rst-
order accurate, the method still provides an e�ective approach to saving computational time while keeping
comparable accuracy as in the globally re�ned case. By restricting the re�nement interfaces to smooth
areas of the �ow, as is commonly done in practice, e�ectively the convergence rate of the original scheme is
maintained. An academic test case has been presented, representing a typical practical scenario that requires
local re�nement that demonstrates the e�ectiveness of the method.

In the future these approaches will be combined to enable a complete as well as accurate description and
an e�cient computation of viscous �ow e�ects.
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