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Abstract: A time-dependent adjoint-based methodology developed in [AIAA 

2008-5857 and AIAA J. Vol.48, No.6, pp.1195-1206, 2010] is used for 
optimization of the 3-D unsteady turbulent flow near a flapping wing. The 

sensitivities of the thrust coefficient to wing kinematic parameters are computed 

using the time-dependent discrete adjoint formulation. The unsteady discrete 

adjoint equations required for calculation of the sensitivity derivatives are 
integrated backward in time. The gradient of the objective functional computed 

using the adjoint formulation is then used to update the values of the kinematic 

design variables. The efficiency of this time-dependent optimization methodology 
is demonstrated by maximizing the performance of a wing undergoing insect-based 

flapping motion. Our numerical results show that the wing thrust coefficient and 

propulsive efficiency have been significantly increased after the optimization. 
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1 Introduction 

 
Insects and small birds represent fully functional examples of efficient small-scale flying devices. 

However, copying of wing kinematics and shape of flying animals is far form being sufficient to 
design and build effective, highly maneuverable, agile micro air vehicles (MAVs). Indeed, the current 

state-of-the-art materials, micro-scale actuators, propulsion systems, and power sources are different 

and in most cases less efficient than those created by Mother Nature over millions years of evolution. 

This lack in efficiency of currently available MAV components indicates that a different region of the 
design space as compared with that of flying insects and animals should be explored to be able to 

maximize the performance of flapping-wing microsystems. Therefore, designs inspired by flying 

animals can be used only as a preliminary conceptual design that requires further optimization for 
constructing efficient and agile flying micro-scale platforms optimized for size, weight, speed, and 

maneuverability. This is a very challenging optimization problem that involves hundreds or even 

thousands kinematics and shape design variables and is governed by highly unsteady vortex-

dominated turbulent flows. Therefore, efficient, mathematically rigorous optimization techniques 
based on optimal control theory should be used for solving this class of problems. 

In spite of significant progress in modeling and computational fluid dynamics (CFD) analysis of 

flapping- and rotary-wing platforms [1-5], questions related to optimal design of efficient micro air 
vehicles (MAV) have not yet been properly addressed especially in three dimensions because of the 

physics complexity and computational cost involved. Various parametric and sensitivity studies (e.g., 

see [1]) have revealed that there is an essentially nonlinear relationship between the major wing 
kinematic parameters (amplitude, frequency, phase shift angle), shape parameters (wing thickness, 

planform, twist, and camber), and global flow parameters (the Reynolds, Strouhal, and Mach 

numbers). Conventional parametric studies, which estimate the sensitivity to each individual design 

variable independently, do not take into account this nonlinear relationship between the main 



parameters determining the MAV performance. Furthermore, parametric studies are extremely 

computationally expensive because of the very large dimensionality of the design space and therefore 
impractical for optimization and design of efficient flapping-wing microsystems. 

Several attempts have recently been made to use genetic algorithms based on low-fidelity models 

[6], high-fidelity models [7], and experimental apparatus [8] for optimization of flapping-wing flows. 

Since these stochastic optimization techniques require thousands of evaluations of the objective 
functional for each design variable, all these approaches have been limited to optimization of 2-D 

flows with a very small number (less than 4) of design variables. Gradient-based methods provide a 

powerful alternative for optimization of flapping airfoils and wings. Culbreth et al. [9] uses a finite 
difference method coupled with a 3-D Navier-Stokes solver to evaluate the sensitivities of a modified 

propulsive efficiency to 4 spanwise twist design variables. In [10], a forward mode differentiation 

method governed by a 2-D Navier-Stokes solver has been successfully used to maximize thrust and 
propulsive efficiency of a pitching and plunging airfoil.  

Unlike the forward mode differentiation methods which suffer from excessive cost caused by the 

need to solve the unsteady Navier-Stokes equations as many times as the number of design variables, 

an adjoint method provides the sensitivities at a cost which is comparable to that of a single flow 
solution and independent of the number of design variables. Adjoint-based optimization of flapping 

wing flows has been very rare and received significantly less attention [11, 12]. In the present paper 

the adjoint based methodology developed in [13, 14] is used to optimize the performance of an 
isolated wing undergoing insect-based flapping motion. Wing kinematic parameters, such as stroke 

and pitch angle amplitudes and frequencies, phase shift angle between pitching and flapping motions, 

the coordinates of a point with respect to which the stroke and pitch motions occur, are used as design 
variable. Our numerical results show that the wing performance significantly increases while all the 

imposed constraints are satisfied in the course of optimization, thus indicating that the developed 

methodology can be efficiently used for optimization and design of MAV systems.   

 

2 Governing Equations and Numerical Method 

 
The fully turbulent compressible flow near a wing undergoing an insect-based flapping motion is 

simulated using the 3-D unsteady Reynolds-Averaged Navier-Stokes (URANS) equations written in 

the integral conservation law form as follows: 

     

  
         

 

                                                                       

 

where V  is a moving control volume bounded by the surface  , Q represents a vector of the volume-

averaged conservative variables, n is the outward unit face normal vector, and Fi and Fv are the 

inviscid and viscous flux vectors, respectively. Note that for a moving control volume, the inviscid 

flux vector must account for the difference in the fluxes due to the movement of control volume faces. 
Given a flux vector F on a static grid, the corresponding flux vector Fi on a moving grid is defined 

as      - (W  ), where W  is a local face velocity.  

The governing equations are closed with the perfect gas equation of state and the Spalart-Allmaras 

turbulence model for the eddy viscosity. Note that for the special case of Q=const, the conservation 

equations (1) reduce to the Geometric Conservation Law (GCL): 

  

  
   

 

                                                                                

The GCL provides a precise relation between the rate of change of the time-dependent control volume 
and its local face velocity W. Though the GCL equation is a direct consequence of the governing 
equations (1) and is satisfied at the differential level, this is usually not the case at the discrete level. 
To preserve a constant solution on dynamic grids, the discrete GCL residual RGCL is added to the 
discretized flow equations (see [15] for further details). 

In the present study, the time derivative and contour integral in (1) are discretized using a 2
nd

-order 

backward difference (BDF2) formula and 2
nd

-order node-centered finite volume scheme [16],
 



respectively. The inviscid fluxes at cell interfaces are computed using Roe’s approximate Riemann 

solver, and the viscous fluxes are approximated by a method equivalent to a 2
nd

-order finite element 
Galerkin procedure. The mesh velocity terms are evaluated with the BDF2 formula consistent with 

the discretization of the time derivative. An approximate solution of the linear system of equations 

formed within each time step is obtained with a multicolor Gauss-Seidel point-iterative scheme. The 

turbulence model is integrated all the way to the wall without the use of wall functions and is solved 
separately from the mean flow equations. The solver demonstrates high parallel scalability which is 

achieved through domain decomposition and message passing communication. The numerical method 

described above was implemented in a fully unstructured Reynolds-averaged Navier-Stokes solver 
called FUN3D [17], which has been used in all numerical studies presented in this paper. 

 

 

3 Rigidly Moving Grid 

 
To accurately resolve the flow near a wing during the entire flapping motion, a body-fitted mesh 

is regenerated at each time step, so that it moves rigidly along with the wing. The rigid mesh motion 
is generated by a 4x4 transformation matrix [15]. The transformation matrix enables general 
translations and rotations of the grid according to the following relation: 

 
       

 
which moves a point from an initial position (x0, y0, z0) to its new position (x, y ,z): 
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In Eq. (3), the 3x3 matrix R defines a general rotation, and the vector t = [tx, ty, tz]

T
 specifies a 

translation. Note that the matrix T depends on time. One key feature of this approach is that multiple 
transformations telescope via matrix multiplication. This formulation is particularly attractive for 
composite parent-child body motion. Herein, the rotation associated with the wing pitching is 
specified relative to the stroke motion. For a rigid motion, the grid equation at time level n is defined 
as follows: 

      
 
            ,                                                   (4) 

 
where    and    are the grid vectors at the initial and n-th time levels,   is a block-diagonal 
matrix.  
 

4 Wing Kinematics 
 

In the present analysis, the kinematics of an idealized insect wing motion is defined by specifying 

the following three angles associated with the stroke position  , pitch angle  , and stroke deviation 

from the mean stroke plane,  : 
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where  fs,  fp,  fd  are stroke, pitch, and deviation frequencies. These three angles are used to 

construct the corresponding rotation matrices of the form given by Eq. (3). These matrices 

are then multiplied together to form the final rotation matrix used to specify the current wing 

position. 



The rotation associated with the stroke motion occurs with respect to the wing root. The wing 

flips (pitches) about an axis located approximately at 50% of the chord. For the baseline 
configuration, the pitching axis remains in the stroke plane throughout the entire motion, and the 

forward and backward stroke arcs are kinematically symmetric. Note that for this wing motion, the 

midpoint of the flip occurs precisely at the end of the forward stroke or the end of the backward 

stroke. The amplitudes and frequencies in Eq. (5) as well as the components of the center of rotation 
with respect of which the stroke, pitch, and deviation motions occur are used as design variables and 

optimized to maximize the thrust coefficient of the flapping wing. 

 

5 Adjoint-based Time-Dependent Optimization Methodology 
 

To increase the wing performance, the thrust coefficient is considered as a functional which is 

maximized by using optimal control theory, thus leading to the following discrete PDE-constrained 

optimization problem: 

 
  
 

  
 
                      

  

    

                  
  

 

             
              

   
        

       

                                                   

                               

 
where D is a vector of the design variables, Q

n
 is a vector of conservative variables, C

n
 is an 

aerodynamic coefficient such as thrust, lift, drag, or their combination and        
  is its target value, 

Nb and Ne are time levels corresponding to a time interval over which the objective functional is 

minimized, R
n
 and    are the flow and grid residuals, and     

  is the geometric conservation law 

term.  

The discrete time-dependent optimization problem (6) is solved by the method of Lagrange 

multipliers which is used to enforce the flow and grid equations (1, 4) as constraints. The Lagrangian 
functional is defined as follows: 
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where   
  and   

  are vectors of Lagrange multipliers associated with the flow and grid 

equations, respectively, D is a vector of design variables, and      for      and       
Note that terms corresponding to the initial conditions are omitted in Eq. (7).

 

Differentiating the Lagrangian with respect to D, collecting the coefficients of       , and 

setting them equal to zero, the following equations for the flow adjoint variables    are derived:  

 

     
         

             
   

   
  

   

   
 
 

  
      

   
      

   

   
 
 

                  

 

The grid adjoint equations are obtained in a similar way (see [14] for details). The key advantage of 

the adjoint formulation is that the adjoint equations (8) are independent of the vector D, and should be 

solved once at each optimization iteration, regardless of the number of the design variables. Since the 
first term in Eq. (8) approximates the negative time derivative, the unsteady adjoint equations have to 

be integrated backward in time. Therefore, the entire flow solution history should be available during 

the backward-in-time integration of the flow adjoint equations. In the present approach, the 
conservative variables, grid coordinates, and grid velocities are stored to disk at the end of each time 

step of the flow solution. During the integration of Eq. (8) in reverse time, the stored data is loaded 



from disk. With the adjoint variables satisfying the flow and grid adjoint equations, the gradient of the 

Lagrangian with respect to D is calculated as follows: 

  

  
   

   

  
    

  
 
 
   

  
 
     

 

  
         

  
    

  
                       

 

   

 

As in Eq. (7), terms corresponding to the initial conditions are omitted. A minimum of the objective 

functional is found by using a gradient-based optimization package PORT [18].  
 
 

6 Numerical Results 

 
The adjoint-based optimization methodology described above is used to improve the performance of 
an isolated wing undergoing insect-based flapping motion. We consider a rigid wing whose shape 

resembles a wing profile of the fruit fly, Drosophila melanogaster. The hovering wing is assumed to 

be operating in quiescent conditions. The wing has the semi-circular leading and trailing edges, a 
mean aspect ratio of 2.24, and a thickness-to-chord ratio of 0.04. The baseline Reynolds and Mach 

numbers based on the wing maximum tip speed are set equal to 4,800 and 0.06, respectively.  

The baseline kinematic motion consists of two rotations, each occurring at the reduced 

frequency of 0.262. The first rotation is a stroke motion with amplitude of 60
0
. The second rotation is  

a pitch motion with amplitude of 45
0
. The amplitudes and frequencies of the stroke and pitch motions, 

as well as the coordinates of the center of rotation are used as design variables. Thus, there are a total 

of 15 design variables for each test problem considered.  
We consider two test problems. For the first problem, the objective functional is given by Eq. 

(6), where the aerodynamic coefficient C is the wing thrust and Nb =41 and Ne = 80 that correspond to 

the second full stroke of the baseline configuration. The thrust target value is set to be 10, which is 

significantly higher than its baseline value. Figure 1 shows the convergence history of the objective 
functional. The objective functional has been reduced from its initial value of 18,115 to a final value 

of 12,991 over 20 design cycles. Note that the major reduction occurs during the first 6 design cycles 

after which further improvements are negligible. The stroke and pitch angle profiles before and 
 

                           
 

       Figure 1: Convergence history of the                                            Figure 2: Baseline and optimal stoke  
       objective functional for the 1st test problem.                                 and pitch angle  profiles. 

                      

after the optimization are presented in Fig. 2. The stoke amplitude has been significantly increased 

during the optimization, reaching its upper bound value of 90
0
, while the pitch angle amplitude 

remains nearly the same. The deviation from the mean stroke plane has not been appreciably changed 

and is therefore not presented in Fig. 2. The optimizer has increased not only the stroke amplitude, but 

also its frequency, such that three peaks now occur within the same time interval used to define the 

objective functional.  
A detailed comparison of the baseline and optimal solutions is presented in Fig.3 showing 

snapshots of an iso-surface of the q-criterion colored with pressure contours at three time levels n = 

48, 55, 63. As one can see in Fig. 3, the optimization of wing kinematics significantly strengthens the  
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Figure 3: Iso-surface of the q-criterion colored with pressure contours at n = 48, 55, 63, obtained with the 

baseline (top row) and optimized (bottom row) wing kinematics. 

 

leading edge and root vortices, thus considerably reducing the pressure in the upper surface of the 
wing and increasing the thrust. 

The baseline and optimized thrust profiles are shown in Fig. 4. The mean value of the thrust 

coefficient has been increased by a factor of 5.5 as compared with its baseline value. Note, however, 
that the increase in the stroke and pitch frequencies has also resulted in increase in the drag 

coefficient, as one can see in Fig. 5 presenting a thrust-to-drag ratio before and after the optimization. 

The thrust-to-drag ratio can also be interpreted as a modified propulsive efficiency. As follows from 
this comparison, the stroke-averaged propulsive efficiency of the optimized configuration is very 

similar to that obtained with the baseline wing kinematics. It is not surprising because the objective of 

this optimization problem is to maximize the thrust coefficient generated by the wing rather than its  

 

                          
       Figure 4: Baseline and optimal thrust profiles                      Figure 5: Propulsive efficiency before and after 

                                                                                                     optimization for the 1st test problem. 

 

propulsive efficiency.                     

As has been mention above, maximization of the thrust coefficient also increases the drag, 
thus indicating that significantly higher power is required for operating the optimized flapping wing 

as compared with the baseline configuration. To overcome this problem, the objective functional in 

the second test problem has been penalized as follows: 
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where    and    are weight coefficients which are both set to be 5. Note that the target thrust value is 
equal to that used in the previous test case, which is significantly higher that its baseline value. The 

last two terms in Eq. (10) penalize the objective functional in such a way that the functional rapidly 

increases if both Cx and Cy deviate from zero, thus minimizing the x- and y-components of the 

aerodynamic force. 
 

                         
      Figure 6: Convergence history of the objective                      Figure 7: Baseline and optimal stoke and pitch 

      functional for the 2nd test case.                                                angle profiles. 

 

The convergence history of the objective functional given by Eq. (10) is presented in Fig. 6. The value 

of the objective functional rapidly drops from 23,500 to 19,000 over the first design cycle, after which 

it keeps steadily decreasing until it reaches its lowest value of 16,990. For this test case, the optimizer 
performed 40 flow solutions and 24 adjoint solutions. In contrast to the previous test case, the stroke 

and pitch frequencies providing the optimal wing performance are practically equal to those of the 

baseline configuration, as evident in Fig. 7. The main reason why the optimal values of the stroke and 
pitch cycle frequencies have not been appreciably changed during the optimization is the presence of 

the penalty terms in the objective functional given by Eq. (10). A conclusion that can be drawn from 
this observation is that significant increase in the wing flapping frequency does not necessarily 

improve the wing propulsive efficiency. Another key distinction of this optimal solution as compared  
 

 
 

 
 

Figure 8: Iso-surface of the q-criterion colored with pressure contours at n = 48, 55, 63, obtained with the 

baseline (top row) and optimized (bottom row) wing kinematics. 
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with the one obtained in the previous test case is that the pitch angle amplitude reaches its upper 

bound value of 55
0
. Note that the stroke angle amplitude also attains its upper bound value of 90

0
. The 

final values of the other design variables demonstrate moderate changes as compared with 

their initial values. 
Snapshots of an iso-surface of the q-criterion colored with pressure contours obtained for the 

baseline and optimized configurations at three time levels n = 48, 55, 63 are shown in Fig. 8. As in the 
previous test, the leading edge vortex generated by the wing with the optimized kinematic parameters 

is stronger than that obtained in the baseline case. Note, however, that the strengthening of the leading 

edge vortex mostly occurs due to the increase in the pitch and stroke amplitudes rather than their 
frequencies as in the foregoing test case. It should also be noted that the vortex size and intensity are 

lower than those obtained in the previous problem. 

 

                       
       Figure 9: Baseline and optimal thrust profiles.                    Figure 10: Propulsive efficiency before and after 

                                                                                                     optimization for the 2nd test problem. 

 
As follows from Fig. 9, the mean value of the thrust coefficient over the final 40 time steps 

has been increased by a factor of 2.9 after the optimization of the wing kinematics. Figure 10 shows 

the modified propulsive efficiency before and after optimization. The mean-stroke value of the 
propulsive efficiency computed with the penalized objective functional defined by Eq. (10) is about 

65% higher than its baseline value. This improvement in the wing performance is achieved by 

imposing a proper constraint of the power required for the wing operation. It is expected that even 

higher performance gains are possible with including shape design variables into optimization, which 
would further expand the design space and open new avenues for optimization of flapping wing 

flows. 
 
 

7 Conclusion 

 
The kinematics of a hovering wing undergoing insect-based flapping motion has been optimized by 

using the time-dependent adjoint-based methodology developed in [13, 14]. In contrast to other 
optimization techniques, the adjoint formulation allows to compute the sensitivity derivatives with 

respect to all design variables at a cost comparable to that of a single flow solution. Two optimization 

problems with different objective functionals have been considered. For each test case, 15 kinematic 
parameters including amplitudes and frequencies of three angles defining the wing position as well as 

the coordinates of the wing root are used as design variables. The objective of the first test problem is 

to maximize the wing thrust. In the course of optimization, the mean value of the thrust coefficient 

has been increased by a factor of 5.5 as compared with its baseline value. The flapping frequency has 
been significantly increased by the optimizer, thus leading to increase in the wing drag. As a result, no 

appreciable improvements in the wing propulsive efficiency as compared with that of the baseline 

configuration have been obtained. To maximize the wing thrust while minimizing the drag and 
consequently the power required for the wing operation, we penalized the objective functional used in 
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the first test problem such that the functional rapidly increases if the aerodynamic force components 

in the wing stroke plane significantly deviate from zero. For this optimization problem, the 

optimizer has increased not only the stroke-averaged wing thrust by a factor 2.9, but also the wing 

propulsive efficiency by 65% as compared with that of the baseline configuration. These results 

indicate that the time-dependent adjoint-based methodology developed in [13, 14] is capable of 

significantly improving the flapping wing performance while satisfying the imposed constraints and 

can be used a powerful tool for optimization of flapping wing flows. 
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