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Abstract: The dynamics of the pressure fluctuations are analyzed using a relatively large-scale di-
rect simulation of a turbulent boundary layer. Proper turbulent inflow conditions, key in boundary
layers, are generated by an auxiliary simulation at lower resolution and Reynolds number. Special
emphasis is put on the contamination of the pressure statistics due to the inflow boundary condi-
tions. It is shown that extraneous pressure fluctuations are due to the variations in the mass-flow
rate at the inflow, and a remedy is proposed.
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1 Introduction

The behavior of the pressure in turbulent boundary layers is of special interest in engineering, because its
fluctuations contribute to aerodynamic noise and flow-induced vibration. They are also important in re-
distributing the turbulence activity across scales, and understanding them is critical for modeling purposes.
Unfortunately, they are difficult to obtain experimentally, in part because of instrumental limitations [1],
but also because of the tendency of their low-frequency range to be contaminated by facility-induced noise.
Several solutions, including noise cancellation techniques, have been suggested to eliminate this noise [2],
and shown to reduce the measured intensities substantially. In spite of those limitations, some general facts
have been established for pressure fluctuations at the wall; for example, their root-mean-squared intensities,
the general shape of their power spectra, and their space-time correlation characteristics. Reviews of the
known experimental facts, mostly regarding wall pressures can be found in [3, 4, 5].

Numerical simulations have also contributed significantly to the understanding of pressure in turbulent
flows, especially away from the wall [6, 7, 8]. For example, pressure has wall-attached spectra, and a well-
developed logarithmic range of the fluctuation profile, and scales far from the wall with the friction velocity
and with the flow thickness. As a consequence, when the fluctuations at the wall are scaled in inner variables,
they increase logarithmically with the Reynolds number [7, 9]. Moreover, pressure fluctuations depend on
the type of flow, and are stronger in boundary layers than in channels due to the intermittent character of
the outer edge of the former [8, 10].

The computational equivalent of the acoustic contamination in experiments arises from the boundary
conditions associated with the finite numerical domain. The contamination of pressure fluctuations, a com-
mon problem in simulations and experiments is partly responsible for why, even now, there are few published
data on pressure, particularly away from the wall. The problem is well known, and there have been empirical
recipes to minimize it, but, to the best of our knowledge, the root cause of the problem has remained unclear,
and that is the focus of this paper. We will discuss how the pressure statistics are affected by the inflow
conditions in direct numerical simulations (DNS) of zero-pressure-gradient spatially-developing turbulent
boundary layers, using as example the problems found in a recent simulation from our group [11].

The numerical setup is described in Section 2, and the results for the velocity and uncorrected pressure
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Table 1: Parameters of the turbulent boundary layer simulations. Lx, Ly and Lz are the box dimensions
along the three axes. Nx, Ny, and Nz are the corresponding grid sizes, and the ∆ values are the resolutions
in wall units. The momentum thickness, θ, is measured at the middle of each box. The heights of the
simulation boxes are given in terms of the boundary layer thickness δT at the transfer plane used to feed the
inflow of BL6600, which is located at Lx/θ ≈ 410 of BLAUX.

Case Reθ (Lx, Ly, Lz)/θ ∆x+, ∆y+

min, ∆z+ Nx, Ny, Nz Ly/δT

BLAUX 1100-2970 481 × 47 × 191 13 × 0.32 × 7.3 3585× 315 × 2560 4.20
BL6600 2780-6650 547× 29 × 84 7 × 0.32 × 4.1 15361× 535 × 4096 5.80

statistics are discussed in Section 3, followed by the proposed inflow correction procedure in Section 4, and
by summary and conclusions.

2 The Numerical Simulation

The simulation is performed in a parallelepiped with a no-slip smooth wall, spanwise periodicity, and stream-
wise non-periodic inflow and outflow, using the code in Ref. [12]. The streamwise, wall-normal and span-
wise directions and velocity components are x, y, z and u, v, w, respectively, and the kinematic pressure p
incorporates the constant fluid density. Capital letters refer to mean quantities, and primed ones to root-
mean-squared fluctuation intensities. The + superscript denotes wall-scaled quantities, normalized with the
x-dependent friction velocity uτ and with the kinematic viscosity. The 99% boundary-layer thickness is δ.

The numerical code integrates the incompressible Navier-Stokes equations expressed in primitive variable
form using a fractional step method together with a semi-implicit Runge-Kutta time scheme. The spatial
discretization uses high-order compact finite differences in the non-periodic streamwise and wall-normal
directions, and a Fourier expansion in the spatially periodic spanwise direction. The parallelization of the
code is discussed in detail in [12, 11], including a full discussion of the numerical scheme and examples of
applications to other problems.

To prescribe time dependent inflow conditions, we use the rescaling/recycling technique in Ref. [13]. In
that paper, intended as a large-eddy simulation (LES), there are two distinct simulations. The first one is a
DNS of an initial stretch of the boundary layer, one of whose downstream planes is rescaled and used to create
its own inflow. The purpose of that auxiliary layer is to provide a natural turbulent flow in an intermediate
plane, which is filtered and transferred to the inflow of the LES. A previous DNS from our group [12], of a
turbulent boundary layer with a Reynolds number based on the momentum thickness Reθ = 2100, generated
its inflow by recycling a single simulation, as in the auxiliary layer in Ref. [13]. A later attempt to extend it
to the range Reθ = 6500 showed that the initial transition length required by the large scales of boundary
layers to reach equilibrium is too long for a single simulation to be run economically [11], and we reverted
to a two-simulation code in which the inflow of the main simulation, BL6600, is provided by an auxiliary
boundary-layer simulation, BLAUX, running concurrently at lower Reynolds number and somewhat coarser
resolution. Its purpose is to allow the larger scales to reach their asymptotic state before being used in the
inflow of BL6600, and its computational cost is about 8% of the total. The resolution of the main simulation
BL6600 is comparable to previous high-Reynolds number DNSes of channels [14] and boundary layers [12].
Table 1 summarizes the numerical parameters of both layers.

The mean pressure gradient is controlled by imposing at the top boundary an x-dependent suction
velocity, constant in time, estimated from experimental correlations of the displacement thickness δ∗ [15].
Continuity then implies that the instantaneous mass flux at each downstream section is determined by the
inflow. As in [12], the recycling implementation of BLAUX only rescales the velocity fluctuations while fixing
the inflow mean velocity to a prescribed empirical profile [15]. This ensures a constant inflow mass flux,
although the code allows for minor adjustments to the outflow convective boundary condition, to enforce
mass conservation [12]. For both layers, the resulting streamwise pressure gradient is δ∗U+

∞
∂xU+

∞
≈ 10−3.

To minimize the free-stream fluctuations, the height of the computational domain of BL6600 is chosen as
2.4 times the boundary-layer outflow thickness [12]. Using the same height for BLAUX would have increased
the computational cost considerably with little physical gain, since its lower Reynolds number means that
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most of the box height would be free stream. Computational load balancing finally suggested decreasing
the height of BLAUX by 25%. The mean velocity and fluctuations obtained from the transfer plane are
interpolated to the finer grid of BL6600, and extended into its free stream as a uniform velocity.

In our implementation of the recycling method for BLAUX we only rescale the velocity fluctuations while
fixing the inflow mean velocity to a prescribed empirical [15], which we had also found useful in our previous
boundary layer simulation [12], but the reasons why that was found useful were not analyzed in detail in
that paper. That is discussed in the following section.

3 Results

BL6600 is one of the highest-Reynolds-number boundary layer simulations presently available, and will be
discussed in detail in future papers. Here we only concern ourselves with the pressure fluctuations, and with
the reasons why they did not initially agree with experiments.

Preliminary statistics of the velocity and vorticity were compiled over a time interval of tuτ/δ = 11.5
eddy-turnovers, measured at the middle of the BL6600 box. Figure 1 presents the streamwise mean velocity
and fluctuation intensities averaged over a window size of δ in the streamwise direction. Although the present
simulation covers a wider range, statistics are presented at Reθ = 5150 (Reτ ≈ 1950) to match the available
boundary layer experimental data [16, 17] and turbulent channel data [14]. As shown here and in Ref. [11]
velocity statistics agree very well with previous simulations and experiments.
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Figure 1: (a) Mean streamwise velocity. (b) Root-mean-squared streamwise velocity fluctuation. ,
Present simulation at Reθ = 5150. ◦, boundary layer experiments by de Graaff & Eaton (2000) at Reθ =
5160; △, Osterlund et al. (2000) at Reθ = 5156; and •, numerical channel from Hoyas & Jimenez (2006) at
Reτ = 2000, and , log(y+) / 0.41 + 5.

On the other hand, as depicted in Fig. 2, pressure fluctuation intensities for that first set of statistics do
not agree with experiments (not included for visual clarity). After a sharp drop near the inflow, which can
be traced to numerical effects and is not included in the figure, they remain relatively high, with a minimum
around the middle of the box. The wall fluctuations, p′2+, in Fig. 2(b) are approximately parabolic in x, and
their well-known logarithmic Reynolds number dependence [7, 9] is lost. The pressure fluctuation profiles in
Fig. 2(c) neither collapse far from the wall, nor do they vanish in the free stream. No such behaviour was
found in BLAUX.

The analysis of the pressure spectra showed that the extra intensity was confined to the largest flow
scales, with streamwise wavelengths of the order of the computational box. For example, the pressure at the
wall tracks that at the free stream (Fig. 3a) and the pressure fluctuations at the outflow are in antiphase
with those at the inflow. The reason was traced to the variation of the inflow mass flux F of the main
simulation. As noted earlier, its inflow is transferred from a plane of BLAUX. The velocities are interpolated
to the finer grid for BL6600, and extrapolated into the free stream by copying the last grid point to the taller
box. It is that extension that changes the mass flux, because, although the flux through the transfer plane of
the auxiliary box is kept constant by the constant inflow profile, the free-stream velocity varies slightly with
time. If its variation is ∆U∞, and the difference of the two box heights is ∆H , the flux changes by ∆U∞∆H .
In our simulation, that variation is less than 1%, but it is amplified into large pressure fluctuations by the
large aspect ratio of the computational box.
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Figure 2: (a) Pressure fluctuation intensities, p′2+. (b) At the wall. (c) Profiles of the pressure fluctuation
intensities. ▽, Reθ = 3500; ♦, Reθ = 4500; △, Reθ = 5500; ◦, Reθ = 6500.

Consider an inflow flux F (t). The outflow boundary condition tracks it by adding an extra velocity at the
last plane which is equivalent to a delta function in the velocity divergence. The pressure sub-step corrects
that increment by creating a global linear pressure gradient, approximately independent of y. From the
momentum equation,

∂P/∂x = −H−1

∫ H

0

(∂U/∂t) dy = −H−1(dF/dt), (1)

where H is the box height, which translates into a pressure difference,

∆P = P (0) − P (Lx) = ( dF/ dt)(Lx/H). (2)

Figure 3(a) shows that this estimate agrees well with the data, and that the pressure difference is in phase
with the time derivative of the flux. The correlation coefficient of ∆P and dF/dt is approximately 0.85, and
the linear pressure distribution implied by Eq. (1) is consistent with the parabolic distribution in Fig. 2.
Equation (2) reveals that the pressure due to a given flux variation is proportional to the aspect ratio Lx/H ,
which is approximately 20 in our case. A shorter test simulation with a similar computational setup and
Lx/H ≈ 3 showed a much weaker effect.

The flux variation in our case is small, but those in the original Lund’s recycling [13], in which not only
the fluctuations but the mean profile are rescaled to the inflow, can be much larger, because the flux is not
preserved by rescaling. That may be the reason for some of the problems found in using that method, and,
in retrospect, the reason why Ref. [12] found useful to fix the inflow mean velocity profile, rather than to
rescale it. It is also probable that some of the large-scale pressure oscillations found in experiments [2] are
related to small variations of the mass flux in the facility.

4 Mass-flow correction

Using a fixed inflow profile avoids the problem when a reasonable approximation is known from experi-
ments [12], although it should be noted that even slightly incorrect profiles can modify the Reynolds stresses
substantially [19], leading again too long inflow adaptation lengths. Another possibility is to base Lund’s
rescaling on the displacement thickness, instead of on the momentum thickness, which tends to fix the mass
flux [20]. The solution adopted in our simulation was to apply to the instantaneous streamwise velocity
profile of the transfer plane of BLAUX a correction factor,

U = (F0/FT )UT (t), (3)

where UT is the velocity interpolated from BLAUX, FT is its mass flux, and F0 a reference flux chosen for the
inflow of BL6600, for example, from a long-term average. Figures 3(b,c) present statistics compiled over 7.2
eddy-turnover times of a simulation thus corrected, and show that the extraneous pressure fluctuations have
disappeared. The pressure fluctuations at the wall, represented in Fig. 3(b), increase logarithmically with
the Reynolds number, in agreement with previous experimental [3] and numerical observations [7, 8]. The
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Figure 3: (a) Time evolution of the pressure difference, ∆P+. , at the free-stream; , at the wall;
• , Eq. (2). Wall units based on box middle section. (b) Pressure fluctuation intensities at the wall as a

function of δ+. Numerical boundary layers: , present, corrected; , present, uncorrected; , Ref. [10];
♦, Ref. [18]. Experimental boundary layers: △, Ref. [3]. Numerical channels: •, Ref. [14]; N, Ref. [7]. (c)
Profiles of the pressure fluctuation intensities after the flux correction. Symbols as in Fig. 2(c).

pressure profiles in Fig. 3(c) collapse well far from the wall, and vanish in the free stream. The correction
factor, F0/FT , was always in the range 1 ± 2 × 10−4 in our simulation. Although not shown, the effect
of this correction on the velocity statistics is less than the statistical uncertainty of the data, even in the
contaminated simulation, since the pressure gradients induced by the mass flux variation are negligible
compared with any of the other pressure gradients in the flow (∆P+/L+

x ≈ 3 × 10−5).
The acoustic oscillations in experiments are sometimes approximately compensated by subtracting the

instantaneous free-stream pressure from the measured profiles [2, 1]. The same can be done here for each
instantaneous field, because the large-scale pressure gradients at the wall and at the free-stream agree well
(Fig. 3a), but cannot be used on the compiled fluctuation profiles. That would only be valid if the inner
and outer fluctuations were statistically independent. While that is approximately true near the wall, it is
not true near the edge of the layer.

A similar effect is familiar from simulations and experiments of internal flows, where channels and pipes
are driven by a pressure gradient that is subtracted before fluctuations are defined. For example, turbulent
channels have traditionally been simulated indistinctly by keeping either a constant mass flux, which implies
a time-dependent pressure gradient, or by imposing a fixed pressure gradient. It was informally tested in the
early channel DNSes that the statistics did not depend on the method. Channels in our group have always
been run at constant flow rate by adjusting the pressure gradient dynamically, and to test once more that
the variable driving pressure does not affect the statistics, we have performed two new channel simulations
at Reτ = 350, one with constant mass flow and another with fixed pressure gradient. As expected, the
two approaches yield the same velocity and pressure statistics, available from [21], and the variable pressure
gradient induced by the mass flux variation is negligible compared with any of the other pressure gradients
in the flow.

5 Summary and conclusions

In summary, we have shown that pressure statistics in computational turbulent boundary layers can be
severely contaminated by minor variations of the mass-flux rate at the inflow, with an amplification factor
proportional to the aspect ratio of the computational box. That effect constrains the use of the full recy-
cling/rescaling method in Ref. [13], and requires that either the inflow mean profile be fixed, rather than
rescaled, or that the rescaling be such that the mass flux is accurately constant. We have presented a DNS
of a boundary layer at moderately high Reynolds number, in which the flux variation was introduced by
extrapolating a feeder simulation to the taller free stream of the main box. Flow variations of less than 1%
increased pressure fluctuations by about 30%, but they could be corrected by applying a dynamic rescaling
factor to the mean inflow velocity to fix the mass-flux. Since the spatial scale of the extra pressure fluctua-
tions is very large, their gradients are negligible compared with other gradients in the flow, and the velocity
and vorticity statistics are unaffected. Even the pressure statistics can be approximately recovered by sub-
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tracting the free-stream pressure from each instantaneous field, as in simulations of internal flows and in
some experiments. We have argues that this effect is also responsible for some of the acoustic contamination
in laboratory experiments.
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