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Abstract: We investigate the detrimental e�ects of various transport schemes on turbulent mixing
of low di�usivity passive scalars, and recommend new grid resolution criteria to account for these.
Several Eulerian and Semi-Lagrangian schemes are compared for their ability to predict accurately
the expected turbulent behavior of the scalars. Scalar energy and dissipation spectra, as well as
small-scale scalar statistics provide a comprehensive picture of the strengths and shortcomings of
the schemes tested. We show that for standard Eulerian transport schemes, a resolution of up
to κmaxηB = 3 might be necessary for su�cient accuracy. However one of the Semi-Lagrangian
schemes tested (MECH) is capable of producing comparable results at κmaxηB = 1.5. This allows
for a signi�cant reduction in computational cost without sacri�cing accuracy.
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1 Introduction

The grid resolution required for fully resolving high Schmidt number turbulent simulations is determined
by the Batchelor scale (ηB = η/

√
Sc), which in turn depends on the Kolmogorov length scale (η), and the

Schmidt number (Sc). The Schmidt number is de�ned as the ratio of the kinematic viscosity of the �uid (ν)
and the molecular di�usivity of the passive scalar (Sc = ν/D). A passive scalar is any physical quantity that
is convected under the in�uence of the velocity �eld, but has no e�ect on the velocity itself. Some examples
include small temperature �uctuations in air and water, and pollutant (e.g. soot) or contaminant transport
in the atmosphere and the ocean. The extremely small value of the Batchelor scale for high Schmidt number
simulations necessitates the use of very �ne grids to capture the physically important small scale structures.
The need for high accuracy at these small scales makes the simulations extremely sensitive to numerical
di�usion.

Commonly accepted guidelines suggest that keeping κmaxηB ≥ 1.5, where κmax is the largest wavenumber
determined by the grid size (N), ensures a fully resolved scalar �eld [1]. However, resolving all the physically
important scales does not necessarily guarantee that discretization errors from the numerical scheme used
will not have an appreciable adverse e�ect on the results. For instance, using the scalar dissipation spectra
plotted in Fig. 1 , we can observe the considerable impact that numerical di�usion has on the smaller scales.
The aforementioned grid resolution criterion (κmaxηB = 1.5) is satis�ed for N = 256 . However, we see a
large discrepancy (for κη ≥ 4) when we compare the �nite-volume results to those generated by a spectral
code. Re�ning the grid to N = 512 leads to better agreement, but at a cost increase of 16 times. These
results clearly indicate that the currently established resolution criteria for ensuring the physically accurate
simulation of high Schmidt scalar transport may need to be revised.

Turbulent simulation of low di�usivity passive scalars (e.g. soot) requires that numerical di�usivity of
the transport scheme used be kept to a minimum to avoid contamination of transport characteristics. In
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Figure 1: Normalized dissipation spectra showing the e�ect of numerical di�usion (Reλ ≈ 8, Sc= 256).
�Spectral� data taken from [1].

addition, boundedness of scalar quantities, for example species mass fraction between 0 and 1, is essential to
keep the simulations physically relevant. Unfortunately, these two properties often show mutually con�icting
behavior. Ensuring the boundedness of Eulerian transport schemes (e.g. WENO [2], BQUICK [3]) introduces
signi�cant numerical di�usion. Nonetheless, �nite-volume Eulerian schemes have traditionally been preferred
over Semi-Lagrangian (SL) approaches with lower di�usion, since they ensure conservation [4]. Numerical
di�usion can be mitigated by using higher-order accurate methods, however the corresponding increase in
computational cost is often signi�cant.

We present an analysis of the various e�ects that both numerical di�usion, and non-conservative transport
have on high Schmidt number turbulent mixing. The numerical schemes used are discussed in Section 2,
followed by an analysis of their performance in laminar (Section 3.1), and turbulent (Section 3.2) �ows.
The focus is on the ability of the schemes to predict correctly the expected scalar spectra (energy, and
dissipation) (Section 3.2.1, Section 3.2.2) and small-scale turbulent statistics (Section 3.2.3). The results
are used to propose new grid-resolution guidelines that account for sensitivity to numerical di�usivity of the
scheme used.

2 Numerical Methods

Traditionally, spectral schemes have been preferred over �nite-volume (FV) and �nite-di�erence (FD) schemes
for studying characteristics of turbulent �ow [5, 6, 7]. The reason for this is the exponential drop in dis-
cretization error associated with spectral schemes [8]. However there are certain limitations to using these
schemes. The occurence of Gibb's phenomenon near sharp jumps in the scalar �eld, which are a common
occurence in high Schmidt number transport, makes it impossible to maintain scalar boundedness. Addition-
ally, the use of Fourier transforms makes it necessary to work with periodic boundary conditions. This last
point renders spectral schemes unsuitable for studying many engineering applications, such as simulations
of �ow inside a combustion chamber, since these require working with complex geometries and boundary
conditions. FD and FV schemes are an attractive alternative to spectral schemes in that they do not su�er
from these two limitations. These schemes, however, present other issues, such as a comparatively lower
order of accuracy, and the occurence Runge's phenomenon when using high order polynomial interpolation
[9]. Runge's phenomenon can be largely minimized by using Hermite interpolation [10] since the derivatives
are now constrained at node points. The use of Hermite interpolation in the current work is also shown to
lead to much better accuracy compared to using Lagrange polynomials [10].
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2.1 Desirable Properties of Transport Schemes

Some of the most important properties of transport schemes are their ability to maintain 1) high accuracy,
2) conservation, 3) minimal numerical di�usion, and 4) monotonicity (or boundedness). It is often the case
that certain properties, like boundedness and accuracy, are sacri�ced in favor of other properties. This
can cause severe problems in situations where non-monotonic behavior leads to unphysical situations. For
instance, allowing temperature values, or species mass fraction in reacting �ows to become negative can have
signi�cant detrimental e�ects on the solution of the partial di�erential equations. In other situations, such
as long-term weather and climate simulations, mass conservation can be the paramount issue [11]. Several
authors have noted that monotonicity is valuable in theses simulations as well [12], since allowing quantities
like water vapor content to become negative can lead to unphysical results.

2.2 Eulerian schemes

As mentioned earlier, Eulerian FV schemes are inherently mass conservative, which makes them the preferred
choice for a majority of numerical work conducted. These schemes, however, su�er from other shortcomings.
We conduct tests for two commonly used Eulerian transport schemes, namely QUICK [13] and BQUICK
[3], to analyze the e�ect of the associated numerical errors on turbulent scalar transport. Of these, only
BQUICK is monotonicity preserving. To maintain monotonicity, BQUICK employs a �ux limiting procedure
in the QUICK framework, whenever the calculated value exceeds the speci�ed upper and lower bounds.

2.3 Semi-Lagrangian (SL) schemes

Semi-Lagrangian schemes o�er an attractive alternative to Eulerian schemes, on account of reduced numerical
dispersion and dissipation errors. The basic idea behind the workings of SL schemes is discussed by Purser
and Leslie in their 1991 paper [14]. Each Eulerian grid point is �rst traced back to its corresponding
Lagrangian point at the previous time step. Then, an appropriate interpolation method is used to determine
the scalar content of this Lagrangian particle. The particle is advected back to the Eulerian grid point
according to the incompressible material transport equation (Eq. 1, with D = 0). Finally, the e�ects of
the di�usion term are accounted-for using a fractional-step method (Godunov splitting). Boundedness is
applied before the fractional step accounting for the source and sink terms, since the advection step alone
can produce non-monotonic behavior.

Dz

Dt
= D∇2z (1)

⇒ ∂z

∂t
+ u · ∇z = D∇2z (2)

In the current work, a second order Runge-Kutta (RK2) integrator was used for trace-back in the SL
schemes. A fourth order Runge-Kutta (RK4) integrator was seen to lead to only a marginal improvement in
accuracy. The RK2 integrator was thus preferred due to its comparatively lower computational cost. Two
di�erent interpolation methods were used for reconsturcting the scalar content of the traced-back Lagrangian
particle. The �rst method used a 4-point stencil to construct a cubic Lagrange polynomial (SL3). The
second method used a compact 2-point stencil for performing cubic Hermite interpolation (MonotonE-Cubic
Hermite interpolation: MECH). MECH requires derivative values of the scalar �eld at the grid nodes. A
second order central di�erence was thus used to re-calculate the required derivatives at every timestep.
Monotonicity is maintained in SL3 by switching to linear interpolation whenever the speci�ed bounds are
exceeded. MECH, on the other hand, uses derivative limiting as explained by Fritsch and Carlson [15], to
ensure monotonicity. There can be instances when the interpolated value exceeds the bounds even after
applying the derivative limiters. In such cases, the derivatives at both nodes are set to zero, which ensures
boundedness unconditionally.

The interpolation procedure in both SL3 and MECH is non-conservative. The bounding procedure can
introduce additional non-conservative e�ects. A loss in conservation can be modeled physically using source
terms, however unbounded species concentrations cannot. We therefore suggest that it is preferable to allow
a minimal error in mass conservation, rather than to allow unphysical errors. There have been several
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(a) QUICK (b) BQUICK (c) SL3 (d) MECH

Figure 2: Pure convection of a passive scalar (Gaussian bell-shaped distribution). Results shown after 10
rotations. Color-map for the QUICK scheme has been rescaled to show negative oscillations in black.

(a) QUICK (b) BQUICK (c) SL3 (d) MECH

Figure 3: Taylor-Green vortex simulation with sinusoidal initial distribution of the scalar.

e�orts in the past to make SL schemes conservative. However, these introduce certain anomalous e�ects,
such as failing to maintain the transport of a constant �eld (e.g., the scheme proposed by Lentine et.al.

[16]), or are so prohibitively expensive (remapping techniques [17]) that they are routinely used only for
2D simulations. Other attempts, such as those by Xiao et.al. [18] are both bounded and conservative, but
end up inadvertently introducing signi�cant numerical di�usion, or sacri�cing the order of accuracy of the
scheme.

3 Results

3.1 Laminar Flows

To study qualitatively the e�ect of the schemes on the transport characteristics of a passive scalar, we
�rst select two simple laminar cases that are representative of the small scale motion of turbulent eddies.
These simulations were run with zero molecular di�usivity, and all the noticeable di�usive e�ects are purely
numerical. The �rst case (Fig. 2) corresponds to pure convection of a Gaussian bell-shaped scalar distribution
along the 45-degree diagonal. The QUICK scheme is clearly unbounded, and the scalar attains negative
values in a relatively large region. Excessive di�usion is noticeable for BQUICK, and is caused by switches
to linear interpolation for maintaining boundedness. Dispersion errors are clearly discernible in the results
of the Eulerian schemes, and are caused by upwinding during reconstruction of the cell face �ux values.
Upwinding is required for keeping the Eulerian simulations stable (i.e., non-oscillatory). On the other hand,
the SL3 and MECH schemes, which use centered stencils, are seen to exhibit minimal numerical dissipation
and dispersion errors.

The second case (Fig. 3) consists of a Taylor-Green vortex, and is a simplistic representation of the
stretching and straining motion of a scalar �eld by turbulent eddies. The initial pro�le corresponds to a
sine wave in the x-direction. The QUICK scheme was seen to breach bounds at times, whereas BQUICK
still proved to be too di�usive. The SL3 scheme performs better in lowering numerical di�usion, though
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Figure 4: Energy spectra of decaying scalar �eld for Reλ = 30, Sc =∞

only marginally. We observe that the MECH scheme is superior to all other schemes in preserving the small
scales. Although making a scheme monotone should make it inherently more di�usive, we note that the
sub-cell shape-preserving nature of the Hermite interpolation makes MECH perform even better than the
non-monotone QUICK scheme.

3.2 Turbulent Simulations

To assess the e�ect of the discretization errors on turbulent scalar transport, we conduct simulations in
Homogeneous Isotropic Turbulence (H.I.T.) con�gurations. The simulations use a 3D periodic `box' of
length 2π, with an equal number of grid points in all three directions. The CFL (Courant-Friedrichs-Lewy)
number is maintained smaller than 1 to ensure stability of the Eulerian schemes. The turbulent velocity
�eld is forced spectrally by injecting energy in a low wavenumber shell [19]. The scalar �eld is maintained
statistically stationary by imposing a uniform mean scalar gradient [7]. The simulations use successively
�ner grid resolutions to ascertain the optimal resolution for scheme independence of the results. Donzis
et.al. [6] recently conducted a similar study on the e�ect of grid resolution on turbulent scalar statistics
using a pseudo-spectral solver. The work presented in this paper focuses on the e�ect of the numerical
scheme, as opposed to that of the grid resolution.

3.2.1 Turbulent Spectra (Sc=∞)

Energy and dissipation spectra of a scalar �eld can be used to gain insight into the e�ectiveness of the
numerical scheme in maintaining the expected turbulence behavior. To observe the e�ect that numerical
di�usion has on scalar spectra, we run simulations with zero molecular di�usivity. The initial scalar �eld
in obtained by performing a simulation with both velocity and scalar forced, until statistical stationarity is
achieved. As a second step, the mean gradient forcing is removed, molecular di�usivity set to zero (Sc =∞),
and the scalar �eld is allowed to decay. The resulting spectra are shown in Fig. 4. It is clear that the loss
in scalar variance (zv - integral area under the spectrum curve) is much higher for all the schemes when
compared to the loss in MECH.

Fig. 5 shows a closer comparison between the spectra obtained using QUICK and MECH for several
successive snapshots. The spectrum for MECH becomes �atter at later times, which is expected as the
energy cascaded down to smaller scales is no longer dissipated by molecular di�usion. This leads to a pile up
of energy at the small scales (which is evidence of low numerical di�usivity), and a more even distribution
of energy among the wavenumbers. On the other hand, QUICK experiences signi�cant numerical di�usion
at larger wavenumbers, the e�ects of which a�ect the spectrum not only at the small scales, but also at
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(a) Decaying spectra for successive snapshots.
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(b) Spectra rescaled with scalar variance and averaged over
snapshots shown in (a).

Figure 5: Decaying scalar energy spectra for Reλ = 30, Sc =∞

intermediate length scales (in the vicinity of κ = 10). This observation is crucial since it underlines the
detrimental impact that numerical di�usion can have on the scalar transport characteristics.

3.2.2 Finite Schmidt Number simulations

Having established the detrimental role of numerical di�usion for zero di�usivity scalars, we now move on
to statistically stationary H.I.T. simulations with �nite Schmidt numbers. The intent is to investigate the
e�ects of numerical di�usion on the scalar spectrum for �nite Schmidt numbers, and ensure that these e�ects
are not just limited to the Sc =∞ case. We compare spectra obtained using di�erent scalar schemes to that
proposed by Kraichnan [20] for high Schmidt number scalars.

E(κ) = q〈χ〉(ν/〈ε〉)1/2κ−1(1 + κηB
√

6q) exp(−κηB
√

6q) (3)

The Kraichnan form (K-Form) introduces a correction to the spectrum form initially proposed by Batchelor
[21], by accounting for intermittent �uctuations in the strain-rate. This has been shown to give better
agreement with available experimental and simulation data in the viscous-di�usive subrange. The value for
the parameter q = 2

√
5 was derived using theoretical considerations by Qian [22]. Fig. 6 shows comparisons

of the spectra at Reλ = 30 (where λ is the Taylor microscale) and Sc = 4 for the various schemes. The
comparisons are made at three grid resolutions corresponding to κmaxηB = 1.5 (N= 1283), κmaxηB = 3
(N= 2563), and κmaxηB = 6 (N= 5123). The value of 〈χ〉 used in Eq. 3 was obtained from the κmaxηB = 6
simulation, since the highest grid resolution corresponds to best accuracy. The value obtained at this
resolution was approximately the same (〈χ′〉 = 135) for all the schemes tested.

The e�ect of numerical di�usion on the spectra is clearly discernible in Figs. 6(a) and 6(b) (κmaxηB = 1.5)
for κη ≥ 0.4. The MECH scheme produces a spectrum that is much closer to the expected Kraichnan form,
compared to the rest of the schemes. An increase in grid resolution to κmaxηB = 3 (Fig. 6(c), 6(d)) leads to
a much better collapse of the spectra of all the schemes tested, and a good agreement with the Kraichnan
form in the viscous-di�usive subrange. A further increase from κmaxηB = 3 to κmaxηB = 6, however, leads
to only a marginal improvement. Using these observations, it would seem that a grid resolution of at least
κmaxηB = 3 is required for the numerical schemes to become independent of discretization errors.

3.2.3 Turbulent Statistics

In addition to recovering the correct spectrum, numerical schemes must also produce accurate turbulent
statistics. Models used in reacting turbulent �ow often rely heavily on these statistics, espescially at the
smallest resolved scales. For instance, the scalar dissipation rate (χ) is one of the main parameters that
is widely used in non-premixed combustion models. It is obtained using the equation for scalar variance
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Figure 6: Energy and Dissipation spectra for Reλ = 30, Sc=4 (η = 0.0457, 〈ε〉 = 1.83, 〈χ′〉 = 135) ; [(a), (b)
- κmaxηB = 1.5, N = 1283] ; [(c), (d) - κmaxηB = 3, N = 2563] ; [(e), (f) - κmaxηB = 6, N = 5123].
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Figure 7: PDF of χ′, and plot of χ′
3
f(χ′) for Reλ = 30, Sc = 4 ; [(a), (b) - κmaxηB = 1.5, N = 1283] ; [(c),

(d) - κmaxηB = 3, N = 2563].

transport, and is de�ned as follows:

χ = 2D|∇z|2 (4)

In the present work, the scalar dissipation rate serves as an indicator of the resolution of the simulations.
Since the scalar dissipation rate is directly dependent on the scalar gradients, insu�cient resolution will
lead to under-prediction, as coarser grids are unable to resolve sharp gradients in the scalar �eld. Another
important turbulent feature that can be discerned using the dissipation rate is intermittency, which is de�ned
as strong, localized, momentary spikes that occur in the scalar and velocity �elds. Scalars are known to be
more intermittent than the velocity [6], which causes the discretization errors to have an even greater impact
on the scalar than on the velocity.

Fig. 7 shows the PDFs of the normalized scalar dissipation rate (χ′ = χ/〈χ〉, where 〈χ〉 is the mean
value), and plots of the integrand for its third order moment (χ′3f(χ′)). The integrand places a stronger
emphasis on the di�erences between the schemes tested. The `jaggedness' at larger values of χ′ is evidence
of statistical variability and intermittency. We note that the integrads are largely identical for χ′ < 10, but
diverge considerably at higher values (Fig. 7(b)). Grid re�nement to κmaxηB = 3 (Fig. 7(d)) leads to better
agreement, which is the result of a decrease in discretization error of the numerical schemes. We also see the
integrand beginning to convergence to zero at large χ′ values, for κmaxηB = 3.

The extent of PDF data available at large values of χ′ is indicative of a particular scheme's ability to
capture the sharp localized gradients associated with intermittency. We note the expected increase in PDF
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Table 1: Data corresponding to PDFs shown in Fig. 7

κmaxηB = 1.5 κmaxηB = 3
Scheme max(χ′) 〈χ′2〉 〈χ′3〉 max(χ′) 〈χ′2〉 〈χ′3〉
QUICK 47.2 5.77 84.7 60.3 6.19 97.3
BQUICK 47.2 5.77 84.7 60.3 6.19 97.3

SL3 48.1 5.97 90.5 64.9 6.32 103.2
MECH 53.9 6.32 105.7 70.9 6.53 112.9
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Figure 8: Plots of χ′
2
f(χ′) for (a)κmaxηB = 1.5 and (b)κmaxηB = 3 (Reλ = 30, Sc = 4).

data available, upon increasing the grid resolution from κmaxη = 1.5 to κmaxη = 3 (Fig. 7). Subsequent grid
re�nements will lead to a further increase in the intermittency registered, however the frequency of occurence
of these events (i.e., the associated PDF value) becomes too small to be of practical use. Table 1 lists some
relevant statistical data which give us an idea about the performance of each of the schemes. Larger values
of the moments correspond to better gradient resolution. We note that MECH is better capable of capturing
the intermittency of the scalar �eld than the other schemes. We also observe a greater variation in the
third order moment (〈χ′3〉), with respect to both the scheme and the resolution used, than in the second
order moment (〈χ′2〉). This is consistent with previous work by Donzis et. al. [6], who showed that lower
grid resolution has a greater impact on higher order statistics, even when using spectral schemes. They also
report an increase in grid resolution sensitivity for successively higher order moments, and that the `standard'
grid resolution of κmaxη = 1.5 tends to under-predict higher order statistics such as skewness and kurtosis.
However, we suggest that κmaxη = 1.5 is su�cient for acceptable accuracy of the �rst and second order
moments (i.e., the mean, and the variance of χ′). We use Fig. 8 to con�rm this, where the integrand of the
second order moment seems to collapse independently of the numerical scheme used, even for κmaxη = 1.5.
Increasing grid resolution (Fig. 8(b)) leads to only a marginal improvement in the integrand curve and the
variance (Table 1). Thus, a resolution of κmaxη = 1.5 might be su�cient for accuracy in most engineering
applications, espescially using the MECH scheme.

4 Conclusion

Numerical di�usion introduces appreciable error in simulation of high Schmidt number scalar transport.
Using results from simulation of Homogeneous Isotropic Turbulence, we recommend a new grid resolution
criterion that accounts for these errors. For standard scalar transport schemes, a resolution of up to κmaxηB =
3 might be necessary to avoid discretization errors. However, it is not always feasible to eliminate these
errors by increasing grid resolution, due to the substantial rise in computational cost. A viable alternative to
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incurring the high computational cost associated with this grid resolution criterion is to use a scheme with
characteristics similar to MECH, at the `standard' grid resolution of κmaxηB = 1.5. This allows resources
to be allocated solely to resolving the physics, and any limitations imposed by the numerical scheme are
avoided. We have shown that even though Semi-Lagrangian schemes are non-conservative, the high accuracy
and low numerical di�usion associated with them manage to produce small-scale statistics superior to those
produced by the non-monotone Eulerian scheme tested. Except for the loss of conservation, SL schemes
do not seem to be detrimental to turbulent transport in any way, and are in fact better than comparable
Eulerian schemes in retaining overall transport characteristics.
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