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Abstract: While various models for slip at a contact line between two fluids and a wall have been
proposed, most require that the slip length of the model be sufficiently resolved in order to achieve
convergence. This limitation makes the problems expensive computationally. In this study, a new
model is proposed to capture the microscopic surface forces in macroscopic filtered Navier Stokes
equations. An additional volumetric source term is added to the Navier Stokes equation while
a simple model of shear stress is used for the viscous dissipation at the contact line. The terms
are coupled to the levelset method for tracking the interface via the fluid dynamics code NGA.
The final results show good comparison to theoretical work by Cox [1], however there is a grid
dependence of the slip length in the current implementation.
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1 Introduction
Contact line motion is an element in many industrial and natural processes over a large range of length
scales. At large length scales and high Reynolds (Re) numbers, droplet shearing is important to prevent
icing of wind turbine blades and to enhance heat transfer in boiling processes. At smaller scales, capillary
driven flow dominates the fluid behavior for coating technology, ink jet printing, enhanced oil recovery, bio-
logical processes, and polymer electrolyte fuel cells. In all these cases, the contact line motion can be used to
optimize performance by maximizing or inhibiting the spread and transport of liquids. This paper focuses
on developing a computational framework for capillary dominated flows, specifically at low Reynolds (Re)
and capillary numbers (Ca) for two reasons: 1) there exist numerous theoretical studies for such a model
to be compared against in this regime and 2) once the fundamental physics of the capillary forces at the
contact line have been incorporated in the numerical method, it can be potentially used for higher Re where
comparatively few models exist.

The moving contact line problem arises from a singularity in the shear stress at the contact line where the
two fluids meet the solid [2, 3]. At steady state for flow in a channel, the interface between the two liquids
must move with uniform velocity U. However, the classic no slip condition implies the fluid particles must
have no velocity next to the wall. This discontinuity in velocity is the origin of the singular shear stress.
The approaches to resolve this singularity fall into two broad categories [4]: a hydrodynamic, macroscale
picture emphasizing viscous dissipation and a molecular-kinetic, microscale view focusing on the attachment
and deattachment of fluid particles at the contact line. For the purposes of non-molecular simulations, the
length scale of the second viewpoint is not resolved, so that viewpoint will not be discussed here. In order
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to relieve the stress singularity, the most common method is to impose some form of a slip condition in the
vicinity of the contact line. One example is the Navier slip condition

Uslip = s
∂U

∂n
(1)

which states that the slip velocity Uslip is equal to the velocity gradient perpendicular to the wall multiplied
by the slip length s where n is the direction perpendicular to the wall [5, 6, 7]. This condition has been
shown to be accurate for low shear rates using molecular dynamics simulations [8, 9].

However, this condition cannot be used alone because it provides no means for a droplet at rest to
achieve its static equilibrium contact angle θs. Indeed, any circular arc (constant curvature) is an equilibrium
solution. As such, slip conditions must be supplemented with a contact line law which connects the velocity
at the contact line to a given angle [10]. The simplest form is to force the contact angle to a static value,
θs. However, this choice does not allow the existence of the dynamic contact angle seen experimentally
[11]. Dynamic contact angle laws have been formulated such as the asymptotic analysis of Cox [1] for the
macroscopic contact angle θD with small Ca and Re. In that study, only smooth, chemically homogeneous
surfaces were considered (i.e. no contact angle hysteresis [3]) and the Ca was assumed to be very small in
both fluids such that perturbation expansions could be used. The fluid region is broken into three distinct
length scales for the analysis: one at slip length (microscopic) scale s, another at the macroscopic length
scale R, and a third at a mesoscopic length scale in between for matching. The no-slip condition is applied
in the larger two regions all along the wall, while in the microscopic region a composite slip condition is
applied with no-slip far away from the line and slip immediately at the line. Due to the matching procedure,
the exact form of the slip law is not relevant, only the length scale s is. In the smallest length scale region,
it is assumed that there is a fixed angle at the wall regardless of the flow. Since it is fixed, this angle at the
wall must be the static contact angle θs. The final result is an implicit expression for the dynamic contact
angle θD as a function of the Ca, the ratio of the microscopic and macroscopic length scales ε = s

R , and the
ratio of the fluid viscosities λ.

g(θD) = g(θs) + Caln(ε−1) (2)

g(θ) =

∫ θ

0

1

f(θ)
∂θ (3)

f(θ) =
2sinθ((λ2(θ2 − sin2θ) + 2λ(θ(π − θ) + sin2θ) + ((π − θ)2 − sin2θ))

λ(θ2 − sin2θ)((π − θ) + sinθcosθ) + ((π − θ)2 − sin2θ)(θ − sinθcosθ)
(4)

Several numerical experiments have confirmed these results [8, 12]. A version was later developed for
larger Reynolds numbers (Re > 1); this form however was derived for vacuum as the displaced fluid and thus
is only applicable if λ << 1. In some studies, the angle is calculated from Eq. (2) and then the boundary is
forced to this angle [13, 14].

These contact line conditions for slip and angles need to be coupled with an appropriate numerical
method for simulating multiphase flows. Three commonly used methods are the volume of fluid (VOF)
method [15, 16], the front tracking method [17], and the levelset method [18]. In the VOF approach, a scalar
is assigned to each grid cell that represents the liquid volume fraction in the cell. Using conservative transport
methods, VOF methods discretely conserve mass in the system. However, reconstructing the interface be-
tween the fluid, and thereby computing the interface curvature and normals, is non-trivial. Since the flows in
the regime examined are dominated by capillary forces, even small errors in curvature will incorrectly deform
the interface. In the front tracking approach, an unstructured mesh of points are placed on the interface and
they are transported in a Lagrangian fashion to determine the location of the interface. These methods have
difficulty handling topological changes such as merging profiles and require frequent mesh rearrangements
as tracking points get too close or too far apart from one another. Level set methods represent the interface
as an isocontour of a smooth function φ. The scalar values of φ are transported using Eulerian transport
schemes. This approach is advantageous for low Ca problems because it is simple to calculate accurately
curvature and naturally handles topology changes. The level set approach, however, does not have any
discrete mass conservation and hence is particularly susceptible to mass loss/addition. Several modifications
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have been proposed to alleviate this problem: particle level set methods [19], combined volume of fluid and
level set methods [20], hyperbolic tangent level set functions [21], and constrained reinitialization [22].

In this study, a level set method is chosen to track the interface of the fluids due to its simple, accurate
calculations of curvature and its natural handling of topological changes for future studies of drop detachment
and reattachment. In section 2, the governing equations and numerical implementation is discussed. These
equations are then applied to the case of Poiseuille flow with the Navier slip condition and fixed contact
angle θs in section 3. These simulations show that unless the slip length is completely resolved the interface
shape does not appear to converge, agreeing with the work of Afkhami et. al. [14]. In section 4, volumetric
source terms are examined for the missing physics in filtered simulations and a simple geometry-based model
is proposed that provides an additional pressure jump at the contact line. In section 5, the model is used to
generate θD as a function of Ca for the model. The results of the proposed numerical model are compared
to the theoretical work of Cox [1].

2 Computational Framework

2.1 Governing Equations
The two fluids are assumed to be immiscible, incompressible, Newtonian fluids. The equations of motion
are:

∂ρu

∂t
+∇ · (ρu⊗ u) = ∇ · (−pI + 2µD) + b (5)

∇ · u = 0

where u is the velocity vector, b are the volumetric source terms, ρ is the density of the fluid phase, µ is the
kinematic viscosity, I is the unit tensor, and D is the symmetric deformation tensor defined by

D =
1

2
(∇u+∇uT )

For the small length scales considered, the Bond number is very small, so any body forces due to gravity
may be neglected. In the absence of the additional body forces, b = 0. In the levelset framework, the
interface between fluids 1 and 2 is represented by the isocontour φ = 0 [18]. At the interface, both normal
velocities and tangential velocities are continuous

[u] = 0 (6)

where the square brackets represent a jump between fluid 1 and 2. Let t1, t2, and n be the two tangential
vectors and normal vector to the interface respectively. The tangential stress at the interface must be
continuous

[t1 · (−pI + 2µD) · n] = [t2 · (−pI + 2µD) · n] = 0 (7)

and the jump in normal stress is given by Laplace’s formula [23]

[p]− [2µn̂ · ∇u · n̂] = σκ (8)

where σ is the coefficient of surface tension and κ is the curvature of the interface. The levelset variable φ
is advected using the scalar advection equation

∂φ

∂t
+ u · ∇φ = 0 (9)

Let fluid 1 be when φ < 0 and fluid 2 be when φ > 0. The curvature can then be calculated from the
normals of φ

n = − ∇φ
|∇φ|

, κ(φ) = ∇ ·
(
∇φ
|∇φ|

)
(10)
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and the density of the fluid is treated in a sharp manner based on the Heaviside function H

ρ = ρ2H (φ) + ρ1 (1 −H (φ)) (11)

H (φ) =

{
1, φ ≥ 0
0, φ < 0

(12)

2.2 Numerical Methods
All calculations were carried out in the NGA framework; for a detailed description of the methods see Des-
jardins et. al. [24, 25]. The governing equations are discretized using centered finite differences and the
field variables are stored on a staggered mesh. The single phase incompressible flow solver uses an iterative
projection method to calculate the velocity [26] and an algebraic multigrid (AMG) solver for the pressure
poisson equation. The level set function φ is transported and held constant during each solve of the veloc-
ity field. The spectrally refined interface (SRI) scheme [25] and the modified Hamilton-Jacobi equation of
Hartmann et. al. [22] are used for the transport of the level set function and its reinitialization respectively.
The curvature of the level set function φ is calculated using a second order least square fit polynomial with
a stencil of three data points in each direction. The jump term in pressure (16) is applied as a source term
of velocity using the ghost fluid method (GFM) [25, 27].

While the density is treated as a sharp discontinuity, viscosity is taken as a harmonic combination of µ1

and µ2

µ =
µ1µ2

µ1θ + µ2(1− θ)
(13)

based off a height fraction θ to ensure continuity of the tangential shear stress [28, 29]. For a staggered grid,
the height fraction at cell faces is

θi+1/2,j =


1 φi+1,j ≥ 0 and φi,j ≥ 0
0 φi+1,j ≤ 0 and φi,j ≤ 0
φ+
i+1,j+φ

+
i,j

|φi+1,j |+|φi,j | otherwise
(14)

and for cell vertices

θi+1/2,j+1/2 =


1 φi+1,j ≥ 0, φi,j ≥ 0, φi,j+1 ≥ 0, and φi+1,j+1 ≥ 0
0 φi+1,j < 0, φi,j < 0, φi,j+1 < 0, and φi+1,j+1 < 0

φ+
i+1,j+φ

+
i,j+φ

+
i,j+1+φ+

i+1,j+1

|φi+1,j |+|φi,j |+|φi,j+1|+|φi+1,j+1| otherwise
(15)

The height fraction can be considered as the amount of fluid 2 that would be present in a VOF framework.
The "+" superscript is a shorthand notation for φ+ = max(φ, 0). This formulation differs from that of Kang
et. al. [28] in that the viscous jump terms are not included; according to Kang excluding these terms would
only result in a small amount of numerical smearing. Since the viscosity field is sharp but continuous using
Eq. (13), Equation (8) is reduced to

[p] = σκ (16)

This jump condition is then applied in the ghost fluid method.
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Figure 1: (a) Channel geometry for simulations with the Navier slip boundary condition at the wall.
(b) Solution interface profiles at steady state for several different grid resolutions.

3 Fully-Resolved Poiseuille Flow with a Navier Slip Condition
The simplest case of multiphase flow in a two-dimensional channel is examined with one fluid displacing
another. The test geometry is shown in Fig. 1(a). Half of the channel is created by applying a symmetry
boundary condition on the top of the domain and a Navier slip condition at the wall. The inlet velocity is a
Poiseville type velocity profile and the outlet has an outflow boundary condition. As long as the interface is
far from the outlet, the outflow boundary condition has a negligible effect on the flow. The numerical grid
is composed of square cells and only this type of cell will be examined here.

From dimensional analysis, the relevant dimensionless groups are λ, ε, the ratio of densities η, Re, and
Ca. The Reynolds number based on the radius of the channel and the properties of the more viscous fluid
is chosen as 1: this choice ensures that the inertial effects are small in the flow. Furthermore, since the
Re is small, the solution is approximately in the Stokes flow regime. Since Cox’s analysis used the Stokes
equation for the macroscopic portion of the solution [1] and the ultimate goal of this paper is a compari-
son to Cox’s theory, the parameter can be excluded from the analysis. For numerical stability and ease of
simulation, η = 1 in all the simulations. R is set to a non-dimesional value of 10. As mentioned previously,
a slip condition and contact line angle condition must supplement the multiphase fluid flow solver; the slip
condition chosen at the wall is the Navier slip condition Eq. (1) and the contact line angle is fixed at θs = 600.

All of the simulation profiles were run sufficiently long to achieve steady state and a constant velocity U
in the x-direction along the interface profile. Several profiles were run at different resolutions for Ca = 0.1
and with a slip length s = 0.2 (Fig. 1(b)). The profiles appear to have a consistent shape so long as the
grid resolution ∆x is smaller than s. This agrees with the results of Afkhami et. al. [14] where the authors
saw a similar convergence as long as ∆x < s. As noted by those authors, such a resolved simulation is often
prohibitively computationally expensive.
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Figure 2: Individual interface cell over which the volumetric equations are examined.

4 Filtered Navier-Stokes Equations
Since most slip lengths are much smaller than the macroscopic length scales of a system, it is often impos-
sible to perform fully resolved numerical simulations. In order to alleviate this problem, a new numerical
framework is proposed. The original equations are filtered and two unclosed terms are identified which need
to be modeled. These terms from the additional forces can be added b in Eq. (5) and applied only at cells
adjacent to the contact line.

4.1 Derivation of the Filtered Equations
In this section, the filtered Navier-Stokes equations are derived by considering a box filter of size ∆x, ∆y.
In other words, the equations are averaged over a given volume. For simplicity, only the two-dimensional
case is explored here although an extension to three-dimensions is straightforward.

Assumption 1: Assume ρ and µ are constant on each side of the interface. This assumption is perfectly
valid for incompressible fluids.

Let the fluid on the left side of the interface be fluid 1 and the right fluid 2 (Fig. 2). The sides of the box
filter will be denoted by subscripts (l,r,t,b). Each term needs to be integrated over the volume. The volume
integration is defined as

Ψ =
1

V

∫∫∫
V

ΨdV =
1

V

(∫∫∫
V1

ΨdV +

∫∫∫
V2

ΨdV

)
where Ψ represents any quantity. Integrating and applying the divergence theorem to Eq. (5),

∂ρu

∂t
+

1

V

∮
S

(ρu⊗ u) · dS = − 1

V

∮
S

PdS +
1

V

∮
S

2µD · dS

At this point, a new terminology called the LHS is introduced into the equation and begins with the
current left hand side terms. This quantity will contain all the terms that are modeled correctly in the
macroscopic sense and as such do not require closure. Any additional terms that need to be added to a
macroscale numerical scheme or modified terms will be kept on the right. In the new notation,

LHS = − 1

V

∮
S

PdS +
1

V

∮
S

2µD · dS
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Breaking down the integral into x and y components,

LHSx =
1

∆x∆y

∫ ∆y

0

(Pl − Pr)dy+

1

∆x∆y

∫ ∆y

0

(
2µ
∂u

∂x r
− 2µ

∂u

∂x l

)
dy+

1

∆x∆y

∫ ∆x

0

[
µ(
∂v

∂x
+
∂u

∂y
)t − µ(

∂v

∂x
+
∂u

∂y
)b

]
dx

(17)

LHSy =
1

∆x∆y

∫ ∆x

0

(Pb − Pt)dx+

1

∆x∆y

∫ ∆x

0

(
2µ
∂v

∂y t
− 2µ

∂v

∂y b

)
dx+

1

∆x∆y

∫ ∆y

0

[
µ(
∂v

∂x
+
∂u

∂y
)r − µ(

∂v

∂x
+
∂u

∂y
)l

]
dy

(18)

Only the x-direction equation (17) is analyzed. The y-direction equation can be shown to include no
unclosed terms and thus is already correct in the macroscopic sense. Applying the directional averages

ax =
1

∆x

∫ ∆x

0

adx

ay =
1

∆y

∫ ∆y

0

ady

to equation Eq. (17)

LHSx =
1

∆x
(Pl

y − Pr
y
)︸ ︷︷ ︸

A

+
2

∆x
(µ
∂u

∂x
)r

y

− 2

∆x
(µ
∂u

∂x
)l

y

︸ ︷︷ ︸
B

+
1

∆y
(µ
∂v

∂x
)t

x

+
1

∆y
(µ
∂u

∂y
)t

x

︸ ︷︷ ︸
C

− 1

∆y
(µ
∂v

∂x
)b

x

− 1

∆y
(µ
∂u

∂y
)b

x

︸ ︷︷ ︸
D

(19)

Assumption 2: The averaging volume is much bigger than the slip length, s << ∆x,∆y.

Velocity terms at top, left, and right of the cell (Fig. 2) are therefore outside of the microscopic region
and have no need to be modeled. Therefore, Terms B and C of Eq. (19) can therefore be added to LHS.
Terms A and D need to be modeled to account for the microscale interactions at the contact line. Since the
wall is impenetrable the value of v is everywhere zero so ∂v

∂x = 0. Equation (19) reduces to

LHSx =
1

∆x
(Pl

y − Pr
y
)︸ ︷︷ ︸

A

− 1

∆y
(µ
∂u

∂y
)b

x

︸ ︷︷ ︸
D

(20)
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Term A represents the jump term in Laplace’s equation due to the presence of the surface, and Term D
represents the effective friction law at the wall to account for the enhanced viscous dissipation.

Assumption 3: ∇P y is the same on the left and right hand faces of the interface. This assumption is
inherent in the GFM.

Using the GFM and this first order approximation for the gradient of P
y
, the pressure difference can be

written as
Pl
y − Pr

y
= −∇P y∆x+ [P

y
]

where [a] signifies a jump in the variable a across the interface between the fluids. Applying the Laplace
equation (16) for the jump in pressure,

Pl
y − Pr

y
= −∇P y∆x+ σ

1

∆y

∫ ∆y

0

κ(y)dy

The averaged curvature can be written as the sum of the curvature determined by the filtered levelset field
(φ) and an unresolved, sub-filter, deviation term (κunr),

κ =
1

∆y

∫ ∆y

0

κ(y)dy = κ(φ) + κunr

Pl
y − Pr

y
= −∇P y∆x+ σ(κ(φ) + κunr) (21)

κunr accounts for the interface curvature "lost" during the filtering operation and represents a restoration
pressure to the thermodynamic equilibrium contact angle. Applying Eq. (21) to Eq. (20),

LHSx =
1

∆x

(
−∇P y∆x+ σκ(φ)

)
︸ ︷︷ ︸

E

+
1

∆x
σκunr −

1

∆y
(µ
∂u

∂y
)b

x

Since Term E only involves macroscale quantities, it can now be moved over into LHSx. This leaves

LHSx =
1

∆x
σκunr︸ ︷︷ ︸
F

− 1

∆y
(µ
∂u

∂y
)b

x

︸ ︷︷ ︸
D

(22)

Two unclosed terms remain and are modeled in the following sections.

4.2 Unresolved Curvature - Term F
In the asymptotic analysis of Cox [1], there was always a microscopic fixed contact angle θs in the smallest
length scale region. Using this idea as motivation,

Assumption 4:The contact angle at the wall is always θs and the transition to this angle happens over a
distance ∆y from the wall (Fig. 3(a)).

Assuming a constant curvature transition (i.e. the smoothest possible case) between the angle θ at the
cell center and the angle θs at the wall (Fig. 3(b)), the pressure jump from geometry across the interface
takes the form

σκunr(y) = σ(
cos(θ)− cos(θs)

∆y
) (23)

for any values of θ, θs.
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(a) (b)

Figure 3: (a)Diagram of computational grid with angle θ at the cell centers and θs at the wall in the
unresolved region of the domain. (b) Subgrid smooth transition between the angles θ and θs over a length
scale L.

A similar result can be derived by considering the unbalanced Young’s force [30] spread over the cell.
The model can be further expanded to include pinning forces by using the hysteresis contact angles θA, θR
instead of θs [31] or limiter on the minimum magnitude of σκunr .

4.3 Shear Model - Term D
Assumption 5: To approximate the shear stress at the wall, an appropriate slip condition needs to be
considered at the contact line. In this case, the Navier slip condition

∂u

∂y
=
u

s

was assumed to be the boundary condition at the wall in the vicinity of the contact line only.

While this assumption may seem to be restrictive, previous studies have implied that all slip conditions
appear the same macroscopically with differences appearing in the choice of fitted constants for the model
[1, 12].

Let u∗ be the velocity at the contact line. Far away from the contact line (xs >> 1), the velocity at the
wall is expected to achieve a value u∞which is independent of the behavior at the contact line. A general
form of the velocity along the wall can then be expressed as

u
(x
s

)
= u∞ + (u∗ − u∞)f

(x
s

)
where f(xs ) is a function with the bounds

f(0) = 1, f(∞) = 0

Assumption 6: The flow geometry at the contact line is symmetric enough that a single f
(
x
s

)
can be

used for both sides of the flow.

Applying the Navier Slip condition and a height fraction θ [5, 32] to the approximate the split between
fluids 1 and 2, Term D becomes
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(µ
∂u

∂y
)b

x

=
u∞
s

(µ1θ + µ2(1− θ)) +
u∗ − u∞
s∆x

(
µ1

∫ θx
s

0

f(t)dt + µ2

∫ (1−θ)x
s

0

f(t)dt

)
This equation implies that a suitable choice for the viscosity at the wall µ∗ should be given by the linear
average

µ∗ = µ1θ + µ2(1− θ)

This form of a "smeared" viscosity is different from the node-based harmonic viscosity expression used ev-
erywhere else in the domain Eq. (13). However, the previous expression by Sussman [29] did not consider
a node located on a wall in the contact line region. This condition supplements the existing mixture rule for µ.

Without a specific form of the function f(t), no additional evaluation of Term D can be accomplished.
In the current work, a very simple model is used for term D, i.e. that the mean of the shear is equal to the
shear of the mean. While this choice is may not be perfect, it provides a starting point for improvement.

Assumption 7: Term D can be expressed as

(µ
∂u

∂y
)b

x

= µ∗(
∂u

∂y
)s (24)

where (∂u∂y )s is the value of shear rate provided by the macroscale simulation and hence is fully closed.

4.4 Summary
The filtered Navier-Stokes equations at the wall are identical to the original Navier-Stokes equations with
the exception of the unresolved curvature term Term F. This term can be treated as a body force applied at
the contact line. This value of b in Eq. (5) can be expressed as the vector for horizontal walls

b =

[
σ cos(θ)−cos(θs)∆x∆y δb
0

]

where
δb =

{
1 interface cell on wall
0 otherwise

5 Results
The Poiseuille flow simulation of section 3 is run again, however this time with a no slip condition at the
wall (Fig. 4). In these iterations, Ca was varied as well to generate curves that can be compared to the
analytical expressions of Cox [1].

5.1 Dynamic Contact Angle Calculation
In order to compare dynamic contact angles θD, a procedure must be established to calculate the angle from
the interface shape. Since both We and Ca are small, the surface tension is the dominant effect and will
cause the interface to be almost a circular arc. In most experimental studies, it is extremely difficult to
image accurately the angle at the contact line. Instead, the circular nature of the interface is considered and
fitted with an arc [11]. Then the dynamic contact angle θD can is calculated using

cos(θD) =
R

Rc
(25)

where Rc is the radius of the fitted arc and R is the distance from the wall to the arc’s center. Following this
example, the interface curve (φ = 0) is extracted from the simulation results and an optimized least square
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Figure 4: Channel geometry for simulations of dynamic contact angle with the no slip condition applied
along the wall.
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Figure 5: (a) Fitted circular arc to the interface for small deformation. (b) Fitted circular arc to the interface
for large deformation. (c) Evolution of the contact angle from its static value θs = 60o to the final dynamic
value θD as a function of the dimensionless time τ .

fit is performed to a circular arc.

Generally, the fitted curves agree quite well for small deviations from the static contact angle (Fig. 5(a)).
There are three main sources of error for the contact angle calculation: error from the optimizer Eopt, error in
the profile oscillations in time Etime, and error if the interface profile is not a circular arc Efit. The optimizer
error Eopt is very small thanks to the constraints used in the optimizer. The evolution of the contact angle as
a function of dimensionless time τ for a simulation run is shown in Fig. 5(c). Once steady-state is achieved,
the predicted angle does fluctuate, but Etime ∼ 1o (Note: these errors are worse at small Ca). Therefore,
in most cases, these errors are small compared to the magnitude of the dynamic contact angle; so they will
be excluded in the graphs to follow. For cases where the interface undergoes large deformations, specifically
when it inverts itself, there appears to be a different curvature in the immediate vicinity of the wall that is
not captured by the circular arc (Fig. 5(b)). This change is a local phenomenon and is also not captured
by most measuring methods used in experiments; thus, its value will be excluded as well. However, it is
important to note that these results imply that care must be taken when comparing to other works.
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Figure 6: Dynamic contact angle θD as a function of the Ca from numerical simulations at three different
grid resolutions for λ = 1.

10
−4

10
−3

10
−2

10
−1

10
0

60

80

100

120

140

160

180

Ca

θ
D

 (
0
)

 

 

ε
grid

 = 1/32

ε
grid

 = 1/64

ε
grid

 = 1/128

ε
Cox

 = 4.0e−2

ε
Cox

 = 2.0e−2

ε
Cox

 = 1.0e−2

Figure 7: Dynamic contact angle θD as a function of the Ca from numerical simulations at three different
grid resolutions for λ = 10−3.

12



5.2 Simulated Dynamic Contact Angle
Simulations were performed for two different values of λ by varying Ca. Figure 6 shows the results for two
very similar fluids, λ = 1, (such as oil and water). Figure 7 shows the results for λ = 10−3 which is a closer
approximation to a viscous liquid displacing a gas (such as water and air).

The curves show good agreement individually with Cox’s theory. Since the slip length s does not appear
anywhere in the filtered equations, each curve corresponds to a different ε in Cox’s theory. However, the
individual ratios of εgrid = ∆x

R and the εCox of the fitted curve appear to remain constant with-in each
graph. This result suggests that with a different choice of the shear model it may be possible to get grid
independence. As expected, discrepancy appears between the angles predicted by the numerical simulations
and Cox’s theory when the Ca is large. This regime is where Cox’s theory starts to break down since it
assumed that Ca < 1.

6 Conclusion
A new numerical framework based on the filtered Navier-Stokes equations is proposed for the simulation of
the contact line problem. Two unclosed terms are identified, namely an unresolved curvature and the filtered
wall shear stress. Models have been proposed for both terms. The model for the unresolved curvature at the
wall κunr appears to capture most of the characteristics present in the model proposed by Cox [1]. However,
there is a grid dependence which appears to occur due to the lack of an explicit presence of the slip length in
the numerical implementation. This grid dependence certainly has some of its origins in the simple choice of
a shear model used for the viscous dissipation at the wall. In order to achieve grid independence and capture
the physics at the contact line completely, an alternative model for the shear force at the wall would need
to be proposed.

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE-1144469.
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