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Abstract: This communication presents a progress report on �ow computations of complex �uids
performed with a well established Immersed Boundary (IB) method, the LS-STAG method (Cheny
& Botella, Journal of Computational Physics 2010). The term �complex �uid� refers here to a
material which has a viscoelastic or non-Newtonian behaviour, or both. One of the distinguished
features of our IB method is to use level-set (LS) techniques in the cut-cells near the irregular
boundary, where accurate discretization is of paramount importance for stability and accuracy of
the computations. For this purpose, we have achieved an uni�ed framework for the computation
of the Navier-Stokes equations, viscoelastic constitutive law and non-Newtonian viscosity on the
LS-STAG mesh. The method is validated for the �ow of shear-thinning �uids between eccentric
rotating cylinders for which experimental and computational data are available.
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1 Introduction

This communication presents a progress report on an ongoing project aiming at the computation of complex
�uid �ows with a realistic constitutive law, which would take into account the pseudoplastic, viscoelastic
and thixotropic behavior of the materials. The �ow solver is based on the LS-STAG method, which is an
immersed boundary (IB) method that allows the computation of �ows in irregular or moving geometries on
�xed Cartesian meshes, reducing thus the bookkeeping of body-�tted methods. The discretization in the
cut-cells (i.e., the computational cells which are cut by the irregular boundary) is achieved by requiring that
the global conservation properties of the Navier-Stokes equations are satis�ed at the discrete level, resulting
in a stable and accurate method and, thanks to the level-set representation of the IB boundary, at low
computational costs. The LS-STAG method has been validated in [1, 2] for canonical Newtonian �ows in
both �xed and moving geometries.

In a recent work [3, 4] we have applied the LS-STAG method to viscoelastic �ows, for which accurate
discretization of the viscous stresses up to the cut-cells is of paramount importance for stability and accuracy.
For this purpose, the LS-STAG discretization of the Newtonian stresses has been extended to the transport
equation of the elastic stresses, such that the node-to-node oscillations of the stress variables are prevented
by using a velocity-pressure-stress (v − p− τ ) staggered arrangement. The discretization of the Oldroyd-B
constitutive equation is performed by constructing special quadratures which yield a globally conservative
discretization up to the cut-cells. Results on popular benchmarks for viscoelastic �ows shows that our IB
method demonstrates an accuracy and robustness comparable to body-�tted methods up to large levels of
elasticity.

The next step is to incorporate the pseudoplastic behavior in the numerical model. The crucial part for
taking into account shear-thinning e�ects is the computation of the shear rate in the vicinity of the immersed
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boundary. We have been able to achieve an accurate discretization that �ts elegantly in the framework of the
v−p−τ arrangement and the special quadratures developed previously for viscoelastic �ows. The accuracy
of the method, and especially the computation of the stresses and non-Newtonian viscosity at the IB where
the shear is maximal, will be assessed on the exact solution for the Couette �ow of power-law �uids. Finally,
we will compare the results of the LS-STAG code against the recent PIV measurements of the wide-gap
eccentric Taylor-Couette �ow of xanthan solutions at various concentrations performed in our group [5, 6].

2 The LS-STAG Method for complex �uid �ows in irregular ge-

ometries

Figure 1: Staggered arrangement of the variables near the trapezoidal cut-cell Ωi,j on the LS-STAG mesh.
The control volume Ωui,j for ui,j (in red) is constructed from 2 halves of the cut-cells Ωi,j and Ωi+1,j . Non-
homogeneous boundary conditions for velocity are discretized at the vertices (�) of the cut-cells.

2.1 Basics of the LS-STAG Method for a Newtonian �uid

We consider the Navier-Stokes equations for an incompressible �uid :

ρ

(
∂v

∂t
+∇ · (v ⊗ v)

)
= −∇p+∇ · τ, (1a)

∇ · v = 0, (1b)

where ρ is the �uid density, τ is the stress tensor, v = (u, v) is the velocity vector in 2D, p is the pressure. In
the case of a Newtonian �uid with constant dynamic viscosity η, the stress tensor is simply τ = ηD whereD =
1
2

(
∇v +∇vT

)
the rate-of-strain tensor, so that the the di�usive term in the RHS of momentum equation (1a)

is simply −∇p + η∇2v thanks to the divergence theorem and the incompressibility condition (1b). In
Refs. [1, 2] we have presented the LS-STAG method for incompressible Newtonian �uids. The LS-STAG
method is an immersed boundary (IB) method based on the well-known staggered grid �nite-volume method
for computing �ows in the irregular �uid domain Ωf = Ω \Ωib, where Ωib is a solid domain immersed in
the rectangular computational domain Ω (see Fig. 1). As shown in this �gure, the irregular IB boundary
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Γib = ∂Ωib is implicitly represented by its signed distance function φ(x, y) (or level-set function, see e.g. [7]
and references therein), which is discretized at the vertices of the rectangular cells. The level-set function
is an e�cient tool for computing all relevant geometry parameters of the cut-cells (such as their volume,
projected areas, boundary conditions, . . . ), reducing thus the bookkeeping associated to the handling of
complex geometries. Relevant geometry parameters for �uid cell Ωi,j are its grid-size ∆xi = xi − xi−1,
∆yj = yj − yj−1, its volume Vi,j(constructed in Ref. [2] from the values of φi,j) and the �cell-face fraction
ratio" θui,j ∈ [0, 1] which represents the �uid fraction of the face of a cut-cell. For example, the �uid fraction
of the east face of Ωi,j in Fig. 1 is de�ned by linear interpolation of the level-set as :

θ ui,j ≡
yibi,j − yj−1

∆yj
=

φi,j−1

φi,j−1 − φi,j
since φ(xi, y

ib
i,j) = 0. (2)

Figure 2: Sketch of the 4 generic �uid cells Ωi,j and location of the normal and shear stresses.

Fig. 2 shows the 4 types of �uid cells which are present in the LS-STAG mesh : a Cartesian �uid cell away
from the IB boundary, and 3 generic types of cut-cells (pentagon, trapezoidal and triangle). For each type of
cells, the �gure displays the half control volumes (CVs) that forms the Ωui,j CV for discretizing the momentum
equation (1a). For building the LS-STAG method in Refs. [2], we have enforced the strict conservation of
total mass

∫
Ωf ∇ · v dV , total momentum P(t) = ρ

∫
Ωf v dV and total kinetic energy Ec(t) = 1

2

∫
Ωf |v|2 dV

(when viscosity η becomes negligible) in each of the half CVs independently, such that any combination
of half CVs yields a consistent discretization with the aforementioned global conservation properties. This
results to a discrete pressure gradient which is dual to the divergence matrix, a skew-symmetric operator for
the convective terms, and a viscous matrix which is positive de�nite. In the limiting case of meshes with
Cartesian cells only (Fig. 2 (a)), the LS-STAGmethod recovers the case of the well-known MAC discretization
for uniform grids and the method of Verstappen & Veldman [8] for non-uniform grids. The LS-STAG method
has been validated in [1, 2] for canonical Newtonian �ows in both �xed and moving geometries.
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2.2 The LS-STAG method for viscoelastic �ows

In Refs. [3, 4] the LS-STAG method has been extended to handle viscoelastic �ows where the shear stress τ
in Eq. (1a) is decomposed as : τ = ηsD+ τe, where ηs is the solvent viscosity (supposed constant) and τe is
the viscoelastic tensor :

τe =

(
τxxe τxye

τxye τyye

)
. (3)

The viscoelastic tensor is governed by the Oldroyd-B constitutive equation [9], which is a hyperbolic transport
equation.

A necessary step for extending the LS-STAG method to viscoelastic �ows is the discretization of the
constitutive equation in the cut-cells, such that the node-to-node oscillations of the stress variables are
prevented. In [3, 4] we have achieved a fully staggered velocity-pressure-stress discretization of the Oldroyd-
B equations such that the Cartesian staggered arrangement of Darwish & Whiteman [10] is recovered away
from the IB boundary. In a Cartesian �uid cell (Fig. 2(a)), the viscoelastic stresses are located at the
discretization points of the Newtonian stresses : i.e. the normal viscoelastic stresses τxxi,j and τyyi,j are at the
center of the cell Ωi,j and the viscoelastic shear stress τxyi,j at its upper right corner. The generalization of
this staggering to the cut-cells leads to the positioning shown in Fig. 2(b)-(d). Note that for the case of
pentagonal cells (Fig. 2(b)), where the Newtonian shear stresses ∂u/∂y|i,j and ∂v/∂x|i,j are calculated at

di�erent vertices of the immersed boundary, we consider that τxyi,j takes the same value at both vertices.
In the context of a �nite-volume method, this staggered arrangement introduces a di�erent control volume
for the constitutive equation of normal and shear stresses, which led us to develop special quadratures and
interpolations that yield a globally conservative discretization up to the cut-cells. These interpolation rules
are de�ned in [4] and will be employed in the next section devoted to the computation of non-Newtonian
�ows.

2.3 Extension of the LS-STAG method to non-Newtonian �uids

Figure 3: Relevant notations used for the discretization of non-Newtonian �ow equations near the IB bound-
ary. The shear rate is discretized at the center of the faces of Ωui,j , denoted with compass notations.

We consider now the application of the LS-STAG method to the case of non-Newtonian �uids, where the
stress tensor takes the form :

τ = η(γ̇)D, (4)
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and the shear rate γ̇ is related to the second invariant of the rate-of-strain tensor D :

γ̇ =
√

1
2D : D =

√
2

[
∂u

∂x

]2

+

[
∂u

∂y
+
∂v

∂x

]2

+ 2

[
∂v

∂y

]2

. (5)

In the following, we will consider 2 popular models for non-Newtonian viscosity which have similar mathe-
matical form [9]. The simplest is the Ostwald de Waele (or power-law) model :

η(γ̇) = kγ̇n−1, (6)

where k and n are 2 empirical curve-�tting parameters, known as the consistency and power-law index
respectively. The consistency index k is a measure of the average viscosity of the �uid, and the power-law
index n is a measure of the deviation of the �uid from Newtonian behaviour : the case n = 1 correspond
to Newtonian �uid, for n < 1 the �uid is shear-thinning (or pseudoplastic), and for n > 1 the �uid is
shear-thickening. The power-law model is widely used in engineering applications and has the property to
give analytical solutions of the Navier-Stokes equations for canonical �ows [9]. Its main shortcoming is the
inability to predict the Newtonian plateaux that reaches the viscosity at low (where η = η0) and high (where
η = η∞) shear rate. These shortcomings are overcomed by the Cross model :

η(γ̇) = η∞ +
(η0 − η∞)

1 + (Kγ̇)m
, (7)

where K and m are 2 �tting parameters. The Cross parameters can be related to the power-law parame-
ters (6) by observing that k = η0K

−m and n = 1−m in the limiting case where η0 � η∞, Kγ̇ � 1 and η∞
small.

For the purpose of time-advancing the Navier-Stokes equations with an implicit-explicit fractional step
method, the di�usive �ux F d = (F d

u , F
d
v ) =

∫
Ω
∇ · τ dV of Eq. (1a) is split in an �implicit� and �explicit

part�, such as its components in the x−direction read :

F d
u = F d,impl

u + F d,expl
u , (8a)

with

F d,impl
u =

∫
Γ

η(γ̇)

[
∂u

∂x
~ex +

∂u

∂y
~ey

]
· ~dS, (8b)

F d,expl
u =

∫
Γ

η(γ̇)

[
∂u

∂x
~ex +

∂v

∂x
~ey

]
· ~dS. (8c)

where Γ represents the faces of a CV. With such a decomposition, the computation of the provisional
velocities u and v in a fractional-step scheme can be totally decoupled. The discretization of these di�usive
�uxes follows the lines of the discretization introduced in Ref. [2] for the Newtonian case, with the added
di�culty that we also have to discretize the shear rate and the explicit �uxes. The methodology is best
described in the case of the CV for ui,j represented in Fig 3. In this CV, the implicit �ux (8b) is discretized
as :

F d,impl
u

∼=

[
η(γ̇|e)

∂u

∂x

∣∣∣∣
i,j

− η(γ̇|w)
∂u

∂x

∣∣∣∣
i−1,j

]
θ ui,j ∆yj+η(γ̇|n)

∂u

∂y

∣∣∣∣
i,j

∆xib,n−η(γ̇|s)
∂u

∂y

∣∣∣∣
i,j−1

1
2 (∆xi+∆xi+1), (9)

where we have used the notations of Fig. 2 for the normal and shear stresses. The �nite di�erence-like
quotient for the normal stress is [2] :

∂u

∂x

∣∣∣∣
i,j

∼=
θ ui,j ui,j − θ ui−1,j ui−1,j + ( θ ui−1,j − θ ui,j )uibi,j

Vi,j/∆yj
. (10)

This formula has been obtained thanks to the discretization of the incompressibility condition (1b) and the
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requirement that the divergence theorem be veri�ed on the LS-STAG mesh ; by construction (10) is valid
for any computational cell and includes the non-homogeneous boundary condition uibi,j at the IB boundary.
The discretization of the shear stress is similar to the Ghost Fluid method for elliptic equations [7], such as
the quotient at location s of Fig. 3 is simply :

∂u

∂y

∣∣∣∣
i,j−1

∼=
ui,j − ui,j−1

1
2 θ

u
i,j ∆yj + 1

2 θ
u
i,j−1 ∆yj−1

, (11a)

with θ ui,j−1 = 1 in the special case of Fig. 3, while at location n of the immersed boundary the following
one-sided di�erential quotient is employed :

∂u

∂y

∣∣∣∣
i,j

∼=
u(xi, y

ib
i,j)− ui,j

1
2 θ

u
i,j ∆yj

. (11b)

We now turn to the �explicit� �ux (8c) which is discretized as :

F d,expl
u

∼=

[
η(γ̇|e)

∂u

∂x

∣∣∣∣
i,j

− η(γ̇|w)
∂u

∂x

∣∣∣∣
i−1,j

]
θ ui,j ∆yj+η(γ̇|n)

∂v

∂x

∣∣∣∣
n

∆xib,n−η(γ̇|s)
∂v

∂x

∣∣∣∣
i,j−1

1
2 (∆xi+∆xi+1). (12)

Similar to the discretization of the �implicit� �ux, the normal stresses are approximated by (10) and the
shear stress at location s is analogous to (11a) :

∂v

∂x

∣∣∣∣
i,j−1

∼=
vi+1,j−1 − vi,j−1

1
2 θ

u
i,j−1 ∆xi + 1

2 θ
u
i+1,j−1 ∆xi+1

. (13)

In contrast, the shear stress term ∂v/∂x|n at the IB boundary was absent from the Newtonian discretization,
and since the directional derivative is not normal to the immersed boundary there is no straightforward one-
sided formula as in (11b). To approximate this term, we introduce a discretization of ∂v/∂x|n which depends
on the type of the cut-cells Ωi,j and Ωi+1,j of which n is a vertex. The discretization is summarized in the
case of Fig. 2 where Ωi,j+1 is a trapezoidal cell and Ωi,j is one of the 3 generic cut-cell of Fig. 3. In the case
where Ωi,j is a pentagonal cell (Fig. 2(a)), the discretization is :

∂v

∂x

∣∣∣∣
n

∼=
∂v

∂x

∣∣∣∣
i,j

=
v(xibi,j , yj)− vi,j

1
2 θ

v
i,j ∆xi

, (14)

since the shear stress is assumed to have equal values at both IB vertices for pentagonal cut-cells. In the
case where Ωi,j is a trapezoidal cell (Fig. 2(b)), we simply assume that ∂v/∂x|n = 0 as it would be the case
if the IB boundaries of Ωi,j and Ωi+1,j were horizontal. The same assumption ∂v/∂x|n = 0 is also made for
the case of a triangular cell (Fig. 2(c)).

The discretization of the shear rate (5) uses the same di�erential quotients, but since the normal and
shear stresses are located at di�erent points, one needs to use the interpolation rules developed for the
viscoelastic computations. For example, the shear rate at the immersed boundary location n of Fig. 3 is :

γ̇|n ∼=

√√√√2

[
∂u

∂x

∣∣∣∣
i,j

]2

+

[
∂u

∂y

∣∣∣∣
i,j

+
∂v

∂x

∣∣∣∣
i,j

]2

+ 2

[
∂v

∂y

∣∣∣∣
i,j

]2

. (15)

In this equation, the shear stresses are straightforwardly discretized by the procedure described above, but
the normal stresses need to be interpolated by using the following volume-weighted interpolation rule denoted
( · ), which is de�ned in [4, 3] by :

∂u

∂x

∣∣∣∣
i,j

=
[
αi,jVi,j

∂u

∂x

∣∣∣∣
i,j

+αi+1,jVi+1,j
∂u

∂x

∣∣∣∣
i+1,j

+αi+1,j+1Vi+1,j+1
∂u

∂x

∣∣∣∣
i+1,j+1

+αi,j+1Vi,j+1
∂u

∂x

∣∣∣∣
i,j+1

]
/Ṽi,j , (16)
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where the volume Ṽi,j , which represents the area of the staggered CV for the elastic shear stresses, is
constructed from the volume of the computational cells as :

Ṽi,j = αi,jVi,j + αi+1,jVi+1,j + αi,j+1Vi,j+1 + αi+1,j+1Vi+1,j+1, (17a)

and the coe�cients αi,j depend on the type of computational cells :

αi,j =

 0 if Ωi,j is a solid cell,
1/3 if Ωi,j is a triangular cell,
1/4 otherwise.

(17b)

The time-advancement of the Navier-Stokes equations is based on an IMEX fractional-step method
of �rst-order accuracy in time only, since we are only interested in steady solutions. The di�usive �ux
(F d,impl
u , F d,impl

v ) is discretized with the backward Euler method, while the convective terms and di�usive
�ux (F d,expl

u , F d,expl
v ) are treated with forward Euler. The shear rate at time tn+1 is extrapolated from its

value at the previous time-step. This results in a fractional-step method where the computation of the
provisional velocities ũn+1 and ṽn+1 are fully decoupled. All steady solutions reported in the next section
are obtained with a CFL number between 0.1 and 0.5, and we did not observe severe time-step restriction
due to the explicit treatment of di�usive term (F d,expl

u , F d,expl
v ).

3 Numerical simulation of non-Newtonian �ows between eccentric

cylinders

Figure 4: At left : Sketch of the geometry of the �ow between eccentric cylinders ; the inner and outer
cylinders have center at O′ and O respectively, with radius Ri = 20mm and Ro = 40mm. At right :
LS-STAG mesh of N = 50 cells in each direction.

The LS-STAG method is now validated for the �ow of shear-thinning liquids between eccentric rotating
cylinders. Since the early work of Reynolds (1886), this �ow has been of signi�cance in journal bearing
lubrication theory. In Ref. [11], an analytic study has been performed for Newtonian �uids, in the case of
creeping �ows and low inertial e�ects. In particular, they have showed the appearance of a recirculation
zone in the wide gap region when the eccentricity of the cylinders reached a critical value. These �ndings
have been con�rmed by various numerical studies (see Ref. [12] and references therein). For validating
our methodology for non-Newtonian �ows, we will use the database of Rigal [5] and Rigal et al. [6], who

7



%w/w η∞ η0 K m

0.10 0.00214 0.524 2.12 0.656
0.20 0.00273 2.26 4.55 0.701
0.30 0.00405 10.7 16.4 0.754
0.40 0.00458 30.1 44.2 0.765

Table 1: Parameters of the Cross model (7) for the �tting of the viscosity-shear rate curve of various aqueous xanthan
solutions (% in weight).

have studied experimentally (PIV 2D) and numerically (FLUENT commercial software) the �ow of xanthan
solutions at various eccentricities. The �ow domain (sketched in Fig. 4 left)) is the annular region between
2 eccentric cylinders of radius ratio R = Ri/Ro = 1/2, where the inner cylinder is rotating in the clockwise
sense with angular velocity Ω. The cylinders eccentricity is de�ned as δ = OO′/Ri and emax = (1+δ)Ri is the
widest gap between the cylinders. The concentric case δ = 0 corresponds to the well know Taylor-Couette
�ow. Various �uids have been considered : Emkarox (Newtonian with dynamic viscosity η = 1.62 Pa · s )
and xanthan for various aqueous solutions (shear-thinning and viscoelastic). The shear-thinning behaviour
of xanthan has been �tted with the Cross model (7), whose parameters are given in Table 1. For the
angular velocities considered (Ω = 1 − 20 rad · s−1), the Taylor number is always below the critical values
of Tac = 33929 and the �ow is thus two-dimensional. The two-dimensionality of the �ows has also been
observed in the experiments. The level of elasticity of the xanthan �ows has been evaluated as low (with
Weissenberg number between 0.078 and 2.3) so that viscoelastic e�ects are neglected from the numerical
modelling.

Figure 5: Normalized error in the maximum norm for the velocity u and the shear rate γ̇ for the Taylor-
Couette �ow (δ = 0) with Ω = 20 rad · s−1. The �uid is shear-thinning with power-law viscosity (6) with
k = 0.5647 and n = 0.389. The meshes considered have N = 150, 200, 250, 300 and 400 cells in both
directions.

For all the eccentricities δ we considered, the computational meshes consist in a square domain centered
on the outer cylinder, with N uniform cells of size h in each direction (see Fig. 4 (right). The steady state is
considered reached when the normalized time-derivatives of the velocities are below the threshold ε = 10−8 ;
with this tolerance we have checked that all �ow features (velocity pro�les, recirculation zone, forces and
moments at IB boundaries) are fully converged. First the spatial accuracy of the LS-STAG method is assessed
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by considering the concentric case δ = 0. In this con�guration, it is possible to obtain an analytical solution
of the Navier-Stokes equations with the power-law model (6), which reads in polar coordinates as [13] :

vr = 0, vθ(r) =
r−2/n −R−2/n

o

R
−2/n
i −R−2/n

o

rΩ. (18)

Fig. 5 shows the errors obtained on a series of meshes for the case of a power-law �tting of the viscosity curve of
the xanthan 20%. In accordance with the accuracy tests performed in [2] for the Couette �ow for Newtonian
�uids, we obtain a superlinear convergence rate for u and γ̇. This results shows that the computation of the
non-Newtonian viscosity does not diminish the order of accuracy of the LS-STAG method.

Figure 6: Streamlines for the �ow of xanthan 0.10% at eccentricity δ = 0.75 for various values of the inner
cylinder angular velocity Ω : (a) PIV visualization of [6, 5] ; (b) FLUENT computations [6, 5]; (c) LS-STAG
computations.

The LS-STAG code is now validated on non-coaxial con�gurations, where PIV results and FLUENT
computations are available [6, 5]. All LS-STAG results reported have been obtained on a mesh with N = 400
cells in each directions, which gives about 88, 000 �uid cells, corresponding to 57% of all computational cells.
A grid re�nement study with meshes of size N = 100, 200, 400 and 600 showed that the results obtained
on the two �nest mesh were indistinguishables. In comparison, the FLUENT results have been obtained on
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a body conformal curvilinear mesh of 220, 000 cells, more than twice as large as our N = 400 mesh. The
�ow is characterized by the appearance of a large secondary �ow that appears in the widest gap region when
the eccentricity reaches a critical value δc. For Newtonian �uids, all studies agree that the appearance of
the recirculation zone is independent of the Reynolds number and is thus a purely geometrical phenomenon.
For non-Newtonian �uids, Refs. [6, 5] observe that the appearance of the zone is delayed by shear-thinning
e�ects. As an illustration, Fig. 6 compares the streamlines of the �ow of xanthan 10% obtained by the
experiments and the 2 numerical codes. All 3 studies shows a recirculation zone of comparable shape, size,
and position. At low Reynolds number, the vortex zone is symmetric and centered on the line θ = 0.
As the cylinder rotation Ω is increased, the vortex zone becomes asymmetric and moves downstream due
to the increase of the inertial e�ects. For the same �ow con�guration (xanthan 10%, δ = 0.75), Fig. 7
compares the tangential velocity pro�les for di�erent cylinder rotation Ω along the axis θ = 0 that goes
through the secondary �ow. We note that the results obtained by LS-STAG and FLUENT are in very good
agreement. Discrepancies with the experiments appear in the vicinity of the rotating cylinder, where the PIV
measurements are scattered, and most notably in the recirculation zone. In this region where the velocities
are very weak, these discrepancies may be due to the tolerance of the measurements or the fact that the
numerical solutions do not take into account the viscoelastic properties of the �ow. Nonetheless, all three
methods capture the monotonic decrease of the intensity of the vortex as Ω increases.

Figure 7: Nondimensional velocity pro�les U? = vθ(r
?, θ = 0)/riΩ with r? = r/emax for various angular

velocities Ω given by PIV measurement and numerical simulations (xanthan 10%, δ = 0.75).

We now study the structure of the secondary �ow for Newtonian and shear-thinning �uids. For evaluating
the critical eccentricity, we have performed a series of computations for bracketing the value of δc with a
±0.01 tolerance. In order to understand the onset of the recirculation zone, we have computed for each
simulation the moments ratio Ri/o = |Mi/Mo| where Mi and Mo are the moment of the viscous forces

10



Figure 8: Moments ratio Ri/o versus cylinder eccentricity δ for angular velocity Ω = 10 rad · s−1. The critical
eccentricity δc for the onset of separation is shown for each �uid with black circles.

acting on the inner and outer cylinders respectively. The results obtained for the various �uids for cylinder
rotation Ω = 10 rad · s−1 are summarized in Fig. 8. For the Emkarox (Newtonian) �uid, our computations
give the value δc = 0.33± 0.01 which is in agreement with the value δc = 0.332424 obtained analytically in
Refs. [11] (note that the FLUENT computations of [6, 5] gives δc = 0.40 ± 0.025). Further computations
with Newtonian �uids (not shown here) at various viscosities and cylinder rotations gave similar results,
which tend to con�rm that the onset of separation has a purely geometrical nature. For non-Newtonian
�uids, Fig. 8 shows that the shear-thinning e�ects clearly delay the apparition of the recirculation zone ; for
example, the critical eccentricity is δc = 0.72 ± 0.01 for xanthan 0.40% while FLUENT computations give
δc = 0.70 ± 0.025. The most striking results of this �gure is that, for both Newtonian and shear-thinning
�uids, secondary �ow occurs for a momentum ratio greater than the critical value Rc

i/o ' 1.2. It can also
be observed that the size of the recirculation zone grows with the value of Ri/o. Further computations at
various cylinder rotations Ω are under way to �rmly correlate the moment of the forces at the cylinders with
the onset, size and strength of the recirculation zone for non-Newtonian �uids.

Another phenomenon of interest is the position of the secondary �ow with respect to the �ow parameters.
For Newtonian �uids in the creeping regime, the recirculation zone is symmetric and centered on the axis
θ = 0. When the Reynolds number is increased, the secondary �ow moves downstream due to inertia e�ects :
Ref. [11] showed that the position of the eddy center depends linearly on the inverse of the kinematic viscosity
η/ρ. For shear-thinning �uids, the position of the secondary �ow is not as easily predictable : for example, we
plot on Fig. 9 the streamlines of xanthan �ows at increasing concentrations, which correspond to increasing
shear-thinning properties. We clearly observe a non-monotonous displacement of the secondary �ow with
respect to the the shear-thinning property. In particular, for xanthan 0.10% the vortex moves upstream of
the �ow, and for xanthan 0.40% the shear-thinning and inertia e�ects compensate to maintain the secondary
�ow at a centered position. These phenomena, which are absent from Newtonian �ows, result from a complex
interplay between shear-thinning e�ects, inertia and �ow geometry. Further study is under way to correlate
the position of the recirculation zone with a Reynolds number that takes into account the aforementioned
�ow parameters.
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Figure 9: Displacement of the secondary �ow for increasing concentrations of xanthan (Ω = 20 rad · s−1,
δ = 0.75).

4 Conclusion and Future Work

We have presented in this paper an extension of the LS-STAG immersed boundary method to the computation
of non-Newtonian �ows. The main numerical di�culty was the computation of the shear rate and non-
Newtonian viscosity in the cut-cells near the immersed boundary, where the viscous e�ects are predominant.
This has been achieved with the help of two features developed previously in [2, 4] for Newtonian and
viscoelastic �ows : the staggering of the components of the rate-of-strain tensor in the cut-cells and the
special quadratures developed for the components of the viscoelastic stress tensor.

The accuracy of the non-Newtonian computations has been checked for the Taylor-Couette �ow of power-
law �uids for which an exact solution exists. The method has been used for computing the secondary �ow of
shear-thinning �uids between eccentric cylinders, for which experimental and numerical results are available.
The next step is now to combine our non-Newtonian and viscoelastic discretization into a realistic constitutive
equation of practical interest, which would take into account the shear-thinning and elastic behavior of the
liquids.
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