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Abstract: Detached-eddy simulation (DES) based on the v2-f Reynolds-averaged Navier-Stokes
(RANS) model is developed and tested. The v2-f model incorporates the anisotropy of near-wall
turbulence, which is absent in other RANS models commonly used in the DES community. The
v2-f RANS model is modi�ed in order that the proposed v2-f -based DES formulation reduces
to a transport equation for the subgrid-scale kinetic energy in isotropic turbulence. First, three
coe�cients in the elliptic relaxation equation are modi�ed, which is tested in channel �ow with
friction Reynolds numbers up to 2000. Then, the proposed v2-f DES model formulation is derived.
The constant, CDES, required in the DES formulation was calibrated by simulating both decaying
and statistically-steady isotropic turbulence. After CDES is calibrated, the v

2-f DES formulation is
tested for �ow around a circular cylinder at a Reynolds number of 3900, in which case turbulence
develops after separation. Simulations indicate that this model represents the turbulent wake
nearly as accurately as the dynamic Smagorinsky model. For comparison, Spalart-Allmaras-based
DES is also included in the cylinder �ow simulation.
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1 Introduction

Detached-eddy simulation (DES) [1, 2, 3] is a hybrid RANS/LES approach that performs RANS in attached
regions and LES in detached regions using a single model. In the LES region, the length scale of the model
is set proportional to the grid size ∆. The RANS model thereby becomes an LES model.

The v2-f -based DES approach developed here incorporates more �ow physics in RANS mode than
Spalart-Allmaras(SA)-based DES [3], which is widely used. Firstly, the near-wall damping of SA RANS
[4] does not distinguish between velocity components. In contrast, the v2-f formulation [5] models the sup-
pression of wall normal velocity �uctuation caused by non-local pressure-strain e�ects. This anisotropy has
been shown to improve prediction of separation and reattachment [6, 7, 8]. Among the few works where
both v2-f and SA RANS were compared, Iaccarino et al. [7] predicted the pressure coe�cient Cp more
accurately with v2-f than SA for �ow over a 2D hump with steady-suction �ow control. Constantinescu et
al. [8] obtained an accurate friction coe�cient Cf on a sphere after laminar separation with v2-f but an
inaccurate prediction with the k-ω, k-ε, and SA RANS models. Secondly, the SA model uses the minimum
distance to the wall as the turbulence length scale which is not necessarily accurate at or near separation.
The v2-f model, on the other hand, computes a length scale based on �ow properties (namely, the kinetic
energy k, the dissipation rate ε, and the kinematic viscosity ν). In LES mode, the present v2-f DES model
gives a transport equation for subgrid-scale (sgs) kinetic energy which is less empirical than the sgs viscosity
transport equation used in SA-based DES.

A brief summary of the proposed v2-f DES methodology is as follows. The v2-f RANS model [5] has
transport equations for k, ε, and v2 together with an elliptic relaxation equation for a function f . These
equations contain length and time scales L and T . The choice between RANS and LES modes is made by
setting these scales appropriately. When the grid is �ne enough to capture large-scale turbulent eddies, in
particular, when CDES∆ < k3/2/ε, LES mode is selected. Otherwise, RANS mode is selected. As suggested
by Spalart et al. [1], the coe�cient CDES is chosen to match the correct energy spectrum in isotropic
turbulence. In LES mode, the time scale is set to T = CDES∆/

√
k where k now represents the sgs kinetic
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energy. In principal, a k equation is su�cient together with ∆ to provide a subgrid viscosity. However,
the v2-f model bases its eddy viscosity on v2 (see (1)), and therefore, even in LES mode, the v2 transport
equation and elliptic equation for f play a role. Only the ε does not play a role in LES mode. As discussed
later, the v2-f model [5] is modi�ed so that, for isotropic turbulence, the entire set of equations reduces to
a transport equation for the sgs k. In particular, coe�cients in the elliptic relaxation equation are modi�ed
so that the v2 transport equation becomes approximately 2/3 times the k transport equation in the limit of
LES for isotropic turbulence.

The proposed v2-f DES model is described in section 2. In section 3, results for this model are compared
with the dynamic Smagorinsky model [9] and SA-based delayed DES [2] using the same �ow solver and grid
for �ow past a cylinder at a Reynolds number based on the diameter of 3900. This test is not chosen to
determine which DES model is better than others, since it is expected that all DES models will behave like
the Smagorinsky model for this �ow. Conclusions are presented in section 4.

2 v2-f DES Model

The DES model proposed is based on Lien et al.'s version of the v2-f RANS model [5]. The quantity v2

should be interpreted as a velocity scalar, not a Reynolds stress tensor component; the function f makes
v2 behave like the wall normal component of the Reynolds stress 〈u′nu′n〉 [6]. A condition we have imposed
on v2 is that in isotropic turbulence v2 should be the average of the normal components of the Reynolds
stress. This assumption allows us to formulate a DES model that reduces to a transport equation for sgs-k
in isotropic turbulence. The derivation below starts from the v2-f RANS Eqs.(1)-(5). To reach the �nal
formulation (Eqs.(18)-(22)), the formulations of sgs-k LES (Eqs.(12)-(14)) and k-ε DES (Eqs.(15)-(17)) are
derived on the way.

The v2-f RANS model of Lien et al. [5] is

νt = cµv2TRANS (1)

∂tk + Uj∂jk = P − ε+ ∂j [(ν + νt) ∂jk] (2)

∂tε+ Uj∂jε =
cε1P − cε2ε
TRANS

+ ∂j

[(
ν +

νt
σε

)
∂jε

]
(3)

∂tv2 + Uj∂jv2 = kf − 6
v2

k
ε+ ∂j

[
(ν + νt) ∂jv2

]
(4)

c2LL
2
RANSO

2f − f =
1

TRANS

[
(c1 − 6)

v2

k
− 2

3
(c1 − 1)

]
− c2

P
k
, (5)

where the time and length scales are de�ned by

TRANS = min

[
max

[
k

ε
, cT

(ν
ε

)1/2
]
,

0.6k√
6Cµv2|Sij |

]
, LRANS = max

[
min

[
k3/2

ε
,

k3/2

√
6Cµv2|Sij |

]
, cη

(
ν3

ε

)1/4
]
.

(6)
Note that the realizability constraints of Durbin [10], devised to avoid the stagnation point anomaly, are
imposed on both scales [11]. The turbulence production P ≡ 2νt|Sij |2, and the strain rate tensor Sij ≡
1
2 (∂jUi + ∂iUj). The coe�cients are given by

cµ = 0.22, cε1 = 1.4
(

1 + 0.045
√
k/ v2

)
, cε2 = 1.9, σε = 1.3,

c1 = 1.4, c2 = 0.3, cT = 6, cL = 0.23, cη = 70. (7)

Wall boundary conditions are

kw = 0, εw = ν∂2
nk|w, v2

w = 0, fw = 0, (8)

where ∂n is the wall-normal gradient. Note that in Eq.(5), we have chosen to keep cL outside of the de�nition
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of LRANS for a later purpose, unlike Lien et al. [5].
To begin with, we modify the three coe�cients in the elliptic relaxation equation (5) as follows,

c2 = c2,0 + 1
2 (2/3− c2,0)

[
1 + tanh

{
c2,1(v2/k − c2,2)

}]
, c2,0 = 0.3, c2,1 = 50, c2,2 = 0.55 (9)

cL = 0.115, cη = 140 (10)

The value of c2,0 is the unmodi�ed value of c2. The other parameters c2,1 and c2,2 are chosen such that

c2 → 2/3 when v2/k & 0.6, as shown in Fig. 1. This increases the rapid distribution term (the last term
in Eq. (5)) so that it reduces to the isotropization of production (IP) model [12] when c2 = 2/3. The
parameters c2,1 and c2,2, which determine the rate and location of the transition region in the tanh function,

have not been optimized. The modi�cation of c2 allows v2 to be approximately (2/3)k when this model is
used as an sgs model for isotropic turbulence.
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Figure 1: The modi�ed c2 of the present v2-f RANS model

We show that if v2/k = 2/3 initially, it remains so approximately because the v2 equation (4) is about
2/3 of the k equation (2). Let us approximate f as f̃ where f̃ is de�ned by

f̃ ≡ ε

k

[
(c1 − 6)

v2

k
− 2

3
(c1 − 1)

]
+ c2

P
k

= 5
v2

k2
ε+ c2

P
k
, if v2/k = 2/3 (11)

This approximation is valid for y+ & 10 in channel �ow, as shown in Fig. 2. The channel �ow simulation
is discussed in detail below. Substituting this approximation into Eq. (4), the right-hand side of the v2

equation (4) becomes 2/3 of the k equation (2) because c2 → 2/3. It was found that the modi�ed c2 (Eq.
(9)) required cL and cη to also be modi�ed to yield acceptable results for channel �ow. The value of the
product cLcη = 16.1 remains the same in order to keep the Laplacian term near the wall the same as in the
unmodi�ed form and to reduce it away from wall.

To validate the modi�ed coe�cients of the elliptic relaxation equation, fully developed turbulent channel
�ow with friction Reynolds numbers Reτ up to 2000 are simulated in RANS mode and compared with DNS
[13, 14, 15, 16]. Figure 3 shows that this modi�cation maintains the performance of the unmodi�ed RANS
model with a slightly better prediction of v2 near the center.

In the DES approach, a RANS model switches to an LES model based on a comparison of length scales.
The LES length scale is determined by the grid size ∆, so only a time scale equation is needed. We
would like the v2-f DES model to reduce to an sgs-k equation model similar to Yoshizawa's model [17] for

isotropic turbulence given that for isotropic turbulence
〈
v2
〉
becomes the average of the sgs normal stress
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Figure 2: The function f+ (�) and its approximation f̃+ = 5v2
+
ε+/k+2 + c2P+/k+ i.e., Eq.(11) (- -) in

the present v2-f RANS for the channel. The pro�les for Reτ = 550, Reτ = 950 and Reτ = 2000 are shifted
upward along the vertical axis by 0.01, 0.02 and 0.03, respectively. The plus superscript indicates wall units.
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Figure 3: Comparison of DNS (dots) and RANS with the unmodi�ed [5] (�) and the present v2-f model
(− · −) in turbulent channel �ow. The plus superscript indicates wall units.
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i.e.,
〈
v2
〉

= (2/3) 〈k〉, where the angle bracket 〈〉 denotes an ensemble/time average. An sgs-k LES model is

νt = cµ
2
3
kTLES, TLES =

k

εLES
(12)

∂tk + Uj∂jk = P − εLES + ∂j [(ν + νt) ∂jk] (13)

εLES =
k3/2

LLES
, LLES = CDES∆ (14)

When the �ow is in equilibrium i.e., P = εLES, a Smagorinsky-like eddy viscosity νt ∝ |Sij |∆2 is obtained.
As an intermediate step towards the v2-f DES model, a simpli�ed k-ε based DES model (without damping

functions) is presented. Incorporating the dissipation equation into the DES context yields

νt = cµ
2
3
kTDES, TDES = LDES/

√
k, LDES = min[k3/2/ε, CDES∆︸ ︷︷ ︸

LLES

] (15)

∂tk + Uj∂jk = P − εDES + ∂j [(ν + νt) ∂jk] , εDES = k3/2/LDES (16)

∂tε+ Uj∂jε =
cε1P − cε2ε

TDES
+ ∂j

[(
ν +

νt
σε

)
∂jε

]
(17)

If the RANS length scale is selected, then TDES = k/ε and εDES = ε as expected. Otherwise, TDES = k/εLES
which is the same as TLES in Eq.(12), and Eqs.(15)-(17) reduce to Eqs.(12)-(14).

Finally, to present the full v2-f DES model, the v2 and f equations are included in the complete set of
equations:

νt = cµv2TDES (18)

∂tk + Uj∂jk = P − εDES + ∂j [(ν + νt) ∂jk] (19)

∂tε+ Uj∂jε =
cε1P − cε2ε

TDES
+ ∂j

[(
ν +

νt
σε

)
∂jε

]
(20)

∂tv2 + Uj∂jv2 = kf − 6
v2

k
εDES + ∂j

[
(ν + νt) ∂jv2

]
(21)

c2LL
2
DESO

2f − f =
1

TDES

[
(c1 − 6)

v2

k
− 2

3
(c1 − 1)

]
− c2

P
k

(22)

RANS mode : if k3/2/ε < LLES, then LDES = LRANS, TDES = TRANS, and εDES = ε (23)

LES mode : otherwise, LDES = CDES∆, TDES = CDES∆/
√
k, and εDES = k3/2/(CDES∆), (24)

where TRANS and LRANS are de�ned in Eq.(6). Note that (2/3)k appears in Eqs.(12) and (15) but v2 appears
in Eq.(18). For an LES simulation of isotropic turbulence, v2, if interpreted as the sgs average normal stress,
should be statistically (2/3)k. The modi�ed c2 in Eq.(9) provides this behavior. Simulations indicate that

the unmodi�ed c2 = 0.3 yields
〈
v2
〉
/ 〈k〉 ' 0.4 for isotropic turbulence.

Note that the Kolmogorov length scale present in Eq. (6) is not considered in the length comparison in
Eqs. (23) and (24) because it is expected that, near the RANS and LES transition (or away from the wall),
the RANS length scale will be k3/2/ε. However, a discontinuity in the length or time scale may occur at the
RANS/LES transition if the Kolmogorov length scale happens to be the RANS scale. This would occur in
low-Re �ows. One way to avoid such a discontinuity is to use LRANS for the length scale comparison. This
alternative is not considered here because it turns o� the realizability constraints in Eq. (6) causing the
stagnation point anomaly [10] near the front stagnation point on a cylinder. Flow simulation over a cylinder
is discussed in section 3.

The proposed DES model is implemented in the Stanford incompressible Navier-Stokes solver CDP
(v2.3). This code is based on �nite-volume spatial discretization with second-order accuracy and a second-
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order implicit fractional step method [18, 19]. CDP employs a novel collocated formulation to conserve mass,
momentum and kinetic energy approximately (in the inviscid limit) on hybrid unstructured meshes. The
second-order central di�erence scheme is used for both the convection and di�usion terms of the momentum
equation. The scalar transport equations (19)-(21) are time advanced implicitly. To achieve numerical
stabilization for the scalar equations, which are signi�cantly controlled by the source terms, the convective
terms in these equations are discretized with the 1st-order upwind scheme. The di�usion term in each scalar
equation is discretized with the central scheme. In the test of isotropic turbulence, when this upwind scheme
is used for the scalar convection term only, it yields the identical energy spectrum compared to use of the
central scheme for all the terms. An upwind-biased scheme is never used for the momentum equation in this
study.

To calibrate CDES, decaying isotropic turbulence is considered. The initial �eld uses the 5123 DNS data
of Wray [20] at Reλ = 105 sampled down to 323 or 643. The computational cube has sides Lbox = 2π with
periodic boundary conditions in the three directions. Quantities in the DES model are initialized by running
for some time with a frozen initial velocity �eld. The �ow is allowed to run about 3.7 and 10.7 large-eddy
turnover times at which point Reλ = 65 and Reλ = 61, respectively. The large-eddy turnover timescale is
determined by the longitudinal length scale L11 and the r.m.s. velocity �uctuation urms computed from the
DNS data at Reλ = 105 (the initial state).

Figs. 4a and 4b show the energy spectrum with three values of CDES. The v2-f DES simulation with
CDES = 0.8 agrees very well with DNS [20] and experiments [21] up to the cut-o� wave number at the later
instant when Reλ = 61 (Fig. 4b). v2-f DES gives almost exactly the same energy spectrum as produced by
the dynamic Smagorinsky model (Figs. 4c and 4d). In Figs. 4e and 4f, all three formulations, namely, sgs-k
LES, k-ε DES, and v2-f DES, give the same energy spectrum with the same CDES. This indicates that the
v2-f DES formulation indeed reduces to the others. The coe�cient CDES = 0.8 is used for the rest of the
paper.

Because it allows a higher Reynolds number and a wider inertial range, forced isotropic turbulence at
Reλ = 98 is also considered using the stochastic forcing of Eswaran and Pope [22]. The computational
cube has the same size Lbox = 2π as the decaying case. The radius of the sphere of forced wavenumbers is
KF =

√
8, giving a total 92 forced modes. The forcing amplitude and the forcing autocorrelation time scale

are chosen as σ = 0.3572 and TL = 0.4312, respectively, following the nomenclature of Ref. [22]. Initial
conditions are not relevant, since the �ow is driven to a statistical steady state. The grid is 1283 for the
present DNS, and two grids of 163 and 323 are used for LES with the dynamic Smagorinsky model and
v2-f DES. Statistics were obtained by averaging over samples collected over 30 eddy turnover times in the
steady state which is reached after 10 eddy turnover times from the initial condition. The velocity-derivative

skewness S = 1/3
[〈

(∂iui)3
〉
/
〈
(∂juj)2

〉3/2]
has values (∼ 0.45) typical of isotropic turbulent at Reλ ∼ 100

[23]. The v2-f DES simulation gives almost exactly the same energy spectrum as produced by the dynamic
Smagorinsky model (Fig. 5). Forced isotropic turbulence had not been used for the CDES calibration in the
DES community. This simulation shows that the forced case is an alternative for this calibration.
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(d) LES and v2-f DES with CDES = 0.8 at Reλ = 61
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Figure 4: Energy spectrum of decaying isotropic turbulence. The proposed v2-f DES model is simulated
with three di�erent values of CDES on 323 in (a) and (b). The curve labeled �-5/3� shows E(κ) = Cε2/3κ−5/3

with the Kolmogorov constant C = 1.5. �DynSmag� indicates LES with the dynamic Smagorinsky model.
The coe�cient CDES = 0.8 is used for sgs-k LES, k-ε DES and v2-f DES on 323 in (e) and (f).
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Figure 5: Energy spectrum of forced isotropic turbulence of Reλ = 98. Shown are the present simulations
of DNS, LES with the dynamic Smagorinsky model, and v2-f DES with CDES = 0.8 on the 163 grid (left)
and the 323 grid (right).

3 Results: Flow over a circular cylinder

To test the LES mode of the proposed v2-f DES model, �ow over a circular cylinder is chosen. The Reynolds
number based on diameter D is ReD = 3900. The DES model coe�cient CDES was determined in isotropic
turbulence. Therefore, it is imperative to test the DES model in anisotropic turbulence. The �ow over
a circular cylinder is a good test case, because this �ow has been extensively studied both experimentally
[24, 25] and numerically [19, 26, 24, 25]. Kravchenko and Moin [26] used a Galerkin B-spline method with
the dynamic Smagorinsky model to simulate this �ow and obtained good agreement of mean �ow quantities
with experimental data available at the time. Mahesh et al. [19] simulated this �ow with the dynamic
Smagorinsky model to validate the numerical method used in the CDP code. Dong et al. [24] performed
DNS using a spectral element scheme on an unstructured grid and compared it with their PIV experiments.
Recently, Parnaudeau et al. [25] performed an extensive study in order to address the lack of consensus in
the literature for turbulence statistics immediately behind the cylinder. Parnaudeau et al. [25] simulated
this �ow with the dynamic Smagorinsky model using an immersed boundary method on uniform grids, and
compared the computations with their PIV and hot-wire experiments.

The cylinder �ow at ReD = 3900 allows us to test DES as an LES model with grids appropriate for
non-dissipative schemes. Strelets [27] and Travin et al. [28] performed SA-based DES for a cylinder at
ReD = 50000. We attempted this higher-Re case �rst but discovered that the resolution used in the previous
studies with dissipative upwind-biased schemes was inadequate for the present second-order non-dissipative
code. Strelets used a hybrid central/upwind approximation [27], and Travin et al. used a �fth-order upwind
scheme [28]. The resolution in Strelets [27] and Travin et al. [28] is even coarser than that in previous LES
computations at ReD = 3900 [29, 26, 19, 25]; Refs. [27, 28] used about 0.7 million points, whereas 1.3 -
4.4 million points are used in Refs. [29, 26, 19, 25]. Mittal and Moin [29] concluded that even a 5th-order
upwind scheme can degrade LES computations at ReD = 3900. Simulation of the ReD = 50000 �ow is still
challenging with non-dissipative schemes. Because both ReD = 3900 and 50000 are subcritical (turbulence
develops after separation), the ReD = 3900 �ow is a good test case with grids appropriate for non-dissipative
schemes. This test is not chosen to determine which DES model is better than others, since it is expected
that all DES models will behave like the Smagorinsky model for this �ow.

The present computation was performed on a domain whose in�ow and out�ow surfaces were 30D up-
stream and 35D downstream from the center of the cylinder, following the grid of Mahesh et al.[19]. The
domain height was 50D and spanwise extent was πD. The size of the �rst grid cell adjacent to the cylinder is
0.0025D radially and 0.01D (or 0.57◦) in the azimuthal direction θ. The quadrilateral elements are approxi-
mately 0.04D×0.04D in the wake at a distance of 2D from the cylinder center. The current grid has slightly
higher resolution on the wall than grids in previous LES studies [26, 19, 25] and less resolution than the DNS
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study [24], particularly in the azimuthal θ and spanwise z directions. There are about twenty grid points
inside the boundary layer at separation. Fig. 6 shows the domain and the grid. The �ow �eld is initially
uniform. Without an imposed perturbation, the code generates 3D �uctuations due to biased round-o�
error. A statistically steady state is obtained after about 200 time units. Statistics were accumulated over
approximately 30 vortex shedding cycles (140 time units) and over the spanwise direction. The time step is
∆t = 0.001D/u∞. Table 1 summarizes the computational parameters in the previous and current studies.

Inlet

Slip

Slip

Outlet → x↑
y

o

Figure 6: Computation domain (left) and grid around the cylinder (right).

Study Kravchenko et al. [26] Mahesh et al. [19] Parnaudeau et al. [25] Dong et al. [24] Present
Domain [D] (Rd, Lz) = (30, π) Lx,y,z = (75, 50, π) Lx,y,z = (20, 20, π) Lx,y,z = (40, 18, π) Lx,y,z = (75, 50, π)

Grid nr,θ,z = (205, 185, 48) nz = 32∗ nx,y,z = (961, 960, 48)† nz = 128‡ nz = 64∗

∆r,θ|wall [10−2D] (0.25, 1.7) (0.25, 1.2)§ (2.1, 2.1) (0.36, 0.77)¶ (0.25, 1.0)‖

∆t [10−3D/u∞] 2.5 1 3 2 1
Simulation type LES LES LES DNS LES, DES

Table 1: Computational parameters used for the current and previous studies. Note ∗: unstructured
quadrilateral grid with resolution of 0.04D for a distance of 1.5D in the wake, †: uniform mesh, ‡: unstructured
triangular grids, §: minimum values on the cylinder, ¶: calculated from their values in viscous wall units, ‖:
uniform on the cylinder.

Three turbulence models are used for the present computations: dynamic-Smagorinsky LES [9], SA-based
delayed DES (SA-DDES) [2] and the proposed v2-f DES model. For the dynamic Smagorinsky model, the
ratio of test to grid �lter widths is 2. The test �lter is a top-hat �lter which uses information from the
neighboring grid cells. For SA-DDES, the SA equation without the trip term [4], called SA-noft2 in the
turbulence community, is selected here because this version can use lower values of ν̃ at freestream boundary
[30]. The low-Reynolds number correction of Spalart et al. [2] is required for SA-DDES to compensate
for unexpected activation of the wall functions possibly due to either low Reynolds number or very �ne
grids. This SA-DDES was also implemented in CDP. Using CDES = 0.65 for SA-DDES gives the correct
energy spectrum in isotropic turbulence (data not shown). ∆ = max(∆i) in all cases. Initial and boundary
conditions are listed in Table 2.

Instantaneous velocity and vorticity �elds for the v2-f DES simulation are shown in Figs. 7 and 8,
respectively. Fig. 7a shows the unsteady recirculation region behind the cylinder. Alternating regions of
positive and negative cross-stream velocity are shown in Fig. 7b. These are related to Karman vortices
shown in Fig. 8. Fig. 7c clearly shows �uctuating spanwise velocity which indicates three dimensional �ow
structures in the wake. Figs. 7 and 8 are similar to the LES results of Kravchenko et al., i.e., Figs. 2-5 of
Ref. [26], which show the similar structures.

Mean �ow �elds are obtained from the simulation over approximately 30 vortex shedding cycles and over
the spanwise direction in the near wake of the cylinder. Fig. 9 shows the results of v2-f DES. The velocity
de�cit in the wake is well shown in Fig. 9a with the negative bubble near the cylinder. Separating shear layer
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Variables
All v2-f DES SA-DDES

ui k v2 ε f ν̃

Initial Conditions uniform u∞ 10−3u2
∞ (2/3)× 10−3u2

∞ 10−3u3
∞/D none 5ν

Wall Boundary 0 0 0 ν∂2
nk 0 0

Inlet Boundary u∞ 0 0 zero gradient zero gradient 0.5ν

Outlet Boundary convective outlet zero gradient convective outlet

Slip Boundary zero gradient

Z planes periodic

Table 2: Initial and Boundary conditions in the present computations. The gradient ∂n is in the wall normal
direction.

(a)

(b)

(c)

x/D

Figure 7: Instantaneous velocity �elds in the y = 0 plane in the wake of a circular cylinder at ReD = 3900
from the v2-f DES simulation. Shown are the normalized streamwise velocity u/u∞ (a), the normalized
cross-�ow velocity v/u∞ (b), and the normalized spanwise velocity w/u∞ (c). The thick black lines indicate
the zero value. The number of color contour levels is 52 between −1.5 (blue) and 1.5 (red).
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Figure 8: Instantaneous vorticity magnitude ωD/u∞ on a x-y plane with 16 contours from ωD/u∞ = 0.5 to
ωD/u∞ = 10.0 in the simulation of v2-f DES.

is clearly shown in the spanwise vorticity �eld, Fig. 9b. The Reynolds shear stress 〈u′v′〉 is anti-symmetric
with respect to the centerline (see Fig. 9c). 〈u′v′〉 has has two dominant peaks of | 〈u′v′〉 | = 0.119 at
x/D = 2.08 and two secondary peaks of | 〈u′v′〉 | = 0.040 at x/D = 1.37. The r.m.s. streamwise velocity
urms in Fig. 9d shows a strong gradient in the separating shear layers and two maxima associated with
the vortex formation in Fig. 9b. These mean �ow structures are qualitatively similar to Parnaudeau et
al.[25]'s experimental and LES data, and Dong et al. [24]'s experimental and DNS data. Fig. 10 presents
current simulation results with fewer contour lines for direct comparison among the three models. In general,
all three models provide the similar mean �ow �elds with subtle di�erences. The simulation without any
turbulence model is not included in Fig. 10 because its results are simply not correct (see Table 3).

Integral �ow quantities are well predicted by all three models, as listed in Table 3. The drag coe�cient
CD = 1.00 of v2-f DES matches well with previous experiment data [26] and computations [19]. The value
CD = 0.965 predicted by SA-DDES is acceptable. The base pressure coe�cient Cp,b = −0.928 of v2-f DES is
most similar to that of Kravchenko et al. [26]. SA slightly underestimates Cp,b, and, without any turbulence
model, Cp,b is simply wrong. The separation point θsep = 87.1 of the present dynamic-Smagorinsky LES and
v2-f DES is in the range of the experimental data set and similar to previous LES results [26, 19, 25]. Previous
studies have a broad range of values for the recirculation length LR; this value is sensitive to experimental
conditions [25], and previous LES slightly underestimated this value. The current value LR = 1.44 of v2-f
DES is in the range of the experimental data. The Strouhal number St is the least sensitive quantity in
Table. 3. The current LES, v2-f DES and even the simulation with no model predict the shedding frequency
very accurately. SA-DDES slightly overestimates St. The minimum streamwise velocity Umin predicted by
all the present computations is within the range of the previous data.

Fig. 11 shows mean velocity pro�les in the wake. v2-f DES predicts the centerline mean streamwise
velocity with slightly better prediction downstream 5 < x/D < 10 than the other present computations (Fig.
11a). All current LES and DES's reproduce the mean streamwise and cross-�ow velocity at three locations
in the wake as shown in Figs. 11b and 11c. For the mean cross-�ow velocity V at x/D = 1.54, the present
dynamic-Smagorinsky LES and v2-f DES provide a better match to the experiment of Parnaudeau et al.
than does the LES of Parnaudeau et al. [25] .

Fig. 12 shows Reynolds stress pro�les in the near wake. Overall, all three models predict the three
components quite well compared with the LES and experimental data of Parnaudeau et al. [25]. At x/D =
1.54, v2-f DES and the present dynamic-Smagorinsky LES are slightly better than SA-DDES, particularly
for 〈u′u′〉 and 〈u′v′〉. For 〈u′u′〉, v2-f DES and the present dynamic-Smagorinsky LES match closer with the
experiment of Parnaudeau et al. [25] than does their LES, similar to V in Fig. 11c. Such better prediction
in the present simulation is probably due to better resolution very near the cylinder; the present grid is �ner
than that of Parnaudeau et al. [25] from the cylinder surface to x/D ' 1.2 in the wake.

Compared to v2-f DES and dynamic-Smagorinsky LES, SA-DDES predicts more smoothed-out pro�les
of V , 〈u′u′〉, and 〈u′v′〉 in the near wake. This is related to large mean eddy viscosity 〈νt〉 produced by
SA-DDES, as shown in Fig. 13. v2-f DES and dynamic-Smagorinsky LES generate 〈νt〉 ∼ ν in the near
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Figure 9: Mean �ow �elds in the v2-f DES simulation: (a) normalized streamwise velocity with contour
levels of U/u∞|min = −0.3 and |∆U/u∞| = 0.1; (b) normalized spanwise vorticity with contour levels
of | 〈ωz〉D/u∞|min = 1 and |∆ 〈ωz〉D/u∞| = 1; (c) normalized Reynolds stress with contour levels of
| 〈u′v′〉 /u2

∞|min = 0.018 and |∆ 〈u′v′〉 /u2
∞| = 0.009; and (d) normalized r.m.s. streamwise velocity with

contour levels of urms/u∞|min = 0.04 and |∆urms/u∞| = 0.04. In all plots, dashed lines indicate a negative
value.

Study CD Cp,b θsep LR/D St Umin/u∞

Exp.
Data set∗ 0.99±0.05 -0.88±0.05 86.0±2 1.4±0.1 0.215±0.005 -0.24±0.01

Parnaudeau et al. [25] 88 1.51 0.208±0.002 -0.34
Dong et al. [24] 1.47 -0.252

DNS Dong et al. [24] -0.88 1.36 0.20 -0.291

LES

Kravchenko et al. [26] 1.04 -0.94 88.0 1.35 0.210 -0.37
Mahesh et al. [19] 1.00 87.6 1.35 0.218 -0.31

Parnaudeau et al. [25] 87.6 1.35 0.208 -0.31
Present 0.994 -0.881 87.1 1.48 0.214 -0.320

DES
Present, v2-f DES 1.00 -0.928 87.1 1.44 0.214 -0.304
Present, SA-DDES 0.965 -0.969 88.3 1.37 0.221 -0.283

Present, w/o turb. model 1.18 -1.16 89.4 0.841 0.214 -0.264

Table 3: Mean �ow quantities of the �ow around the circular cylinder at ReD = 3900: the drag coe�cient
CD, the base pressure coe�cient Cp,b, the separation angle from the front θsep, the recirculation length LR,
the Strouhal number St, and the minimum streamwise velocity Umin on the centerline. Note ∗: experimental
data in Table II of Kravchenko et al. [26]
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Figure 10: Mean �ow �elds in the v2-f DES simulation (-), dynamic-Smagorinsky LES (-), and SA-DDES
(-): (a) normalized streamwise velocity with contour levels of U/u∞|min = −0.2 and |∆U/u∞| = 0.2;
(b) normalized spanwise vorticity with contour levels of | 〈ωz〉D/u∞|min = 2 and |∆ 〈ωz〉D/u∞| = 4; (c)
normalized Reynolds stress with contour levels of | 〈u′v′〉 /u2

∞|min = 0.018 and |∆ 〈u′v′〉 /u2
∞| = 0.036; and

(d) normalized r.m.s. streamwise velocity with contour levels of urms/u∞|min = 0.08 and |∆urms/u∞| = 0.12.
In all plots, dashed lines indicate a negative value.
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Figure 11: Mean velocity pro�les in the wake of the circular cylinder at ReD = 3900. Shown are (a)
normalized streamwise velocity U/u∞ on the centerline, and (b) U/u∞ and (c) normalized cross-�ow velocity
V/u∞ at three locations in the wake of a circular cylinder at ReD = 3900. In (b) and (c), pro�les at
x/D = 1.54 and x/D = 2.02 are vertically shifted down by 1 and 2, respectively.
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Figure 12: Normalized Reynolds stress pro�les at three locations in the near wake of a circular cylinder at
ReD = 3900. Note the obvious vertical shifts for the pro�les at x/D = 1.54 and 2.02. See Fig. 11 for labels.
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wake around 1 . x/D . 2, whereas 〈νt〉 ∼ 2ν from SA-DDES. Interestingly, both v2-f DES and SA-DDES
have two peaks around x/D ' 1.5 close to the centerline, whereas the dynamic Smagorinsky has two peaks
o� the centerline at x/D ' 2.5 and y/D ' ±0.5. Although v2-f DES damps 〈νt〉 downstream of x/D & 2,
this does not signi�cantly a�ect the mean �ow �eld in the far wake (see Fig. 15).
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(c) SA-DDES

Figure 13: Contours of the normalized mean eddy viscosity 〈νt〉 /ν. In all plots, 〈νt〉 /ν|min = 0.2 and
|∆ 〈νt〉 /ν| = 0.2.

Fig. 14 shows mean model quantities of the v2-f DES model. Overall, a similar structure is observed in

〈k〉,
〈
v2
〉
, and 〈εDES〉; they are symmetric with respect to the centerline with two peaks around x/D ∼ 1.5

near the centerline. The mean function 〈f〉 has peaks similar to those of
〈
v2
〉
, which visually shows that f

suppresses v2 near the wall and produces v2 away from the wall.
Mean �ow quantities in the far wake are shown in Fig. 15. Only the data of Kravchenko et al.[26] is

included as the reference, because Parnaudeau et al.[25] did not include far wake data. Data of Kravchenko
et al.[26] has good agreement with the experiment of Ong and Wallace [31]. Similar to the near wake, all
three turbulence models give the acceptable pro�les. v2-f DES has slightly better agreement in 〈u′v′〉 than
the others, whereas dynamic Smagorinsky is slightly better for 〈u′u′〉. Based on both 〈u′u′〉 and 〈v′v′〉, this
far-wake �ow is still far from isotropic turbulence.
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Figure 15: Mean streamwise velocity (a), Reynolds shear stress 〈u′v′〉 (b), and normal stresses 〈u′u′〉 (c) and
〈v′v′〉 (d), at three locations in the far wake of a circular cylinder at ReD = 3900. Note the obvious vertical
shifts for the pro�les at x/D = 7.00 and 10.0. See Fig. 11 for labels.
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4 Conclusions and Future Work

DES based on the v2-f model was proposed, implemented in the unstructured incompressible code CDP,
and tested for isotropic turbulence and �ow around a circular cylinder. Three coe�cients in the elliptic
relaxation equation of the original RANS model are modi�ed in order that v2 is statistically (2/3)k in the
limit of isotropic turbulence. This allows the v2-f DES formulation to reduce to sgs-k LES in this limit. The
DES coe�cient CDES determined from isotropic turbulence is CDES = 0.8.

Flow around a circular cylinder at ReD = 3900 is simulated with the proposed v2-f DES along with SA-
based DDES and the dynamic Smagorinsky model. Since at this Reynolds number turbulence occurs after
separation, this case tests only the LES mode. v2-f DES reproduces not only instantaneous large structures
in the wake but also mean �ow �elds as observed in previous experimental and numerical studies. Dynamic-
Smagorinsky LES and SA-DDES are performed for direct comparison among the three models. Overall,
all three turbulence models accurately predict integral quantities, mean velocity pro�les and turbulence
intensity pro�les in the wake. Although some quantities are predicted slightly better by a particular model,
the di�erence is not su�cient enough for one to assert that one of the models is the best. The largest di�erence
among the models appears in the turbulent viscosity, which is presumably related to subtle di�erences in the
presented statistics. For subcritical Reynolds numbers, it is expected that all DES models should behave
like a good LES model. Further numerical tests, speci�cally, for wall bounded internal �ows where turbulent
separation and reattachment locations are more di�cult to predict, remain for future study.
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