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Abstract: The steady state compressible Navier-Stokes equations are solved with 

an explicit Runge-Kutta scheme accelerated by multigrid and an implicit 

preconditioner. Extensions are made to include a k-ω/SST turbulence model and 

chemical reactions. The implicit smoother enables the use of high CFL numbers 

yielding fast convergence. We present applications to turbulent solutions for flows 

about wings and plumes and for flows with several chemical reactions. 
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1 Introduction 

 

The compressible steady state Navier-Stokes system of equations is a nonlinear mixed hyperbolic-

elliptic-parabolic system. Classical methods for solving these equations use second order accurate 

methods in space. The standard technique is to march the time dependent equations in (pseudo) time 

until a steady state is achieved. The time marching is done by either an explicit method (Lax-

Wendroff, Runge-Kutta etc.), ADI or else by a full Newton method coupled with a Krylov technique 

for the resultant large sparse linear equations. This is frequently supplemented with a multigrid (MG) 

acceleration. In spite of all these techniques, the convergence to the steady state requires many 

iterations frequently ranging from several hundred MG cycles to thousands of explicit time steps. This 

slow convergence becomes even worse for high Reynold’s number flows when a highly stretched 

mesh is used in the boundary layer requiring small time steps. Local time stepping and implicit 

methods alleviate but do not eliminate this slowdown. Rossow and later Swanson and Turkel [1,2,3] 

introduced an implicit preconditioner which allows for rapid convergence to a steady state, with 

CFL=1000, that is typically about 5 times faster, in CPU time, than previous optimal solvers. 

Frequently, convergence to engineering accuracy is obtained in tens of MG cycles and convergence to 

machine accuracy in about 100 MG cycles using a 3 stage explicit Runge-Kutta scheme. The original 

results were obtained for the steady state compressible Navier-Stokes equations coupled with an 

algebraic (Baldwin-Lomax) turbulence mode. In this paper we extend these previous results in several 

directions. 

      We consider extensions from an algebraic turbulence model to a multi-equation turbulence model. 

As a typical example we have chosen the k-ω SST equations. In order to advance the turbulence 

equations with a large CFL we introduce an implicit preconditioner similar to that used for the fluid 

equations. This preconditoner again allows much larger time steps than usually used for these 

equations allowing a rapid convergence to a steady state. In addition, the preconditoner increases the 

robustness of the convergence. 



In another direction of extensions we consider the addition of fluids with reactants. Thus, in 

addition to the fluid equations there are many chemical reactions. These reactions add a stiff source 

term that severely reduces the allowable time step for the fluid. Typically, industrial calculations use 

CFL=.05 for these calculations. The introduction of the implicit smoother allows a much larger time 

step and again a faster and more robust convergence to a steady state. 

 

2 The k-ω/SST Equations 

 
In previous work with the acceleration technique only algebraic turbulence modes (Baldwin-Lomax) 

were considered. Thus, the implicit preconditioner was applied only to the fluid equations. We now 

consider the extension of this technique to multi-equation turbulence models (see [4]). For the 

turbulence model equations, frequently, the ADI method is used to advance the equations in pseudo-

time to a steady state at each flow time step. This solution algorithm decouples the fluid and 

turbulence equations. The fluid equations are solved for a given turbulent coefficient – µt and the 

turbulence equations are solved separately to update µt. However, ADI while formally 

unconditionally stable, in practice, allows one to increase the CFL only by a factor of about 5-10 over 

the explicit time restriction. This implies that the time step used for the turbulence model is much 

smaller than that used for the fluid equations, which can be 1000 times larger than the explicit CFL 

because of the implicit preconditioner.  

 

Here, we introduce the RK implicit smoother into the k-ω/SST model which enables us to efficiently 

solve the weakly coupled system of equations of the Navier-Stokes equations with the two equation 

turbulence model. We first describe some details of the turbulence model and its numerical 

approximation. The turbulent viscosity is defined as 
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Then the SST turbulence equations are given by: 
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3 Numerical Scheme for SST 
 

The turbulence model equations are solved using a pseudo time integration with a low storage Runge-

Kutta scheme: For each R-K stage we have: 
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1..number of runge kutta stagesq = , k∆  and ω∆  are smoothed values, where: 
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and similarly for ω. Using the terminology of the RK/implicit smoother, the equations are: 
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The numerical scheme for the smoother is: 
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where p=1,...,m, m is the number of smoothing steps,  
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R is the Jacobian of the source term. Only the decaying terms are used in the source flux Jacobian: 

 

( ) 









−=



















∂

∂

∂

∂
∂

∂

∂

∂

=
βωβ

ωβ

ω

ωω
ωω 2

0
,

*

*

kR

k

R

R

k

R

kR

kk

. 

 

This system is solved with a Gauss-Seidel method using a small number of iterations m.  

 

4 Results for SST Turbulence Model 
 
We consider the combined fluid plus turbulence set of equations. The two sets are weakly coupled, 

and the implicit smoother is applied, separately, to both the fluid and turbulence equations. At 

present,  multigrid is used only for the fluid equations. We describe the SST- turbulent transonic 

calculations for the flowfield around an RAE2822 wing and the turbulent flowfield of a rocket motor. 

 
4.1 Turbulent transonic flowfield around RAE2822 wing 

 
The free stream conditions are: M = 0.73, α = 2.79°. Figure 1 shows the convergence history (density-

red, k-green) of the calculation of the flow around a RAE2822 wing. The calculation uses sequencing 

of two coarse grids and three levels of multigrid on the finest grid, in the fluid only. A second order 

upwind scheme with a Sweby limiter is used. The fluid CFL is 100,000 and turbulent CFL is 20,000; 

machine accuracy is obtained. Figure 1 shows the convergence and figure 2 shows the comparison 

between FLDYNS (an in-house code) solution and the experiment. 

 

 

Figure 1: Density (red) and turbulent kinetic energy (green) convergence history  



 

Figure 2: Comparison between FLDYNS solution and experiment 

 

5 Chemistry 
 

       Turbulent reactive flow is important for various engineering problems. For example, designing 

of combustion chambers and modeling of rocket motor and rocket motor plumes. In rocket motor 

plumes, for example, turbulent flow is essentially different from laminar flow and real plumes can’t 

be modeled without considering turbulence. The chemical reactions also add specific phenomena as 

after-burning when the combustion product meets the atmospheric oxygen starts to burn again. 

Reliable modeling of reactive flow in plumes is very important, for example, to evaluate the IR 

signature of the plume [7]. We again extend the idea of the RK/implicit smoother to reactive flow. 

 

The challenge of numerical simulation of reactive flow is dealing with the stiffness of system, both in 

the turbulence model (K-ω SST in this work) and especially the stiffness from the chemical reactions. 

This stiffness is the result of a very wide range of the evolution time scales of the reactants. 
 

5.1 Governing equations 

 
The chemical reaction source terms of the inhomogeneous Navier-Stokes equations are: 

( )0,0,...,,, 321 ρρρ &&& . The gas mixture diffusion terms are added to the species mass conservation 

equations. The conservative variables are: 
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5.2.1 Source terms 
 

We use the primitive variables ( )Tuq i ,,ω= . We also define another set of primitive 

variables ( )PuU i ,,ρ= . The equation of state is ∑
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The chemical source term is ( )T&&&& ,0,,, 321 ωωω . Each reaction of Nr reactions in the chemical 

model is described by the reaction equation:  
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The progress variable q is given by 
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  So, in conservative variables the source terms are: 
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5.2.2 Diffusion terms 
 

An additional diffusion term 
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appears in the RHS of the mass conservation equations 

which is the result of the gas mixture. On the RHS side of the energy conservation equation appears 
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5.3 RK/Implicit Smoother for Real gas 
 
For each point, we solve the system  
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where Qδ  are the residuals before smoothing, Qδ %  are the residuals in the n-th step of the 

smoothing, and the subscript NB denotes neighbor cells. This equation is implicit and we solve it 

iteratively using the Gauss-Seidel method. ( )nnn PPP ±=
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5.4 RK/Implicit Smoother for reactive flow 
 
For reactive flow, we need to add the source term Jacobian to the RHS of the smoother 
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In primitive variables we use only part of the Jacobian entries: 
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The implementation in FLDYNS requires the Jacobian in { }uP,,ρ  variables given by 
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5.5 Determination of the temperature from the internal energy 
 
For a given internal energy e0, we want to determine the temperature (and/or the pressure). Since for 

non-ideal gases the internal energy is a non-linear function of the temperature, we have to solve it 

numerically using the Newton-Raphson method. We solve the equation 

( ) ( ) 00 =−= eTeTf iteratively: 
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5.6 Results 
 
5.6.1 1-D Steady State Reactive Flow 
 
 



Our first implementation is a test case for a 1-d steady state, reactive flow. The test problem has been 

taken from NASA’S NPARC validation website. The boundary conditions and simple (1D) geometry 

are shown in figure 3. This example contains Hydrogen-Oxygen-Water reactions (+ radicals).  

 

 

Figure 3: NPARC validation test geometry and BC. 

 

The axial distribution of temperature and, water mass fraction are shown in figures 4-5. In these 

figures we also compare the results to those obtained from the CFD++ code. The time delay between 

the solutions of the test code and  from CFD++ can be explained by a numerical ignition delay. 

The convergence history for various CFL numbers and implicit factors ε is shown in figure 6. 

In the NPARC website this example was computed with CFL=0.05. With the preconditioner the 

asymptotic CFL used was 16. The convergence improves as we decrease the implicit factor ε. For ε 

below 0.4 the computation became unstable. 

 

 

Figure 4: Temperature distribution. CFD++ in green, Test codes in red. 

 



 

Figure 5: water (H2O) distribution. CFD++ in green, Test codes in red. 

 

 

  

Figure 6: Convergence history. CFL 1–red, CFL 2–green, CFL 4–blue, CFL 8–magenta, CFL 16-light 

blue (all with ε=1). CFL 16; ε=0.8 – brown, CFL 16; ε=0.6 – yellow, CFL 16; ε=0.4 – orange. 

 

 

5.6.2 Rapid expansion diffuser 

 



In this problem, a high Mach steam is injected into a nozzle-like device. The detailed geometry and 

boundary descriptions are shown in figure 7. This example has been taken from [8]. The gas mixture 

contains Hydrogen-Oxygen-Water reactions (+ radicals). Figure 8 presents the density convergence 

history. The chemical reactions create a shock close to the entrance of the nozzle. This shock does not 

occur in the non-reactive case. Figure 9 presents the contour map of the temperature, Mach number 

and some of the species mass fraction. Good agreement between our results and those presented in [8] 

are obtained.  

 

Figure 7: Problem definition 

 

 

Figure 8: convergence history for CFL 20 without multigrid 



 
Figure 9: Temperature, Mach, species mass fraction contours  

 

5.6.3 Blunt projectile 

 
We next consider a blunt projectile is flying in a stochiometric mixture of hydrogen and oxygen. The 

convergence history is presented in figure 10. The rise of the temperature behind the bow shock 

causes the ignition. The density contours map is shown in figure 11. The axial distribution of the 

species mass fraction and the temperature are shown in figure 12 and 13 and compared to the results 

from [9].  

 

 

 



 
 

Figure 10: Convergence history without multigrid 

 

 

 

Figure 11: density contours map 



 
Figure 12: Axial distribution of temperature. A – FLDYNS. B – Sheffer 1998  
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Figure 13: Axial distribution of species mass fraction. A – FLDYNS. B – Sheffer 1998  

 

5.6.4 Rocket motor plume 
 
We now calculate the rocket motor plume exiting from the motor nozzle into a low Mach number free 

stream flow. The plume boundary conditions are defined on the nozzle throat where the flow velocity 

A  

  

B  



is sonic and the species mass fractions are given. The species used for this problem are: H, O, OH, 

H2, O2, CO, CO2, H2O, HCL and N2. The reactions are described in [7]. Figure 14 shows the 

convergence history of the density (red) and the turbulent kinetic energy (green). Figures 15-18 show 

the Mach contours, temperature contours, k contours and species mass fraction, respectively. 

The calculation uses sequencing of two levels of coarse grids and three levels of multigrid on 

the finest level. A second order upwind scheme with a Sweby limiter is used. The fluid CFL is 

100,000 and turbulent CFL is 200. 

 

 

Figure 14: Convergence history of the density (red) and the turbulent kinetic energy (green) 

 

 

Figure 15: Mach contours of the plume 



 

Figure 16: Temperature contours of the plume 

 

Figure 17: Turbulent kinetic energy contours of the plume 

  

  



  

Figure 18: CO2 and OH mass fraction contours of the plume 

 

6 Conclusions 

 

The RK/Implicit smoother has been extended to solve the turbulence k-ω/SST model equations. We 

solved for flow around a transonic RAE2822 wing and a supersonic jet plume using the combined 

fluid and SST-turbulence equations. We obtained excellent convergence rates and an accurate 

solution.  

For reactive flow the source terms introduce stiffness into the Navier-Stokes equations. We 

introduced the source term Jacobian into the RK/Implicit smoother to solve the problem. The 

algorithm and complicated cases such as reactive rapid diffuser and reactive blunt projectile are 

presented for viscous reactive flow and the turbulent, reactive rocket motor plume with the k-ω/SST 

turbulence model is presented and very good results were obtained.  
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