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Abstra
t: In this paper we use a geneti
 algorithm to identify an optimised set of model param-

eters for a turbulen
e model to improve its performan
e in CFD simulations. We look at two test


ases where good experimental data was available and use this data to train the model 
oe�
ients

towards the �ow problem at hand. We 
an show a signi�
ant performan
e boost using the opti-

mised parameters with respe
t to the velo
ity pro�les of the �ow. The fo
us lies primarily on the

k-ε and the k-ω SST models for the �rst 
ase and the Spalart-Allmaras one-equation model for the

latter. The in�uen
e of ea
h arbitrary parameter on the development of the �ow is investigated.

After identi�
ation of the most in�uential parameters an optimisation is performed. The best

set of 
oe�
ients is determined per test 
ase. The optimisation method is based on evolutionary


omputation prin
iples using an elitist geneti
 algorithm. The optimised set of 
oe�
ients 
an

then be used to solve �ow problems of similar 
on�guration to a higher a

ura
y than by using

the standard values.

Keywords: Numeri
al Algorithms, Computational Fluid Dynami
s, Turbulen
e Modeling.

1 Introdu
tion

Numeri
al simulation of 
omplex �ow phenomena is a 
hallenging �eld in �uid dynami
s. Even with 
omput-

ers getting faster and massively parallel in re
ent years, the a

ura
y of the 
omputations is still dependent

on the models that des
ribe the underlying �ows. The exe
ution of a dire
t numeri
al simulation (DNS)

is still far away from being a�ordable in terms of 
omputation time. Grid spa
ing and time dis
retization

s
ale with power laws of the Reynolds number and realisti
 
ases are far beyond the 
apabilities even of

modern super
omputers [1℄. While in the 80s and early 90s of the last 
entury memory was the limiting

fa
tor, it is now more likely to be time. For example Erturk et. al. [2℄ reported the largest 
omputable

Reynolds number for the relatively simple 2D lid-driven 
avity �ow on a 600×600 grid to be 21,000. That is
why most solvers seek to solve the Reynolds-Averaged Navier-Stokes (RANS) equations des
ribed in se
tion

4.1, where the main �ow velo
ity is separated into a mean velo
ity 
omponent and turbulent �u
tuations,

expanding the NS-equations by additional terms that need to be modelled. Several di�erent approa
hes

have been developed and applied, ranging from one-equation models like the Spalart-Allmaras model [3℄,

and two-equation models like the k-ε model by [4℄ or the k-ω model by [5℄, as well as various 
ombinations

and variations of these. The empiri
al nature of these formulations 
an lead to undesired behaviour, espe-


ially in very heterogenous �ows or �ow regions with highly unsteady turbulent �u
tuations. To improve

the appli
ability of all the models to as wide a range of problems as possible several improvements and


hanges have been proposed. A simple internet sear
h reveals hundreds of di�erent models, some only slight

modi�
ations to the most 
ommon ones, others adjusted to spe
i�
 �ow types like, for example, �ow around

buildings, o
eani
 �ow, �ow through porous media and many others. Common to all of these models is a

formulation that 
ontains a set of arbitrary parameters that need to be determined either by experimental

observation or by des
ribing relations under simpli�ed 
onditions. The way in whi
h the values are obtained

is up to the developer and 
losely related to the 
hoi
e of �ows that are used for their determination. The
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ideal 
ase would be to �nd an argument for ea
h 
losure 
oe�
ient separately, but in reality two or more

are involved and are rarely independent.

2 Evolutionary Computation

2.1 Overview

Evolutionary Computation (EC) 
an be divided into three major 
ategories: Geneti
 Algorithms (GA) devel-

oped by Holland [6℄ with 
ontributions by deJong, Goldberg and others, Evolution Strategies �rst mentioned

in Germany by Re
henberg and S
hwefel [7, 8℄ and Evolutionary Programming des
ribed initially by Fogel,

Owens and Walsh [9℄ in the United States. All three have sin
e then spawned a series of journals and 
onfer-

en
es related to the topi
 and have been further developed in re
ent years. Optimization pro
edures, as used

in this work, belong to the 
ategory of Geneti
 Algorithms. The general prin
iple of all �avours of EC is

that a solution to a problem 'evolves' from a randomly generated initial population in a series of generations.

By appli
ation of the three evolutionary operators: sele
tion, 
rossover and mutation, 
hanges are made to

the individuals that ultimately lead to a better �tness. This �tness is a measure of the quality of a solution.

Good results have been demonstrated in di�
ult optimisation problems that are either impenetrable by

standard methods, su
h as NP-
omplete problems, or that are expensive in terms of evaluation [10℄. The

behaviour of GAs 
an be in�uen
ed in di�erent ways. There are, for example, di�erent sele
tion methods to


hoose from or the probabilities that 
ontrol the evolutionary pro
ess 
an be modi�ed.

Many large-s
ale optimisation problems 
an only be solved approximately. Geneti
 Algorithms are a good


hoi
e for these kind of problems. They 
ombine sto
hasti
 with dire
t sear
h, making them very robust

to the topology of the solution spa
e. GAs work on a broad data basis at all times, while pure determin-

isti
 optimisers tend to 
on
entrate on a single solution. Early studies of the performan
e of evolutionary

optimisation for a set of a 
anoni
al topologies were 
arried out by deJong [11℄. In an engineering 
ontext

GAs have been applied to a wide range of appli
ations. Any optimisation problems that require expensive


omputations are possible 
andidates for evolutionary methods. Most of the work that has been published

up until now has been design related. In ele
tri
al engineering, for example, to design ele
tri
 
ir
uit boards

[12℄ or in hydrome
hani
s in the planning of large-s
ale water distribution systems [13℄. In 
onjun
tion with

CFD the evolutionary approa
h has mainly been used for shape optimisation, e.g. in the design of motor

fan blades [14℄ or heat-ex
hanger blades [15℄. To our knowledge the use of these te
hniques to improve the

a

ura
y of CFD modelling represents a novel approa
h.

2.2 Methodology

Geneti
 Algorithms are based on the prin
iple of natural sele
tion and natural geneti
s [10℄. GAs are

randomly initialised, asserting a diverse set of possible solutions. Compared to 
onventional optimisation

methods they will 
limb many peaks simultaneously during the evolution pro
ess. That redu
es the proba-

bility to 
on
entrate on the wrong peak representing a lo
al optimum, as 
ommon gradient based methods

would do. Figure 1 depi
ts the sequen
e of operations in a typi
al GA. A set of parameters in a GA will

generally be 
oded as a string of �nite length, most 
ommonly a binary string. Ea
h of these strings (also


hromosome or genotype) represents one possible solution to the optimisation problem. Two opposed strate-

gies are at work here: Exploitation of a single solution versus exploration of the solution spa
e. Classi
al

gradient based methods 
on
entrate on the former, while sole usage of the latter would 
orrespond to a

random sear
h. GAs manage to rea
h a surprisingly good balan
e between those two extremes [16℄. Ea
h

population undergoes a simulated evolution. Good solutions reprodu
e while less favourable solutions are

dis
arded (or 'die'). Individuals are sele
ted for reprodu
tion depending on their �tness value. This sele
tion

pro
ess is sto
hasti
ally 
ontrolled, assigning �tter individuals a higher probability to get 
hosen. From those

individuals (parents) sele
ted in this manner, o�spring (
hildren) are generated by applying 
rossover and

mutation operators. The 
rossover operator uses two parents and 
ombines elements from one parent with

elements from the other, 
reating a new individual that now 
ontains information from both its an
estors.

2



An example of single point 
rossover between two 
hromosomes (binary strings) a and b of length n+1:

a = 〈an an−1 . . . a1 a0〉
b = 〈bn bn−1 . . . b1 b0〉

with a randomly sele
ted 
rossover point X ǫ [0, n− 2], 
reating 
hildren:

a′ = 〈an an−1 . . . aX+1 bX bX−1 . . . b1 b0〉
b′ = 〈bn bn−1 . . . bX+1 aX aX−1 . . . a1 a0〉

Mutation is in most 
ases implemented as bitwise mutation where the value of a single bit in a 
hromosome

is inverted. The probability of mutation or 
rossover o

uring is 
ontrolled by external variables PM and

PC respe
tively. Other parameters that in�uen
e the performan
e of the GA are the population size S and

the number of generations G. In the optimisation problem at hand, the multiple real values are bit-string

en
oded and the �tness obje
tives are measurable properties of the �ow.

YES

NO

Initialisation

Evaluation

Selection

Crossover

Mutation

terminate?

Figure 1: S
hemati
 of the work�ow of a typi
al GA

2.3 Parameter 
oding

Sin
e the problem variables are real values and their 
hromosomal representation is a binary string, a mapping

has to be de�ned. For a single 
oe�
ient c ǫ [clo, chi] the length of the bit�eld has to be determined by taking

into a

ount the desired resolution ∆c of the interval. The number of bits required is now

n =

⌈

log2

(

chi − clo
∆c

+ 1

)

− 1

⌉

(1)
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Translation from binary to de
imal values 
an now easily be done as follows:

〈bn bn−1 . . . b1 b0〉2 =

(

n
∑

i=0

bi · 2i
)

10

= c′ (2)

c = clo + c′ · chi − clo
2n+1 − 1

(3)

2.4 Multi-obje
tive Optimisation

Complex optimisation problems often seek to �nd optimal solutions with respe
t to multiple, often 
on-


urring, obje
tives. Many multi obje
tive evolutionary algorithms (MOEAs) have been developed in the

last few de
ades [17, 18, 19℄. Sin
e it is generally the 
ase that a problem has no single solution that is

optimal w.r.t. all obje
tives simultaneously, a number of equally optimal solutions are 
reated that lie on

the Pareto-optimal front. The algorithm that is used in this study is a fast elitist non-dominated sorting

geneti
 algorithm (NSGA), that was originally introdu
ed by Srinivas and Deb [17℄ and improved by Deb

et. al. [20℄. The se
ond generation version NSGA-II removed some of the 
riti
ised �aws in the original

algorithm and is able to 
apture high order Pareto surfa
es.

Elitism speeds up the 
onvergen
e of the GA and prevents the loss of the best solutions. The sorting pro-


edure orders solutions by the level of dominan
e over 
on
urring solutions. That way the most dominant

individuals are 
onsidered to be the �tter ones and therefore have a higher 
han
e to 
ontribute to the next

generation. The algorithm was su

essfully used in engineering optimisation problems [21, 22℄. The imple-

mentation of NSGA-II and the appli
ation to the optimisation of turbulen
e model 
oe�
ients is 
urrently

under development and results will be published subsequently.

3 Implementation

3.1 Software Pa
kages

Available for OpenFOAM is a toolset 
alled pyFoam

1

written in the obje
t-oriented language Python. It

o�ers appli
ations to read, modify and run OpenFOAM 
ases as well as analyse the results. Inspired by this,

the framework for the evolutionary 
omputation 
apabilities is developed in Python. That way the envoking

and manipulation fun
tions provided by pyFoam 
an be used and exe
ution of the program 
an easily be


ontrolled by using s
ripts. One of the most important requirements in the development of an EC software

in the 
ontext of CFD is the 
apability to parallelise the 
ode to allow for faster 
omputation spread over

several pro
essing units. A 
ommonly used library to realise this is the MPI (Message Passing Interfa
e)

standard [23℄. The Python implementation named mpi4py is used in the 
urrent proje
t. While it is not a

full realisation of the MPI standard, it provides all the required fun
tions for the purpose of this resear
h.

3.2 Code Design

In order to write software that is as generi
 as possible the design pro
ess has to be treated with spe
ial


are. Based on the guidelines by Gagné and Parizeau on how to write generi
 EC software tools [24℄, the

framework stru
ture should meet these minimal 
riteria:

See the referen
e for details about how to measure the ful�lment of these goals. The term 'generi
' in this


ontext needs further explanation. A

ording to the 
omputer di
tionary

2

, generi
 software is `Software

whi
h 
an perform many di�erent types of tasks but is not spe
i�
ally designed for one type of appli
ation.'

Taking that into a

ount the development of a generi
 EC framework should not be tailored to one spe
i�


form of optimisation. Operators, su
h as the 
rossover or sele
tion operator, should be inter
hangeable

regardless of the obje
ts they are applied to. In addition the underlying representation of a solution should

not a�e
t the way the GA works. Inter
hangeability of operators 
an easily be implemented in modern

obje
t-oriented programming languages. The user 
an 
hoose at run-time between a given set of prede�ned

1

http://openfoamwiki.net/index.php/Contrib_PyFoam

2

http://www.
omputingstudents.
om/di
tionary
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operators or 
an add new operators to meet spe
i�
 needs. This is usually the 
ase for the �tness evaluation

whi
h is a problem dependent fun
tion. Reusability and independen
e of the optimisation problem on top

are key features of the sele
tion and 
rossover me
hanisms. Commonly used realisations of these are therefore

in
luded in the developed framework, but 
an be altered or new ones implemented. This is possible through

the realisation of the strategy design pattern (see 
hapter 5 in [25℄). Equally �exible is the sele
tion of the


oding algorithm that en
odes and de
odes the 
hromosome as des
ribed in se
tion 2.3.

In the developed software pa
kage 
ontrol parameters 
an be set using external 
on�guration �les. For every

variable that is subje
t to the evolution pro
ess the user 
an de�ne lower and upper bounds as well as the

desired pre
ision. This allows running di�erent test 
ases with di�erent initial setups without altering the


ode. The only element that has to be adapted for ea
h 
ase is the �tness evaluation fun
tion sin
e it is

problem dependent.

4 Model Equations

4.1 RANS modelling

If a �ow is statisti
ally steady it is possible to de
ompose the �ow variables φ into an ensemble averaged

part φ and �u
tuations φ′
about that average. This pro
ess is known as Reynolds Averaging [26℄ and when

applied to the Navier-Stokes equations leads to Reynolds-Averaged Navier-Stokes (RANS) equations. In 
ase

of in
ompressible �ow with body for
es, the 
ontinuity and momentum equations 
an be written as

∂(ρui)

∂xi
= 0, (4)

∂(ρui)

∂t
+

∂

∂xj

(

ρuiuj + ρu′

iu
′

j

)

= − ∂p

∂xi
+

∂τ ij
∂xj

(5)

where τ ij are the 
omponents of the mean vis
ous stress tensor:

τ ij = µ

(

∂ui

∂xj
+

∂uj

∂xi

)

.

The in
lusion of the Reynolds stresses ρu′

iu
′

j into the 
onservation equations introdu
es new unknowns to

the equation system. These 
annot be expressed in terms of the known variables. To 
lose the equation

system these quantities need to be modeled using a turbulen
e model. The values for these 
oe�
ients are

usually the result of a 
ombination of theoreti
al 
onsiderations, 
omputer optimisation and experimental

measurements on simpli�ed �ows [27℄. But even these empiri
al '
onstants' have evolved in the 40 years

of their existen
e, so it 
an be assumed that they have not yet rea
hed generality for all possible �ow


on�gurations. For example the value for C2 in the k-ε model (see 4.1.1) has 
hanged by 4% from initially

2.0 to 1.92. Some resear
h was done in a-priori parameter identi�
ation by Qian et al. [28℄, Bardow et al.

[29℄, and others, but all these 
onsiderations did not lead to a better understanding of the impa
t of the

parameters to the behaviour of the solution.

4.1.1 Standard k-ε Model

One way of modeling is to solve a transport equation for the rate of dissipation ε of turbulent kineti
 energy
k leading to the k-ε model �rst proposed by Jones and Launder [4℄ where (

√
k3/ε) ∼ l, with l being the

turbulent length s
ale. The main problem of the k-ε model is its treatment in the near-wall region of the �ow
where the destru
tion-of-dissipation term is singular. To avoid this in a layer 
lose to the wall the �ow has

to be treated seperately by a wall fun
tion. The resolution of the grid 
lose to the walls has to be su�
iently

�ne for the wall fun
tions to yield reasonable results, meaning additional 
are needs to be taken when solving

a problem using this model. The equations as they are implemented in OpenFOAM are as follows:
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µt = ρCµk
2/ε (6)

ρ
∂k

∂t
+ ρUi

∂k

∂xi
= τij

∂Ui

∂xj
− ρε

+
∂

∂xi

[

(µ+ µT /sk)
∂k

∂xi

]

(7)

ρ
∂ε

∂t
+ ρUi

∂ε

∂xi
= C1

ε

k
τij

∂Ui

∂xj
− C2ρ

ε2

k

+
∂

∂xi

[

(µ+ µT /sε)
∂ε

∂xi

]

(8)

There are �ve arbitrary 
oe�
ients in this formulation, ea
h in�uen
ing di�erent aspe
ts of the devel-

opment of the �ow. The 
ommonly re
ognised standard values as implemented in the OpenFOAM CFD

software are given in Table 1.

Table 1: Standard values for the k-ε model as implemented in OpenFOAM

sk sε C1 C2 Cµ

1.0 1.3 1.44 1.92 0.09

4.1.2 Menter k-ω-SST Model

Another approa
h is to model the spe
i�
 dissipation rate ω, as Wil
ox [5℄ suggested in his version of the k-ω
model, in whi
h (

√
k/ω) ∼ l. Menter [30℄ introdu
ed a modi�
ation to that model 
ombining the near-wall

treatment of the k-εmodel and the a

ura
y in predi
ting the free �ow from the k-ω model. He used blending

fun
tions to swit
h from one model to the other. The eddy vis
osity equation is modi�ed to a

ount for

the transport e�e
ts of the prin
iple turbulent shear stress (hen
e the name k-ω-SST). Menter's formulation

is widely used in aerodynami
s and is a good example for the 
apability of the geneti
 optimisation as it


ontains no less than eleven arbitrary 
oe�
ients, of whi
h the default values are given in Table 2. The

implementation of this model in OpenFOAM uses the following equations:

µt =
ρa1k

max(a1ω, SF2)
(9)

ρ
∂k

∂t
+ ρUi

∂k

∂xi
= P̃k − β∗ρkω

+
∂

∂xi

[

(µ+ skµt)
∂k

∂xi

]

(10)

ρ
∂ω

∂t
+ ρUi

∂ω

∂xi
= ρ

γP̃k

νt
− βρω2

+
∂

∂xi

[

(µ+ sωµt)
∂ω

∂xi

]

+ 2(1− F1)
ρsω2

ω

∂k

∂xi

∂ω

∂xi
(11)

using a produ
tion limiter

Pk = µt
∂Ui

∂xj

(

∂Ui

∂xj
+

∂Uj

∂xi

)

→ P̃k = min (Pk, c1β
∗ρωk) .
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Ea
h of the 
onstants φ ǫ {β, γ, sk, sω} is a blend of an inner φ1 and outer φ2 
onstant, blended via:

φ = F1φ1 + (1− F1)φ2

with blending fun
tion

F1 = tanh



min

[

max

( √
k

β∗ωy
,
500ν

y2ω

)

,
4ρsω2k

CDkωy2

]4




CDkω = max

(

2ρsω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)

F2 = tanh



max

(

2

√
k

β∗ωy
,
500ν

y2ω

)2




where ρ is the density, νt = µt/ρ is the turbulent kinemati
 vis
osity, µ is the mole
ular dynami
 vis
osity, y
is the distan
e from the �eld point to the nearest wall. F1 is equal to zero away from the surfa
e (k-ε model),
and swit
hes to one inside the boundary layer (k-ω model). Note that the produ
tion limiter 
oe�
ient c1 is
proposed as a 
onstant in the original paper by Menter [30℄, but is implemented as a variable in OpenFOAM.

Table 2: Standard values for the k-ω-SST model in OpenFOAM

sk1 sω1 γ1 β1

0.85034 0.5 0.5532 0.075

sk2 sω2 γ2 β2

1.0 0.85616 0.4403 0.0828

a1 c1 β∗

0.31 10 0.09

4.1.3 Spalart-Allmaras 1-eqn model

The Spalart-Allmaras model was originally developed to model aerodynami
 �ows [3℄. It is a one equation

model as it only 
ontains transport equation for the turbulent property ν̃. The various terms in the formu-

lation 
an be identi�ed as di�usion, 
onve
tion, produ
tion and destru
tion of this quantity. Ea
h of these


ontributions to the transport equation has to be 
hosen 
arefully to a

ount for the physi
s of the �ow.

Together with some dimensional analysis and modi�
ations for the sake of numeri
al stability the original

model by Spalart and Allmaras is most often used in this form:

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= Cb1(1 − ft2)S̃ν̃ −

[

Cw1fw − Cb1

κ2
ft2

](

ν̃

d

)2

+
1

s

[

∂

∂xj

(

(ν + ν̃)
∂ν̃

∂xj

)

+ Cb2
∂ν̃

∂xi

∂ν̃

∂xi

]

(12)

with

νt = ν̃fv1, fv1 =
χ3

χ3 + C3
v1

, χ :=
ν̃

ν

S̃ ≡ S +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1

7



and

S ≡
√

2ΩijΩij , Ωij ≡
1

2
(
∂ui

∂xj
− ∂uj

∂xi
)

fw = g

[

1 + C6
w3

g6 + C6
w3

]1/6

, g = r + Cw2(r
6 − r)

r ≡ ν̃

S̃κ2d2

ft2 = Ct3 exp(−Ct4χ
2)

d is the distan
e to the 
losest wall. The trip ft2 was a numeri
al �x by Spalart and Allmaras that makes

ν̃ = 0 a stable solution. This behaviour was desired in 
onjun
tion with a trip fun
tion ft1∆U given in the

original referen
e to 
ontrol the transition point in the �ow. But a

ording to Rumsey [31℄ most users do

not employ this trip fun
tion, but run the model in fully turbulent mode. The proposed standard values for

the 
oe�
ients are given in Table 3. The parameter Cw1 is impli
itly 
al
ulated from

Cw1 =
Cb1

κ2
+

1 + Cb2

s
.

Table 3: Standard values for the Spalart Allmaras model in OpenFOAM

Cb1 Cb2 s κ
0.1355 0.622 0.666 0.41

Cw2 Cw3 Cv1 Ct3 Ct4

0.3 2 7.1 1.2 0.5

a1 C1 β∗

0.31 10 0.09

4.2 Parameter Identi�
ation

The above mentioned turbulen
e 
losure models in
lude a number of parameters that need to be 
alibrated

to the type of �ow that is subje
t of the investigation. Surprisingly, most of these 
oe�
ients have little or

no physi
al relevan
e at all and are merely empiri
al. The number of parameters vary from model to model

with up to twelve in the Spalart-Allmaras 
losure. Lengthy experiments have to be 
ondu
ted to estimate a

range of values for the 
oe�
ients that best des
ribes a spe
i�
 type of �ow 
overed by the experiment. Even

though the authors of the models themselves provided standard values for the �ows they investigated, these

standards are used by industrial users regardless if they are �t to adequately des
ribe a problem, or not.

To identify those parts of the model equations that are most per
eptible to variations in the 
oe�
ients a

simple parameter identi�
ation study was performed where only one parameter at a time was 
hanged while

the others were held �xed at their standard values listed in tables 1, 2 and 3. The variation ranged from

60% to 140% around the standard value. This was ne

essary to make sure the optimisation algorithm only

optimised those values that have a real impa
t on the properties of the �ow. Otherwise the method 
ould

not map unambigously between the value of a 
onstant and the �tness of the solution and would therefore

not 
onverge.

5 Test Cases

5.1 Fitness Fun
tion

The most important aspe
t for a geneti
 optimisation algorithm to work is a proper de�nition of the �tness

fun
tion. The return value of this fun
tion attributes the quality of a solution and the de
ision if a solution is

8



�t for mating or will be dis
arded is based on this value. In the test
ases des
ribed above we used experimental

data and sampled data from the simulations and 
al
ulated the root mean square error between those two.

This value is by de�nition always positive as a �tness value should be [10℄. As the aim of the optimisation

is to rea
h a solution as 
lose to the experimental results as possible, we sear
h to minimise the r.m.s. error.

That means in reverse a smaller �tness fun
tion values represent better solutions. In 
ase several sample

regions are to be 
ompared simultaneously, the errors are 
umulated.

5.2 Ba
kward-Fa
ing Step

The �ow over a ba
kward-fa
ing step is investigated and the results are 
ompared to experimental data

obtained by Makiola [32℄. Simulations were done at two di�erent Reynolds numbers Re = 15, 000 and

Re = 64, 000 and both the standard k-ε and the k-ω turbulen
e model were applied. Computational meshes

of varying sizes were used to ensure grid 
onvergen
e and the �nal results are from grid independent solutions.

To simulate one generation of �fty individuals takes approximately 21 minutes on ten 
omputing 
ores in

parallel. The algorithm saves time by not re
al
ulating individuals that have been passed on from previous

generations, so the total runtime for 30 generations is about seven hours.

The geometry of the 
ase had an expansion ratio of h/H = 2 (see Figure 2) and the examined quantity was

the normalised velo
ity u/U0 at three di�erent positions x/H = 1, 3 and 6 in the 
hannel. That means the

�tness was estimated as being the mean square root error between the simulated results and the velo
ity

data measured in the experiment. The smaller the di�eren
e between the results, the better was the �tness

of the solution. A paraboli
 velo
ity pro�le was pres
ribed at the inlet. Further only the results at position

x = 3H are shown exemplary for the 
omplete dataset. That position is 
lose to the 
enter of the main

re
ir
ulation vortex.

PSfrag repla
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Figure 2: Geometry of the ba
kward fa
ing step test 
ase

5.3 Coni
al Con
entrator and Sudden Expansion

In order to assess the 
urrent state of the art in CFD modeling in a medi
al devi
e model, Stewart et. al. [33℄

from the Ameri
an Food & Drug Administration (FDA) designed a ben
hmark 
ase to develop guidelines

for CFD users in industry. Figure 3 shows the dimensions of the nozzle geometry used in the laboratories

to obtain experimental results. The length of the inlet and outlet 
hannels was not spe
i�ed and should

be 
hosen to ensure fully developed turbulent �ow before entering the 
oni
al 
on
entrator and the out�ow


ondition should not in�uen
e the reatta
hment point in the model. In the simulation the length of the

inlet and outlet 
hannels were 
hosen as 15d and 300d respe
tively, with d being the diameter of the throat.

For a throat Reynolds number of 5000, the inlet velo
ity was spe
i�ed as 0.46m/s. The best simulation

results a

ording to the authors were a
hieved using the Spalart-Allmaras one-equation turbulen
e model

[3℄ (see also Se
tion 4.1.3). Experimental data for this 
ase was gathered from three di�erent, independent

laboratories and was made publi
ly available [34℄. Sin
e this 
ase setup is slightly more 
ompli
ated and

9



requires a larger grid than the previous one, 
omputation time was 
onsiderably longer. One set of 50

individuals over 30 generations took about 36 hours to 
omplete on 10 
ores.

d=0.004m 0.012m

0.04m

z=00.012m
PSfrag repla
ements

20
◦

Figure 3: Dimensions of nozzle for the FDA test 
ase

5.4 In�uen
e of Coe�
ients

Due to the linear 
hara
ter of the 
oe�
ients in the models it is su�
ient to show only the lower and upper

bounds of the investigated range, sin
e intermediate values all lie between these extremes. Tables 4 and 5

show �tness values relative to those obtained using the standard model 
oe�
ients. The lower bound for

this investigation was 60% of the standard value, the upper bound was 140% of the standard value. Sin
e

smaller �tness values mean a better agreement with the experimental data, positive relative values represent

an in
rease in the solution quality, while negative relative values stand for de
reased quality. The relative

�tness is estimated by evaluating

frel =
fstd − fvar

fstd
(13)

where fstd is the �tness of the solution using the standard parameter values and fvar is the �tness value

from the simulation with a modi�ed parameter.

In the 
ase of the k-ε model Fig. 4 shows that only two parameters have a signi�
ant in�uen
e on the


al
ulated velo
ity pro�les, namely C1 and C2. In physi
al terms these two parameters balan
e the produ
tion

and dissipation of turbulent kineti
 energy as the model Eqn. 8 shows. For the optimisation pro
ess using

the geneti
 algorithm that means that only two instead of �ve variables need to be 
onsidered, signi�
antly

speeding up the 
onvergen
e and a

ura
y of the pro
ess.

A similiar investigation of the 
oe�
ients of the k-ω-SST model was performed. Only a few of the

parameters have a noti
eable impa
t on the development of the �ow in this parti
ular 
ase, so the optimisation

will 
on
entrate on these, whi
h are namely γ1, γ2, β1, β2 and β⋆
.

Table 4: Relative �tness values with varied 
oe�
ients for the k-ω-SST model. Positive values stand for

improved solution quality 
ompared to the standard 
oe�
ients while negative values mean de
reased quality.

parameter frel(60%) frel(140%)

sk1 0.010 0.007

sk2 0.000 0.006

sω1 0.028 -0.020

sω2 0.013 -0.005

β1 -0.139 0.097

β2 -0.101 0.064

γ1 0.069 -0.094

γ2 0.059 -0.072

a1 -0.218 0.036

c1 -0.024 0.003

β⋆
0.199 -0.129
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Figure 4: Variations of the 
oe�
ients in the k-ε model and their in�uen
e on the velo
ity pro�le at position

x/h = 3 downstream of the step. The bold line is the result using the standard value from Table 1; the

dotted line represents 140% of this value; the thin line is 60% of the standard value. The triangles mark

experimental data by Makiola [32℄.

The result of the variation analysis for the se
ond test 
ase and the SpalartAllmaras model is shown in

Table 5. In this 
ase almost all the parameters need to be 
onsidered in the optimisation pro
ess.

5.5 Optimisation using GA

Based on the observations from the previous se
tion, we now tried to �nd an optimal setting of the 
losure


oe�
ients. The operators used were a single-point 
rossover operator, tournament sele
tion and bitwise

mutation. The parameters for the setup of the GA are a 
rossover probability PC of 0.6, a mutation

probability PM of 0.03 and the population size S of 50 individuals. Analysis of the 
onvergen
e showed

no signi�
ant 
hange to the optimal solution after just a few generations so the pro
ess was terminated

11



Table 5: Relative �tness values with varied 
oe�
ients for the SpalartAllmaras model. Positive values stand

for improved solution quality 
ompared to the standard 
oe�
ients while negative values mean de
reased

quality.

parameter frel(60%) frel(140%)

Cb1 0.210 -4.527

Cb2 0.206 -0.223

Cv1 -1.502 0.749

Cv2 -0.405 0.428

Cw2 0.094 -0.113

Cw3 -0.031 0.036

κ 0.036 -0.642

s 0.763 -0.735

after 30 iterations. The �tness of a solution is measured as deviation from experimental data. In 
ase of

the ba
kward-fa
ing step we 
al
ulate the sum of the root mean square errors of the velo
ity �eld at three

positions in the �ow downstream of the step. The smaller the error the better the �tness of an individual

solution. Be
ause of the non-deterministi
 
hara
ter of the optimisation routine multiple performan
es of

the algorithm do not always give the same results. A statisti
al analysis of a set of tests shows that all

results lie within a standard deviation of 4%.

5.5.1 Ba
kward-Fa
ing Step

The estimated optimal values are listed in Table 6 for the k-ǫ model and in Table 7 for the k-ω model

respe
tively. Fig. 5 shows the velo
ity pro�les at di�erent positions downstream as 
al
ulated using the

optimised 
oe�
ients 
ompared to the results obtained using the standard values in
luded in OpenFOAM.

The paraboli
 shape of the velo
ity pro�le is better 
aptured by the optimised setup further downstream of the

step. Using the standard 
oe�
ients the transition to fully developed 
hannel �ow takes pla
e 
onsiderably

faster, while the optimised pro�le maintains the dominan
e of the �ow in the upper half of the 
hannel in

a

ordan
e to experiment.

Table 6: Optimum values and standard deviations for the k-ǫ model

C1 σ(C1) C2 σ(C2)
1.91 0.082 1.86 0.093

Table 7: Optimum values and standard deviations for the k-ω-SST model

γ1 σ(γ1) γ2 σ(γ2)
0.606 0.018 0.510 0.021

β1 σ(β1) β2 σ(β2) β⋆ σ(β⋆)
0.053 0.003 0.076 0.019 0.095 0.0008

Another interesting quantity to look at in the development of the �ow behind the step is the length of

the main re
ir
ulation eddy. The k-ε model is known to underestimate this model [?℄. Responsible for this

are the 
oe�
ients C1 and C2 in equation 7. They 
ontrol the rate of produ
tion and dissipation of the

turbulent quantities and should be well balan
ed to give a realisti
 pi
ture of the energy distribution in the

�ow. From the equations one 
ould dedu
e that a slightly higher in�uen
e of the produ
tion term and a

slightly lower in�uen
e of the dissipation term would in
rease the size of the re
ir
ulation eddy. And that is

indeed the result of the optimisation pro
ess. Table 8 
ompares the 
al
ulated reatta
hment lengths of the

vertex with those obtained experimentally.
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Figure 5: Velo
ity pro�les at di�erent positions downstream for the ba
kward fa
ing step 
ase. From left

to right: x/H = 3, 6, 10. Bold line: results using standard values for the k-ε model; dotted line: using

optimised 
oe�
ients from Table 7. Triangles mark experimental data by Makiola [32℄.

Table 8: reatta
hment length of the main vortex normalized with step height for di�erent 
ase setups in


omparison with experimental values [32℄

k − ε k − ω
exp. std opt std opt

Re=15k 8.2 4.7 11.6 5.6 9.8

Re=64k 8.6 4.8 10.9 6.7 11.1

5.5.2 Coni
al Con
entrator and Sudden Expansion

The improved values for the four optimised 
oe�
ients in the SA model are listed in Table 9. As the model

was developed for aerodynami
 simulations, a boundary layer dominated �ow as the 
oni
al 
on
entrator

is una�e
ted by most of the terms in the equation that 
ontrol �ow behaviour in the far�eld. Therefore


hanging the values of the 
oe�
ients in these terms has no impa
t on the �ow in the throat, but mainly on

the re
ir
ulation area right after the sudden expansion. Taking that into a

ount the �tness was evaluated at

three di�erent points behind the expansion, while the r.m.s. error in the 
on
entrator or in the throat turned

out to be largely invariant to 
hanges in the model parameters. An improvement in performan
e 
ompared

to the standard model is yet noti
eable. Espe
ially in the zone behind the sudden expansion where x/D > 0,
the algorithm was able to identify a set of parameters that almost perfe
tly mat
hed the experimental data

as 
an be seen in Figure 7.
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Figure 6: Velo
ity pro�les at di�erent positions downstream for the ba
kward fa
ing step 
ase. From left to

right: x/H = 3, 6, 10. Bold line: results using standard values for the k-ω-SST model; dotted line: using

optimised 
oe�
ients from Table 7. Triangles mark experimental data by Makiola [32℄.

Table 9: Optimum values for the Spalart-Allmaras model

Cb1 Cv1 s κ
0.172 9.187 0.447 0.274

6 Con
lusions

Further tests need to be performed on more 
ompli
ated �ow regimes and di�erent turbulen
e models.

The results presented in this paper show the 
apability of geneti
 algorithms in 
ombination with turbulen
e

modelling. As an example two test 
ases were simulated, looking at three di�erent, 
ommonly used turbulen
e

models. The presented results 
learly show the ability of a non-deterministi
 evolution-based optimisation

method to improve the a

ura
y of �ow simulations. The te
hnique 
an be used to �nd best-pra
tise


oe�
ients of popular turbulen
e models for a spe
i�
 
lass of �ow problems. With moderate e�ort it is

now possible to identify the optimal setup for a simulation and to outperform the 
ommonly used standard

values. It still requires knowledge and understanding of the expe
ted �ow behaviour to 
lassify a given

problem and �nd an appropriate 
alibration 
ase. It is also essential to have experimental or DNS data

available to measure the �tness of a solution.

The results also show that this method is 
apable to expose the generality of a model in assessing the

stability of a simulation to 
hanges in the parameter spa
e. If di�erent variations of a 
ase setup produ
e

a wide variation of 
oe�
ients for one given model, that model seems not suitable to des
ribe that kind

of �ow behaviour. The geneti
 algorithm 
an therefore be used to test new turbulen
e models on their

versatility. In future work we will look into multi-obje
tive optimisation to 
apture more features of the

�ow simultaneously. That will generate a broader pi
ture of the in�uen
e of the parameters and will help

to balan
e a solution between di�erent if not 
ontradi
tory quality requirements. Obviously for su
h an
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Figure 7: Velo
ity pro�les at di�erent positions of the nozzle for the FDA 
ase. From left to right: x/D =

-2, 2, 6. Bold line: results using standard values for the k-ε model; dotted line: using optimised 
oe�
ients

from Table 9. Triangles mark experimental data taken from [34℄.

investigation, more detailed experimental or DNS data is required.
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