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Abstract: In this paper we use a genetic algorithm to identify an optimised set of model param-
eters for a turbulence model to improve its performance in CFD simulations. We look at two test
cases where good experimental data was available and use this data to train the model coefficients
towards the flow problem at hand. We can show a significant performance boost using the opti-
mised parameters with respect to the velocity profiles of the flow. The focus lies primarily on the
k-¢ and the k-w SST models for the first case and the Spalart-Allmaras one-equation model for the
latter. The influence of each arbitrary parameter on the development of the flow is investigated.
After identification of the most influential parameters an optimisation is performed. The best
set of coefficients is determined per test case. The optimisation method is based on evolutionary
computation principles using an elitist genetic algorithm. The optimised set of coefficients can
then be used to solve flow problems of similar configuration to a higher accuracy than by using
the standard values.
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1 Introduction

Numerical simulation of complex flow phenomena is a challenging field in fluid dynamics. Even with comput-
ers getting faster and massively parallel in recent years, the accuracy of the computations is still dependent
on the models that describe the underlying flows. The execution of a direct numerical simulation (DNS)
is still far away from being affordable in terms of computation time. Grid spacing and time discretization
scale with power laws of the Reynolds number and realistic cases are far beyond the capabilities even of
modern supercomputers [1]. While in the 80s and early 90s of the last century memory was the limiting
factor, it is now more likely to be time. For example Erturk et. al. [2] reported the largest computable
Reynolds number for the relatively simple 2D lid-driven cavity flow on a 600 x 600 grid to be 21,000. That is
why most solvers seek to solve the Reynolds-Averaged Navier-Stokes (RANS) equations described in section
4.1, where the main flow velocity is separated into a mean velocity component and turbulent fluctuations,
expanding the NS-equations by additional terms that need to be modelled. Several different approaches
have been developed and applied, ranging from one-equation models like the Spalart-Allmaras model [3],
and two-equation models like the k-¢ model by [4] or the k-w model by [5], as well as various combinations
and variations of these. The empirical nature of these formulations can lead to undesired behaviour, espe-
cially in very heterogenous flows or flow regions with highly unsteady turbulent fluctuations. To improve
the applicability of all the models to as wide a range of problems as possible several improvements and
changes have been proposed. A simple internet search reveals hundreds of different models, some only slight
modifications to the most common ones, others adjusted to specific flow types like, for example, flow around
buildings, oceanic flow, flow through porous media and many others. Common to all of these models is a
formulation that contains a set of arbitrary parameters that need to be determined either by experimental
observation or by describing relations under simplified conditions. The way in which the values are obtained
is up to the developer and closely related to the choice of flows that are used for their determination. The



ideal case would be to find an argument for each closure coefficient separately, but in reality two or more
are involved and are rarely independent.

2 Evolutionary Computation

2.1 Overview

Evolutionary Computation (EC) can be divided into three major categories: Genetic Algorithms (GA) devel-
oped by Holland [6] with contributions by deJong, Goldberg and others, Evolution Strategies first mentioned
in Germany by Rechenberg and Schwefel [7, 8] and Evolutionary Programming described initially by Fogel,
Owens and Walsh [9] in the United States. All three have since then spawned a series of journals and confer-
ences related to the topic and have been further developed in recent years. Optimization procedures, as used
in this work, belong to the category of Genetic Algorithms. The general principle of all flavours of EC is
that a solution to a problem ’evolves’ from a randomly generated initial population in a series of generations.
By application of the three evolutionary operators: selection, crossover and mutation, changes are made to
the individuals that ultimately lead to a better fitness. This fitness is a measure of the quality of a solution.
Good results have been demonstrated in difficult optimisation problems that are either impenetrable by
standard methods, such as NP-complete problems, or that are expensive in terms of evaluation [10]. The
behaviour of GAs can be influenced in different ways. There are, for example, different selection methods to
choose from or the probabilities that control the evolutionary process can be modified.

Many large-scale optimisation problems can only be solved approximately. Genetic Algorithms are a good
choice for these kind of problems. They combine stochastic with direct search, making them very robust
to the topology of the solution space. GAs work on a broad data basis at all times, while pure determin-
istic optimisers tend to concentrate on a single solution. Early studies of the performance of evolutionary
optimisation for a set of a canonical topologies were carried out by deJong [11]. In an engineering context
GAs have been applied to a wide range of applications. Any optimisation problems that require expensive
computations are possible candidates for evolutionary methods. Most of the work that has been published
up until now has been design related. In electrical engineering, for example, to design electric circuit boards
[12] or in hydromechanics in the planning of large-scale water distribution systems [13]. In conjunction with
CFD the evolutionary approach has mainly been used for shape optimisation, e.g. in the design of motor
fan blades [14] or heat-exchanger blades [15]. To our knowledge the use of these techniques to improve the
accuracy of CFD modelling represents a novel approach.

2.2 Methodology

Genetic Algorithms are based on the principle of natural selection and natural genetics [10]. GAs are
randomly initialised, asserting a diverse set of possible solutions. Compared to conventional optimisation
methods they will climb many peaks simultaneously during the evolution process. That reduces the proba-
bility to concentrate on the wrong peak representing a local optimum, as common gradient based methods
would do. Figure 1 depicts the sequence of operations in a typical GA. A set of parameters in a GA will
generally be coded as a string of finite length, most commonly a binary string. Each of these strings (also
chromosome or genotype) represents one possible solution to the optimisation problem. Two opposed strate-
gies are at work here: Exploitation of a single solution versus exploration of the solution space. Classical
gradient based methods concentrate on the former, while sole usage of the latter would correspond to a
random search. GAs manage to reach a surprisingly good balance between those two extremes [16]. Each
population undergoes a simulated evolution. Good solutions reproduce while less favourable solutions are
discarded (or ’die’). Individuals are selected for reproduction depending on their fitness value. This selection
process is stochastically controlled, assigning fitter individuals a higher probability to get chosen. From those
individuals (parents) selected in this manner, offspring (children) are generated by applying crossover and
mutation operators. The crossover operator uses two parents and combines elements from one parent with
elements from the other, creating a new individual that now contains information from both its ancestors.



An example of single point crossover between two chromosomes (binary strings) a and b of length n+1:

a = (anGnp-1 ...a10a0)

b = (bpbp_y ...Db1bo)

with a randomly selected crossover point X €[0,n — 2], creating children:

CL/ = <6Ln ap—1 ... AX 41 bX bxfl... b1 b0>

bl = <bn bn—l bx+1 ax ax—1... a1 a0>

Mutation is in most cases implemented as bitwise mutation where the value of a single bit in a chromosome
is inverted. The probability of mutation or crossover occuring is controlled by external variables Pj; and
Pc respectively. Other parameters that influence the performance of the GA are the population size S and
the number of generations GG. In the optimisation problem at hand, the multiple real values are bit-string
encoded and the fitness objectives are measurable properties of the flow.

[ Initialisation

Evaluation

i

)
)
Selection }
)
)

i

Crossover

i

Mutation

N N YN Y

NO

terminate?

YES

Figure 1: Schematic of the workflow of a typical GA

2.3 Parameter coding

Since the problem variables are real values and their chromosomal representation is a binary string, a mapping
has to be defined. For a single coefficient c € [, cp;] the length of the bitfield has to be determined by taking
into account the desired resolution A. of the interval. The number of bits required is now

n = [logQ (C’IA;CI + 1) - 1} (1

~—



Translation from binary to decimal values can now easily be done as follows:

(Zn: b - 21') =c (2)
1=0 10

Chi — Clo
T 1 (3)

(b ba_r ... b1 bo)y
c = cot+c-

2.4 Multi-objective Optimisation

Complex optimisation problems often seek to find optimal solutions with respect to multiple, often con-
curring, objectives. Many multi objective evolutionary algorithms (MOEAs) have been developed in the
last few decades [17, 18, 19]. Since it is generally the case that a problem has no single solution that is
optimal w.r.t. all objectives simultaneously, a number of equally optimal solutions are created that lie on
the Pareto-optimal front. The algorithm that is used in this study is a fast elitist non-dominated sorting
genetic algorithm (NSGA), that was originally introduced by Srinivas and Deb [17] and improved by Deb
et. al. [20]. The second generation version NSGA-II removed some of the criticised flaws in the original
algorithm and is able to capture high order Pareto surfaces.

Elitism speeds up the convergence of the GA and prevents the loss of the best solutions. The sorting pro-
cedure orders solutions by the level of dominance over concurring solutions. That way the most dominant
individuals are considered to be the fitter ones and therefore have a higher chance to contribute to the next
generation. The algorithm was successfully used in engineering optimisation problems [21, 22|. The imple-
mentation of NSGA-II and the application to the optimisation of turbulence model coefficients is currently
under development and results will be published subsequently.

3 Implementation

3.1 Software Packages

Available for OpenFOAM is a toolset called pyFoam ! written in the object-oriented language Python. It
offers applications to read, modify and run OpenFOAM cases as well as analyse the results. Inspired by this,
the framework for the evolutionary computation capabilities is developed in Python. That way the envoking
and manipulation functions provided by pyFoam can be used and execution of the program can easily be
controlled by using scripts. One of the most important requirements in the development of an EC software
in the context of CFD is the capability to parallelise the code to allow for faster computation spread over
several processing units. A commonly used library to realise this is the MPI (Message Passing Interface)
standard [23]. The Python implementation named mpidpy is used in the current project. While it is not a
full realisation of the MPI standard, it provides all the required functions for the purpose of this research.

3.2 Code Design

In order to write software that is as generic as possible the design process has to be treated with special
care. Based on the guidelines by Gagné and Parizeau on how to write generic EC software tools [24], the
framework structure should meet these minimal criteria:

See the reference for details about how to measure the fulfilment of these goals. The term ’generic’ in this
context needs further explanation. According to the computer dictionary?, generic software is ‘Software
which can perform many different types of tasks but is not specifically designed for one type of application.’
Taking that into account the development of a generic EC framework should not be tailored to one specific
form of optimisation. Operators, such as the crossover or selection operator, should be interchangeable
regardless of the objects they are applied to. In addition the underlying representation of a solution should
not affect the way the GA works. Interchangeability of operators can easily be implemented in modern
object-oriented programming languages. The user can choose at run-time between a given set of predefined

Lhttp://openfoamwiki.net/index.php/Contrib  PyFoam
2http://www.computingstudents.com/dictionary



operators or can add new operators to meet specific needs. This is usually the case for the fitness evaluation
which is a problem dependent function. Reusability and independence of the optimisation problem on top
are key features of the selection and crossover mechanisms. Commonly used realisations of these are therefore
included in the developed framework, but can be altered or new ones implemented. This is possible through
the realisation of the strategy design pattern (see chapter 5 in [25]). Equally flexible is the selection of the
coding algorithm that encodes and decodes the chromosome as described in section 2.3.

In the developed software package control parameters can be set using external configuration files. For every
variable that is subject to the evolution process the user can define lower and upper bounds as well as the
desired precision. This allows running different test cases with different initial setups without altering the
code. The only element that has to be adapted for each case is the fitness evaluation function since it is
problem dependent.

4 Model Equations
4.1 RANS modelling

If a flow is statistically steady it is possible to decompose the flow variables ¢ into an ensemble averaged
part ¢ and fluctuations ¢’ about that average. This process is known as Reynolds Averaging [26] and when
applied to the Navier-Stokes equations leads to Reynolds-Averaged Navier-Stokes (RANS) equations. In case
of incompressible flow with body forces, the continuity and momentum equations can be written as

a(pui)
d(pu;) 0 _ —\ _ Op  OTy
TE oz, (puzuj + puiuj) = " om + 7z, (5)

where T;; are the components of the mean viscous stress tensor:
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The inclusion of the Reynolds stresses pu;u; into the conservation equations introduces new unknowns to

the equation system. These cannot be expressed in terms of the known variables. To close the equation
system these quantities need to be modeled using a turbulence model. The values for these coefficients are
usually the result of a combination of theoretical considerations, computer optimisation and experimental
measurements on simplified flows [27]. But even these empirical ’constants’ have evolved in the 40 years
of their existence, so it can be assumed that they have not yet reached generality for all possible flow
configurations. For example the value for Cs in the k-¢ model (see 4.1.1) has changed by 4% from initially
2.0 to 1.92. Some research was done in a-priori parameter identification by Qian et al. [28], Bardow et al.
[29], and others, but all these considerations did not lead to a better understanding of the impact of the
parameters to the behaviour of the solution.

4.1.1 Standard k-¢ Model

One way of modeling is to solve a transport equation for the rate of dissipation € of turbulent kinetic energy
k leading to the k- model first proposed by Jones and Launder [4] where (Vk3/e) ~ [, with I being the
turbulent length scale. The main problem of the k- model is its treatment in the near-wall region of the flow
where the destruction-of-dissipation term is singular. To avoid this in a layer close to the wall the flow has
to be treated seperately by a wall function. The resolution of the grid close to the walls has to be sufficiently
fine for the wall functions to yield reasonable results, meaning additional care needs to be taken when solving
a problem using this model. The equations as they are implemented in OpenFOAM are as follows:
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There are five arbitrary coefficients in this formulation, each influencing different aspects of the devel-
opment of the flow. The commonly recognised standard values as implemented in the OpenFOAM CFD
software are given in Table 1.

Table 1: Standard values for the k-¢ model as implemented in OpenFOAM
Sk Se Ch Cy O#
1.0 13 144 1.92 0.09

4.1.2 Menter k-w-SST Model

Another approach is to model the specific dissipation rate w, as Wilcox [5] suggested in his version of the k-w
model, in which (vVk/w) ~ I. Menter [30] introduced a modification to that model combining the near-wall
treatment of the k- model and the accuracy in predicting the free flow from the k-w model. He used blending
functions to switch from one model to the other. The eddy viscosity equation is modified to account for
the transport effects of the principle turbulent shear stress (hence the name k-w-SST). Menter’s formulation
is widely used in aerodynamics and is a good example for the capability of the genetic optimisation as it
contains no less than eleven arbitrary coefficients, of which the default values are given in Table 2. The
implementation of this model in OpenFOAM uses the following equations:
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Each of the constants ¢ € {3,7, sk, sw} is a blend of an inner ¢; and outer ¢, constant, blended via:
¢=Fi¢1+ (1—Fi)p2

with blending function
4
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where p is the density, v; = p/p is the turbulent kinematic viscosity, p is the molecular dynamic viscosity, y
is the distance from the field point to the nearest wall. F1 is equal to zero away from the surface (k-¢ model),
and switches to one inside the boundary layer (k-w model). Note that the production limiter coefficient ¢; is
proposed as a constant in the original paper by Menter [30], but is implemented as a variable in OpenFOAM.

Table 2: Standard values for the k-w-SST model in OpenFOAM

Sk1 Su1 7 B1
0.85034 0.5 0.5532  0.075

Sk2 Sw?2 Y2 [32
1.0 0.85616 0.4403 0.0828

ay c1 B*
0.31 10 0.09

4.1.3 Spalart-Allmaras 1-eqn model

The Spalart-Allmaras model was originally developed to model aerodynamic flows [3]. It is a one equation
model as it only contains transport equation for the turbulent property . The various terms in the formu-
lation can be identified as diffusion, convection, production and destruction of this quantity. Each of these
contributions to the transport equation has to be chosen carefully to account for the physics of the flow.
Together with some dimensional analysis and modifications for the sake of numerical stability the original
model by Spalart and Allmaras is most often used in this form:
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d is the distance to the closest wall. The trip f;2 was a numerical fix by Spalart and Allmaras that makes
7 = 0 a stable solution. This behaviour was desired in conjunction with a trip function f;1 AU given in the
original reference to control the transition point in the flow. But according to Rumsey [31] most users do
not employ this trip function, but run the model in fully turbulent mode. The proposed standard values for
the coefficients are given in Table 3. The parameter Cy,1 is implicitly calculated from

C 1+ C
Oy = 221 4 b2

K2 s

Table 3: Standard values for the Spalart Allmaras model in OpenFOAM
Cn Ch2 5 K
0.1355 0.622 0.666 0.41

Cu2 Cuws Cyi Ciz Cu
0.3 2 7.1 1.2 0.5
ay Cq B*

0.31 10 0.09

4.2 Parameter Identification

The above mentioned turbulence closure models include a number of parameters that need to be calibrated
to the type of flow that is subject of the investigation. Surprisingly, most of these coefficients have little or
no physical relevance at all and are merely empirical. The number of parameters vary from model to model
with up to twelve in the Spalart-Allmaras closure. Lengthy experiments have to be conducted to estimate a
range of values for the coefficients that best describes a specific type of flow covered by the experiment. Even
though the authors of the models themselves provided standard values for the flows they investigated, these
standards are used by industrial users regardless if they are fit to adequately describe a problem, or not.
To identify those parts of the model equations that are most perceptible to variations in the coefficients a
simple parameter identification study was performed where only one parameter at a time was changed while
the others were held fixed at their standard values listed in tables 1, 2 and 3. The variation ranged from
60% to 140% around the standard value. This was neccessary to make sure the optimisation algorithm only
optimised those values that have a real impact on the properties of the flow. Otherwise the method could
not map unambigously between the value of a constant and the fitness of the solution and would therefore
not converge.

5 Test Cases

5.1 Fitness Function

The most important aspect for a genetic optimisation algorithm to work is a proper definition of the fitness
function. The return value of this function attributes the quality of a solution and the decision if a solution is



fit for mating or will be discarded is based on this value. In the testcases described above we used experimental
data and sampled data from the simulations and calculated the root mean square error between those two.
This value is by definition always positive as a fitness value should be [10]. As the aim of the optimisation
is to reach a solution as close to the experimental results as possible, we search to minimise the r.m.s. error.
That means in reverse a smaller fitness function values represent better solutions. In case several sample
regions are to be compared simultaneously, the errors are cumulated.

5.2 Backward-Facing Step

The flow over a backward-facing step is investigated and the results are compared to experimental data
obtained by Makiola [32]. Simulations were done at two different Reynolds numbers Re = 15,000 and
Re = 64,000 and both the standard k- and the k-w turbulence model were applied. Computational meshes
of varying sizes were used to ensure grid convergence and the final results are from grid independent solutions.
To simulate one generation of fifty individuals takes approximately 21 minutes on ten computing cores in
parallel. The algorithm saves time by not recalculating individuals that have been passed on from previous
generations, so the total runtime for 30 generations is about seven hours.

The geometry of the case had an expansion ratio of h/H = 2 (see Figure 2) and the examined quantity was
the normalised velocity u/Uy at three different positions z/H = 1,3 and 6 in the channel. That means the
fitness was estimated as being the mean square root error between the simulated results and the velocity
data measured in the experiment. The smaller the difference between the results, the better was the fitness
of the solution. A parabolic velocity profile was prescribed at the inlet. Further only the results at position
x = 3H are shown exemplary for the complete dataset. That position is close to the center of the main
recirculation vortex.

Figure 2: Geometry of the backward facing step test case

5.3 Conical Concentrator and Sudden Expansion

In order to assess the current state of the art in CFD modeling in a medical device model, Stewart et. al. [33]
from the American Food & Drug Administration (FDA) designed a benchmark case to develop guidelines
for CFD users in industry. Figure 3 shows the dimensions of the nozzle geometry used in the laboratories
to obtain experimental results. The length of the inlet and outlet channels was not specified and should
be chosen to ensure fully developed turbulent flow before entering the conical concentrator and the outflow
condition should not influence the reattachment point in the model. In the simulation the length of the
inlet and outlet channels were chosen as 15d and 300d respectively, with d being the diameter of the throat.
For a throat Reynolds number of 5000, the inlet velocity was specified as 0.46m/s. The best simulation
results according to the authors were achieved using the Spalart-Allmaras one-equation turbulence model
[3] (see also Section 4.1.3). Experimental data for this case was gathered from three different, independent
laboratories and was made publicly available [34]. Since this case setup is slightly more complicated and



requires a larger grid than the previous one, computation time was considerably longer. One set of 50
individuals over 30 generations took about 36 hours to complete on 10 cores.
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Figure 3: Dimensions of nozzle for the FDA test case

5.4 Influence of Coeflicients

Due to the linear character of the coefficients in the models it is sufficient to show only the lower and upper
bounds of the investigated range, since intermediate values all lie between these extremes. Tables 4 and 5
show fitness values relative to those obtained using the standard model coefficients. The lower bound for
this investigation was 60% of the standard value, the upper bound was 140% of the standard value. Since
smaller fitness values mean a better agreement with the experimental data, positive relative values represent
an increase in the solution quality, while negative relative values stand for decreased quality. The relative
fitness is estimated by evaluating
fsta = foar

fstd

where fqq is the fitness of the solution using the standard parameter values and f,q, is the fitness value
from the simulation with a modified parameter.
In the case of the k-¢ model Fig. 4 shows that only two parameters have a significant influence on the
calculated velocity profiles, namely C; and C. In physical terms these two parameters balance the production
and dissipation of turbulent kinetic energy as the model Eqn. 8 shows. For the optimisation process using
the genetic algorithm that means that only two instead of five variables need to be considered, significantly
speeding up the convergence and accuracy of the process.

A similiar investigation of the coefficients of the k-w-SST model was performed. Only a few of the
parameters have a noticeable impact on the development of the flow in this particular case, so the optimisation
will concentrate on these, which are namely 1,2, 81, 82 and 5*.

frel = (13)

Table 4: Relative fitness values with varied coefficients for the k-w-SST model. Positive values stand for

improved solution quality compared to the standard coefficients while negative values mean decreased quality.
parameter  fr;(60%)  fre(140%)

Sk 0.010 0.007
k2 0.000 0.006
Sl 0.028 -0.020
S 0.013 -0.005
B -0.139 0.097
Bs -0.101 0.064
T 0.069 -0.094
Yo 0.059 -0.072
a -0.218 0.036
o -0.024 0.003
B 0.199 -0.129
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Figure 4: Variations of the coefficients in the k-¢ model and their influence on the velocity profile at position
x/h = 3 downstream of the step. The bold line is the result using the standard value from Table 1; the
dotted line represents 140% of this value; the thin line is 60% of the standard value. The triangles mark
experimental data by Makiola [32].

The result of the variation analysis for the second test case and the SpalartAllmaras model is shown in
Table 5. In this case almost all the parameters need to be considered in the optimisation process.

5.5 Optimisation using GA

Based on the observations from the previous section, we now tried to find an optimal setting of the closure
coefficients. The operators used were a single-point crossover operator, tournament selection and bitwise
mutation. The parameters for the setup of the GA are a crossover probability Po of 0.6, a mutation
probability Py of 0.03 and the population size S of 50 individuals. Analysis of the convergence showed
no significant change to the optimal solution after just a few generations so the process was terminated
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Table 5: Relative fitness values with varied coefficients for the SpalartAllmaras model. Positive values stand
for improved solution quality compared to the standard coefficients while negative values mean decreased

quality.
parameter [ (60%)  frer(140%)

Cri 0.210 -4.527
Cha 0.206 -0.223
Cu1 -1.502 0.749
C2 -0.405 0.428
Cuw2 0.094 -0.113
Cuw3s -0.031 0.036

K 0.036 -0.642

s 0.763 -0.735

after 30 iterations. The fitness of a solution is measured as deviation from experimental data. In case of
the backward-facing step we calculate the sum of the root mean square errors of the velocity field at three
positions in the flow downstream of the step. The smaller the error the better the fitness of an individual
solution. Because of the non-deterministic character of the optimisation routine multiple performances of
the algorithm do not always give the same results. A statistical analysis of a set of tests shows that all
results lie within a standard deviation of 4%.

5.5.1 Backward-Facing Step

The estimated optimal values are listed in Table 6 for the k-¢ model and in Table 7 for the k-w model
respectively. Fig. 5 shows the velocity profiles at different positions downstream as calculated using the
optimised coefficients compared to the results obtained using the standard values included in OpenFOAM.
The parabolic shape of the velocity profile is better captured by the optimised setup further downstream of the
step. Using the standard coefficients the transition to fully developed channel flow takes place considerably
faster, while the optimised profile maintains the dominance of the flow in the upper half of the channel in
accordance to experiment,.

Table 6: Optimum values and standard deviations for the k-e model

01 O'(Ol) 02 0'(02)
1.91 0.082 1.86 0.093

Table 7: Optimum values and standard deviations for the k-w-SST model

Mnoooom) e o)
0.606 0.018 0.510 0.021

B1 o(B1) Ba o(f2) B a(B*)
0.053 0.003 0.076 0.019 0.095 0.0008

Another interesting quantity to look at in the development of the flow behind the step is the length of
the main recirculation eddy. The k-¢ model is known to underestimate this model [?]. Responsible for this
are the coefficients C; and C5 in equation 7. They control the rate of production and dissipation of the
turbulent quantities and should be well balanced to give a realistic picture of the energy distribution in the
flow. From the equations one could deduce that a slightly higher influence of the production term and a
slightly lower influence of the dissipation term would increase the size of the recirculation eddy. And that is
indeed the result of the optimisation process. Table 8 compares the calculated reattachment lengths of the
vertex with those obtained experimentally.
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Figure 5: Velocity profiles at different positions downstream for the backward facing step case. From left
to right: x/H = 3, 6, 10. Bold line: results using standard values for the k-¢ model; dotted line: using
optimised coefficients from Table 7. Triangles mark experimental data by Makiola [32].

Table 8: reattachment length of the main vortex normalized with step height for different case setups in
comparison with experimental values [32]

k—e k—w
exp. | std opt | std opt
Re=15k | 8.2 4.7 116 | 5.6 9.8
Re=64k | 8.6 | 4.8 109 | 6.7 11.1

5.5.2 Conical Concentrator and Sudden Expansion

The improved values for the four optimised coefficients in the SA model are listed in Table 9. As the model
was developed for aerodynamic simulations, a boundary layer dominated flow as the conical concentrator
is unaffected by most of the terms in the equation that control flow behaviour in the farfield. Therefore
changing the values of the coefficients in these terms has no impact on the flow in the throat, but mainly on
the recirculation area right after the sudden expansion. Taking that into account the fitness was evaluated at
three different points behind the expansion, while the r.m.s. error in the concentrator or in the throat turned
out to be largely invariant to changes in the model parameters. An improvement in performance compared
to the standard model is yet noticeable. Especially in the zone behind the sudden expansion where x/D > 0,
the algorithm was able to identify a set of parameters that almost perfectly matched the experimental data
as can be seen in Figure 7.
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Figure 6: Velocity profiles at different positions downstream for the backward facing step case. From left to
right: x/H = 3, 6, 10. Bold line: results using standard values for the k-w-SST model; dotted line: using
optimised coefficients from Table 7. Triangles mark experimental data by Makiola [32].

Table 9: Optimum values for the Spalart-Allmaras model

Cbl C’ul S K
0.172 9.187 0.447 0.274

6 Conclusions

Further tests need to be performed on more complicated flow regimes and different turbulence models.
The results presented in this paper show the capability of genetic algorithms in combination with turbulence
modelling. As an example two test cases were simulated, looking at three different, commonly used turbulence
models. The presented results clearly show the ability of a non-deterministic evolution-based optimisation
method to improve the accuracy of flow simulations. The technique can be used to find best-practise
coefficients of popular turbulence models for a specific class of flow problems. With moderate effort it is
now possible to identify the optimal setup for a simulation and to outperform the commonly used standard
values. It still requires knowledge and understanding of the expected flow behaviour to classify a given
problem and find an appropriate calibration case. It is also essential to have experimental or DNS data
available to measure the fitness of a solution.

The results also show that this method is capable to expose the generality of a model in assessing the
stability of a simulation to changes in the parameter space. If different variations of a case setup produce
a wide variation of coefficients for one given model, that model seems not suitable to describe that kind
of flow behaviour. The genetic algorithm can therefore be used to test new turbulence models on their
versatility. In future work we will look into multi-objective optimisation to capture more features of the
flow simultaneously. That will generate a broader picture of the influence of the parameters and will help
to balance a solution between different if not contradictory quality requirements. Obviously for such an

14
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Figure 7: Velocity profiles at different positions of the nozzle for the FDA case. From left to right: x/D =
-2, 2, 6. Bold line: results using standard values for the k-¢ model; dotted line: using optimised coefficients
from Table 9. Triangles mark experimental data taken from [34].

investigation, more detailed experimental or DNS data is required.
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