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Abstract: New methods are developed for convergence erroimasbn and
convergence acceleration in iteratively solved [@mis. The convergence error
estimation method is based on the eigenvalue asalydinear systems, but it can also
be used for nonlinear systems. The convergenctedtive method is accelerated by
subtracting convergence error from the iterativedplculated solutions. The
performances of these methods are demonstratetihdotaplace, Euler and Navier-
Stokes equations.
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1 Introduction

In iteratively solved problems, errors in numericalculations usually come from three differentrses.

The first is the round-off error due to the finiiéthmetic precision of computer and it dependshentype

of computer processor and compiler. The seconthdscbnvergence error that can be defined as the
difference between the exact and iterative solgtiohdiscretized governing equations. Here, thectexa
solution is defined as the solution that exactlisfias the discretized governing equations witheso
residual. Although it is not always possible taluee the residual values to the desired level, the
convergence error can be reduced by solving theretized governing equations with smaller residual
tolerance. The third source is the truncation earut it results from neglected terms in the Taglenies
expansion. A truncation error depends on the acgudd the finite-difference stencil used in the
discretized equations, and the finite-differenapsize. In iteratively solved problems, if the mdeoff
error is neglected, the total error can be defiasdhe summation of the convergence and truncation
errors. This paper concentrates only on the comvegerror.

There is a great interest in estimating the coremeg error. Knowing when to stop iteration is
important in terms of computational efficiency aatturacy. In most of the iteratively solved prolkdem
the reduction in residual is used as a stoppirtgrain. Unfortunately, the reduction in residualynmet
be a reliable measure for the convergence errdfeent methods were developed to measure the
convergence error. Ferziger and Peric [1,2] udgdngalue analysis and assumed that the system of
nonlinear equation has linear behavior as it geisec to the converged solution. Bergstrom, anda®e
[3] implemented the same method to estimate theergence error for a flow problem in a draft tube.
Roy et al. [4] used an exponential equation tonesi the convergence error of hypersonic flow



problems. Alekseev [5] calculated the convergemoer @ising an adjoint parameter and time derivative
Brezinski [6] developed a method to estimate thheran the solution of linear systems. In the prise
study, a new method is developed that estimatesaheergence error in iteratively solved problefiise
method is based on the eigenvalue analysis oftlisysiems, as presented by Feziger and Peric [A2].
equation is developed between the convergence antbcorrection vectors. The convergence erromovect
is expressed as the linear combination of the ctiore vectors and the coefficients of the correttio
vectors are calculated by the least-squares miaiioiz of the derived equation [7].

Once knowing how to estimate the convergence etinernext step is to develop a convergence
acceleration method. In literature, there are dely research on convergence acceleration based on
convergence error estimation. Some of the extréipal®ased convergence acceleration methods estimat
the convergence error. Hafez et al [8] extrapoldtex exact solution by using the convergence error
which is estimated with the power method. Jespresel Bunning [9] accelerated the iterative protsss
annihilating the dominant eigenvalues. Dagan féjeloped a convergence acceleration method based
on the power method. Sidi [11, 12] used diffextrapolation methods to accelerate the convergehce
iterative solutions. The convergence acceleratiethod presented in this study is based on the &tim
of convergence error.

2 Convergence Error Estimation

In this section, the new method to estimate theveaence error in iteratively solved problems is
presented. Although the developed method is bagetthe eigenvalue analysis of linear systems, it can
also be used for nonlinear systems, especiallyngunear convergence when nonlinear systems behave
like linear systems and for which the error estiorais most needed. First, the iterative solutibrthe
system of linear equations is reviewed. Similaieeg can also be found in refs. [1, 2]. The systdm
linear equations can be defined in the followingrfo

Aw=hb . (1)

In the equation abovey is the exact solution of the system. An iteraiebeme can be constructed by
splitting matrixA as follows:

A=M-N . (2)
In this splitting,M is chosen so that the system can be easily solvatilean iterative scheme,
MW" = N&" +b , (3)

where W' is the iterative solution of the state variabletoe aftern iterations. Sincew is the exact
solution of the system, it also satisfies the tigeascheme given in EqQ. (3)

Mw = Nw+b . (4)

At iteration n, the convergence error vector can be defined edlifference between the iterative and
exact solution vectors,

E"=W-w. (5)
Defining the correction vectad” as,
O =W W (6)

and using. (5), the following relation between tioerection and convergence error vectors can bigenyi
thus,



O =em-g" . (7)

Subtracting Eq. (4) from Eq. (3) gives a relati@tvizen the convergence error vectors of two suseess
iterates,

" =MTNe" . (8)

The iterative method converges if the spectralumdif the matrixM™N is lower than one. The
convergence of the iterative scheme can be analyitbdhe use of eigenvalue, and eigenvectorg, ,

M™'Ng, =A4,, k=1, KMAX, 9
whereKMAX is the total number of state variables in the sgsteor the case of complex eigenvalues, the
following equation is also satisfied:

MNg, =A¢., k=1, KMAX, (20)

where A, and ¢, are the complex conjugate of the eigenvalues &yeheectors, respectively. Most of

the time, iterative methods have complex eigenwl@®nsidering the more general case and assuming
real numbers as the special case of complex numibeifse present derivation, complex eigenvalues an

eigenvectors are used. Using the linearly independigenvectors, the initial erraf may be expressed
as a linear combination of eigenvectors:

KMAX

£=2 ag+ad (11)

where a, and a, are generalized Fourier coefficients. The combamatf Egs. (8) and (11) yields:
Kuax .
g= Z M N(¢kak+¢kak) . (12)
k=1

Substituting Egs. (9) and (10) into the equatioovabgives,
KMAX e
£=7) aAs +ard, . (13)
k=1
By induction, the error vector at iterationcan be written as:
KMAX

e'= 2 aA)a +a, (4) 4 . (14)

After a number of iterations, the contribution bétlargest eigenvalu& becomes more significant, and
the error vector can be approximated as:

e =a(A) ¢,+a, (1) 4, . (15)

The derivation of above equations can also be faorRefs. [1, 2]. In the present study, the follogi
method is developed to estimate the convergence, evhich is one of the original contributions bfg
paper.Rearranging Eq. (15) yields a relationship betwtbenconvergence error vectors at iteratieri, n

andn-1:

= (A +A) e - AN (16)

It is not difficult to show that the convergenceoevector can be expressed as a function of thecion
vectors,



(C,+C,)o"+C,0om*
c,+C,-1

n+l
I3

17)
Substituting Eq. (7) into Eq. (16) gives the follog relationship between the correction vectors at
iterationn, n-1 andn-2:
O"=Co"+C,0" 7 . (18)
In the equation given above, andC, are real numbers and they are functions of eigaasa
Co=A+A (19)
C,=-(A) -
Assuming thatl, is the magnitude of the largest eigenvalue énds its phase angle, eigenvalues can be
written as:
A =% and =vet. (20)
Then, Eqg. (19) becomes
C, =2, cos,, (22)
C,=-7.

In the calculation of the convergence error vedimst, the coefficient€; andC, are determined from the
least-squares solution of Eq. (18). Then, using(Ed), the error vector can be evaluated as a ifumof
the correction vectors of two successive iteratidnsorder to calculate the coefficients, the ccfiomn
vectors from the current and previous two iterationust be stored. In this method, the calculatioih®
values of eigenvalues is not required because #hees of coefficient<C; and C, are sufficient to
determine the convergence error vector.

Increasing the number of eigenvalues may imprdwe t¢onvergence error estimation. For
example, approximating Eq. (14) by using the finstl second largest eigenvalues, the convergenae err
vector can be formulated as:

&' =a(A) g+a, (1) dira 1) ¢ +d 1) 9. . (22)
The following relation can be derived to calcultite convergence error vector at iteratigri:

C,+C,+C,+C,) " +(C,+C,+C,) 0" +(C,+C Jo"?+(C )o"*®
C +C,+C,+C,-1

gn+1 - (

(23)
Similarly, the relation between the correction wedt iterationn and the correction vectors at iterations
n-1, n-2, n-3, andn-4 can be written as:

0" =C 0" +C, 0" +C " +C, o . (24)

In parallel with the previous derivations, the reakfficientsC,, C,, Cs;, andC, in Eq. (23) are the
functions of eigenvalues and these coefficientsaleulated from the least-squares solution of(E4),

Co=A+A +A,+ 4, (25)
C = _(/]MI +/11/]2+/11/1*2+/]*1/] 2"'/T1/T +A {1 z) )

CB :A1/]IA2+A1/]*1A*2+A{] Z]*2+jlﬂ {1 2



C, ==(AAA1,)
Assuming that,and |, are the magnitudes of the largest and the se@gddt eigenvalues aré and
g, are their phase angles, above equation can bienvas:
C, =2, cosf, + 2, co¥, , (26)
C, =-[(2,cos,)( 2, co8,) +1; +13] ,
C,=17(2,cos8,)+1%( 2, cod) ,
c,=-(122) .

In the calculation of these coefficients, the cdiimm vectors must be stored from the current astfbur
iterations. As explained above, in the calculatioihthe convergence error vector, the values of
eigenvalues are not required. The convergence eeaor can be calculated as a function of coieffits
C,, Gy, Cs, andC4.

The relations given above can be generalized for agbitrary number of eigenvalues.
Approximating Eq. (14) by using thd..., number of eigenvalues, the convergence error besome

e =a(A) g+a () g+ +a (Ae) Bu, *an, () B (27)

By induction, the convergence error vector cargéeeralized for an arbitrary number of eigenvalues,
Meigen, as:

Mg 2M g Mgen
[ > Cm]é” +[ > Cm]é”‘1+[ > C,11]5"‘2+...+(C2M)5”_2“"9’gen+1
n+l — m=2 m=3

m=1

£ T (28)
> Cc,-1
m=1
Similarly, the correction vector can be generaliasd
2M ggen
y=> Com . (29)

m=1

As previously explained, the coefficiers, in Eq. (28) are real numbers, and they are detexghfrom
the least-squares solution of Eq. (29). In thewaton of the coefficients, the correction vectfssn the
current and lasBMegen iterations must be stored. Although, increasing tlamber of eigenvalues may
improve the accuracy of convergence error estimathis improvement may also result in an increase
the amount of memory required to store the comactectors from the previous iterations.

In many iteratively solved problems, the convergemate is superlinear, so the convergence
accelerates as the error gets smaller. For examphewton’s method, a quadratic convergence rate c
be achieved and the residual can be reduced tortlez of machine epsilon in a few iterations. Ucts
cases, the estimation of convergence error witaraitrary number of eigenvalues may be difficuliefe
may not be sufficient iterations to determine tbefficients in Eq. (29). Smaller number of eigdoea
may be used in these problems.

3 Eigenvalue Estimation

Although the calculation of eigenvalues may notrigeded for convergence error estimation, above



relations can also be used in the calculation gémralues. If the number of eigenvalue is one,(Et)
can be used in the evaluation of the magnitudetam@hase angle of the largest eigenvalue:

I, =4-C, (30)

Cl
2,/-C,

cosé, =

If the number of eigenvalues greater than one,utations of the magnitude and the phase angles of
eigenvalues require the solution of the systemaflinear equations. The number of equations to be
solved is twice the number of eigenvalues. For eagbnvalue, there are two unknowns: magnitude and
phase angle. In order to generalize the calculatfonan arbitrary number of eigenvalues, the fwilhg
modifications can be useful. Eq. (21) can be nediés:

l,cosg, =D, (31)
12co8 #) =D,

where the new coefficient3; andD, are the functions o, andC, and are given

Cl
= 32
D, = (32)
D2 = ClD1+C2
Using the Chebyshev polynomials, Eq. (31) can bdified as:
IlTl(Xl) = Dl (33)

I7T,(x) =D,

wherex; = cod. If the numbers of eigenvalues is two, the magnitaidg the phase angles of the largest
and the second largest eigenvalues can be caldudgtsmodifying the Eq. (26) in the following form:

l,cosf, +1, co®,=D, (34)
I2cos( 2,)+1? cog B,)=D,
I°cos( #,)+1° cog 8,) =D,
I*cos(49,)+1? cog 4,)=D,
where the coefficient®,, D,, D; andD, are the functions of;, C,, C; andCy,:
C

D:_1 35
=2 (35)
D2:ClDl+C2

D3 = C].DZ +CZDl+gC3

D, =C,D,+C,D,+CD,+2C,
Similarly, using the Chebyshev polynomials Eq. (84 be modified as:
LT, (%) +1,T,(x,) =D, (36)



|fT2(x1)+|§T2(x2): D,

1T, (%,) +13T5(%,)

D,

LT, (%) +15Ta(x;) = D

wherex, = cog. For an arbitrary number of eigenvalues, abowsatgns can be generalized as:

4

Magen
> T (%,)=D,, n=1 M, (37)
=1
where
n n-1
D, :EC" +>» CD, ., n=1, 2Meigen

k=1

In the present study, above system of nonlineaatianus is solved using Newton’s method. Newton'’s
method requires the Jacobian matrix. The entrigheflacobian matrix are the derivatives of thalued
vector with respect to the magnitude and phasesasfghe eigenvalues. The size of the Jacobianmatr
(2Meiger9*(2M eiger)-

4 Convergence Acceleration

Once the convergence error is estimated accuratetyexact solution which satisfies the discretized
governing equation can be estimated. A convergaoceleration method can be developed by subtracting
the convergence error from the iterative solution.

W =W -g" (38)

where w is the estimated exact solution. After estimatimg €xact solution different approaches may be
used for convergence acceleration. In the presentystwo convergence acceleration methods are
developed. In Method |, at everyMgqe, iterations, the convergence error is calculated en it is
subtracted from the iterative solution. New iteya$ are started from the estimated exact solutidbn)n

the next Mqgen iterations the original iterative procedure is @ked without calculating the exact
solution. In this method, Egs. (28) and (29) arplemented at everyN2sqe, iterations and hence, the
convergence acceleration procedure is not contmubu Method Il, the exact solution is estimated
continuously and stored as a new variable. As thginal iterative algorithm progresses the exatiitimn

is calculated.

The algorithm in Method | can be given as:

1. Initialize the iterative solutioni’.

Execute the original iterative procedureMiie, of times, and store the correction vectors from
these iterations.

Evaluate the coefficients,'s using Eq. (29).

Calculate the convergence error using Eq. (28).

Estimate the exact solutiom; , using Eq. (38).

Initialize the iterative solution with the estimdtexact solution.

Repeat steps 2 — 6 until the norm value of resigustnaller than a specified residual.

n

No o khw



The algorithm in Method Il can be given as:

1. Initialize the iterative solutiony’ .

Execute the original iterative procedureMRe, of times, and store the correction vectors from

these iterations.

Evaluate the coefficients,'s using Eqg. (29).

Calculate the convergence error using Eq. (28).

Estimate the exact solutiom; , using Eq. (38).

Define the exact solution as a new variable. (do inttialize the iterative solution with the

estimated exact solution)

Calculate the norm value of residual based on évevariable.

Execute the original iterative procedure to calulaew correction vector (one iteration)

9. Repeat steps 3 — 8 until the norm value of resithaged on the new variable is smaller than a
specified residual.

N

o g s

© N

Although, in both methods, the same equations aesl tio calculate the convergence error and exact
solutions, there are some differences in the implgation of convergence acceleration algorithms. |
Method I, the exact solution is estimated at e& Mg, iterations, and this solution is used as an initia
solution for the original iterative procedure. Iretlod Il, new variables are used for the estimatextt
solution. At each iterations, while the originakrttive solution progresses, the exact solution is
calculated.

5 Reault

The accuracy of the method for estimating the cayemce error is tested for both linear and nonaline
problems. All calculations in this study are penfied with double precision on a 1.5GHz Pentium I\ldu
core processor. As a linear problem, a two-dimeradidaplace equation in a square domain (0<x<1;
O<y<1) is solved using the successive over relarathethod with a relaxation parameter@f The
Laplace equation is one of the few equations wheo®et solution can be analytically evaluated whté t
appropriate boundary conditions. A second—ordetrakdifference scheme is used on a uniform catesi
grid. The boundary condition is chosen to satibfy solutionp(x,y)=100xy. Since the terms related to the
truncation error are eliminated, this analyticdution is also the exact solution of the Laplaceatipn
that is discretized with the second-order and edxifference scheme [1, 2]. The real value of the
convergence error is calculated as the differeratevden the exact solution and the computed solution
from the current iteration. The estimated erraitéfined as the error calculated with the proposethod
explained in section Il. B. In order to have betitaderstanding of the order of the error in eadhyeof

the convergence error vector, the norm valueseatefined according to following relations:

l KMAX p %
ety =g 5 16"+ el =] -l (39)

The first equation given above fpel andp=2 corresponds to the absolute-mean and root-npzeres,
respectively. Unless otherwise stated, in all figuto predict the convergence error, the number of
eigenvaluesMggen, is set to 4. Solving the Laplace equation witlrid size of 80X80 gives the number
of state variableMAX, 6400.

Figure la shows th{i}}e"2 norm values of the real and estimated convergenoese and their
differences. The sole reason for showing the noatoer of residual vector in Figure la is to see the



effectiveness of using residual values to estirttadeconvergence error. The norm values of theluesi
are almost two orders of magnitude smaller thanh ¢iidche convergence error. The results show that
although the residual itself is not a good paramet@redict the convergence error, the proposeithode
can accurately estimate the convergence error.hAsnumber of iterations increases, the difference
between the real and estimated errors becomesesmhll Figure 1b, the effects of the number of
eigenvalues on the estimation of the convergenoe are presented. The results show that incredking
number of eigenvalues from 1 to 64 slightly impreylee accuracy of the error prediction. Howeveg th
improvement requires more memory to store the ctaoe vectors. As shown in Eq. (29), usiNgigen
number of eigenvalues entails the storing of threemtion vectors from the lastVRe, iterations. In the
estimation of the convergence error witly,, Number ofeigenvalues, the convergence error estimation
starts after Rlggen NumMber of iterations. In the present study, uthit iteration is reached, the
convergence error is estimated with the maximum bamof available eigenvalues. The convergence
error estimation starts at the fourth iterationusyng only one eigenvalue. Between iterations ol
2Mgen, the convergence error at iterations estimated using th&@2 or (-1)/2 number of eigenvalues,
depending on whether the iteration number is everdd, respectively.

The norm values of the convergence error estimaséty the proposed method and the method
given in refs. [1, 2] are compared in Figure lc.this comparison, the value of the over relaxation
parameter,2, is set to 1.95 which is the maximum attainatdéu® for this grid size. The solution
diverges with the higher values & This figure clearly shows the superiority of ffreposed method. In
the method given in refs. [1, 2], the convergenterds estimated by using the largest eigenvakrch,
the accuracy level of the method is fixed. Howetlee accuracy level of the proposed method can be
adjusted by changing the number of eigenvalues.Fidure 1c, the proposed method uses two different
numbers of eigenvalue4:and 64. In terms of estimating the convergenaa gthe proposed method with
4 eigenvalues is more successful than the metha gn refs. [1, 2]. The same figure also shoves the
accuracy of the proposed method improves as thebeurof eigenvalues increases. If the proposed
method uses 64 eigenvalues, the real and estineateds cannot be distinguished after 100 iterations
Figure 1d shows the effects of the value of thexaion parameter2, on the estimation of the
convergence error. In all cases, the values aihastid and real errors are very close to each dtoetthe
relaxation parameter of 0.7 and 1.3 some oscitiatere observed in the norm values of error diffege

Next, the performance of the convergence erromasitbn method is analyzed for nonlinear
problems. Two dimensional Euler and Navier-Stolkgsations are solved around a NACAQ0012 airfoil at
a transonic flow condition (M=0.73@=2.78, Re=6.5x16). Solving the equations at transonic flow
condition increases the nonlinearity in the solutiA finite volume method is used for spatial
discretization and the flow variables are definetha cell centers. Centered differencing is usedie
spatial derivatives and the second-order and feandler artificial viscosities are added to enforce
numerical stability. Time integration is performeding an explicit, four-stage Runga-Kutta scheme.
Local time stepping and a multigrid method are enpénted to accelerate the convergence to obtain a
steady state solution. The multigrid level for theler and Navier-Stokes solutions are three and, fou
respectively. Characteristic boundary conditiores iamposed at the far-field boundary based on a one-
dimensional eigenvalue analysis. In the solutiothefEuler equations, zero normal mass flux is reeftd
at the airfoil surface and the pressures are extatgal from the inside cells using the normal moiuen
equation. In the Navier-Stokes solutions, no-slifgl adiabatic wall conditions are used at the iairfo
surface, and the Baldwin-Lomax eddy-viscosity modeincluded for turbulence closure. In the Euler
computations, the grid size is 129x33, in the Na@itokes computations, the grid size is 257x65 thed
minimum grid spacing next to the wall is®LOHaving four variables in each cell, the value&KBIAX are
17028 and 66820 in the solutions of Euler and NaStekes equations, respectively. It is difficdtfind
analytical relations for the exact solution of theler and Navier-Stokes equations. Therefore, @seh



problems, the exact solutions are estimated bwtitey solutions until the residual norm becomes the
order of a machine epsilon. The real convergemoar és calculated as the difference between the
solutions for the current iteration and the exattitton. As in the solution of the Laplace equatithe
estimated convergence error is calculated by uiegnethod presented in section I11.B. The convargen
error is calculated on the finest grid of a multgeycle and all four conservative flow variables ased

in the error estimation.

As a nonlinear problem, the convergence error aiglg first performed on the Euler equations.
Figure 2a shows the change of the real and estihgaters and their difference in relation to thenter
of iterations. In this figure, the convergence ersaestimated using 4 eigenvalues. Although theagns
are nonlinear and the flow condition enforces tbelinearity, the real and estimated errors are strtte
same. The difference between the estimated an@memk decreases as the number of iterationsdsese
Figure 2a also shows the variation of the residvti respect to the number of iterations and it ban
seen that there is a large difference betweendsidual and convergence error. Therefore, resichagl
not be a good parameter to predict the error. Tleets of the number of eigenvalues on the estionabif
the convergence error are analyzed in Figure 2tsule show that the accuracy of convergence
estimation method can be significantly improved ibgreasing the number of eigenvalues. Figure 2c
shows that in all three norms, the proposed meghedicts the convergence error very accuratelyureig
2d shows that as the CFL number increases the vaitnas of the error difference get smaller.

Last, the performance of the proposed method isodstrated for the Navier-Stokes equations. In
the Navier-Stokes equations, there are additiooalimear terms related to viscous fluxes and tuahce
modeling. The real and estimated errors are datedby the similar methods used in Euler equatitms
order to show the effects of the precision errorttua performance of the convergence error estimatio
method, computations are performed with singleipi@t. Figure 3a shows that the proposed method can
estimate the convergence error very accuratelpdotinear problems. The estimated error almosttéxac
matches the real error and large reductions ariexath in the difference between the estimated aad r
errors. In Figure 3b, it can be seen that, increpsiie number of eigenvalues decreases the differen
between the real and estimated error. Howeveretimgrovements in error estimation are achieveteat
cost of a large increase in CPU time. For manyrezgging problems, setting the number of eigenvalues
between 1 and 4 may be sufficient. The real aninaettd errors comparison using different norms is
shown in Figure 3c and again, excellent results areieved for non-linear problems. In iterative
schemes, it is not always possible to reduce thielwal values to the order of the round-off eriorthe
solution of the Navier-Stokes equations, only the.@Qumber of 1.5 reduces the residual values tb tha
order. Hence, the effects of the CFL numbers oratioeiracy of the convergence error estimation naetho
could not be explored for the Navier-Stokes equatid-igure 3d compares real and estimated errdhg at
initial iterations with the estimated error beirgjaulated with different numbers of eigenvaluessu®s
show that the convergence error can be accuraéipaed in the first twenty iterations.
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The theory used for convergence error estimatiotessed for eigenvalue analysis. Both the
absolute value and phase angle of eigenvaluesvateaged. Different numbers of eigenvalues are .used
First the eigenvalue analysis is performed in temtive solution of the Laplace equation. The &quds
solved using the Gauss-Seidel method. Theoretigdles show that the magnitude of the largest bad t
second largest eigenvalues in this method cantbeated with the following equations:

|, =1-7°h?, |, = }gnzhz (40)

In the estimation of the largest eigenvalue, thdopmance of the method is given in Figure 4a. The
number of eigenvalues is chosen as 1, 2 and 3héwsrsin the figure, in all cases, the magnitud¢hef
largest eigenvalue converges to the same value.cbheerged values are in between the theoretical
values of the largest and the second largest eidges. In Figure 4b, the second largest eigenvalue
estimated with the proposed and theoretical appesmare compared. In the calculation of the second
largest eigenvalue, the number of eigenvaluesxixdfias 2 and 3. The figure shows that the estimated
eigenvalues approach to the theoretical value.igmrE 4c, the magnitude of the largest eigenvasue i
estimated for different values of the over relaxajparameter. These calculations are performedanilh

one eigenvalue. The result show that as the vdltleemver relaxation parameter increase, the nbadgi

of the largest eigenvalue decrease. Since theeasithe phase angles is one in all calculatidres phase
angles of the eigenvalues are not shown.

Eigenvalues are also calculated in the iteratiiatism of nonlinear equations. Figure 5a shows
the estimation of the largest eigenvalue with défeé number of eigenvalues. The result show thathe
solution of the Euler equations, the estimateddstrgigenvalues converge to the same value. Ceghpar
to calculations with Laplace equations, the conereg of the largest eigenvalue with three eigemslu
shows more oscillations. This may be related torthiinearity of the problem. The effects of theLCF
number on the magnitude of the largest eigenvateeshown in Figure 5b. The result shows that the
increase in the CFL number reduces the magnitud¢heflargest eigenvalue and produces some
oscillations. The magnitude of the largest eigemwas also estimated in the solution of the Na@itrkes
equations. Figure 5c shows the result calculateth wine and two eigenvalues. As in previous
calculations, the magnitude of the largest eigaresmtonverges to the same value in both cases.

In the present study, the magnitude and the phaglesaof eigenvalues are calculated by solving a
system of nonlinear equations. This system is solwvsing, Newton’s method. In Newton's method,
Jacobian matrix is solved at each iteration. Reshdwv that Newton’'s method do not converge at some
iterations. This problem is frequently encountengttn the number of eigenvalues is large. For tigela
number of eigenvalues, the Jacobian matrix becosimegular. In the solution of the Jacobian matrix
singular value decomposition is used.
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The performances of the convergence acceleratiathads are evaluated for both linear and
nonlinear problems. Figure 6 shows the result i linear Laplace equation. In the solution of the
Laplace equation the Gauss-Seidel iterative methoded. The results are calculated with the maximu
value of the over relaxation parameter. If no amedion method is used, the norm value of residual
converges to order of round of error level arou@Qiterations. If only one eigenvalue is used, ddtl
improves the convergence slightly. A large reductio the number of iterations can be achieved in
Method Il. The norm value of residual can be reduethe same level around 750 iterations. This is
big reduction in the number of iterations. If thember of eigenvalues is increased to four, the
improvement in the convergence of Method | canlearty seen. However, the same improvement is not
observed in Method Il. If the number of eigenvaliseshosen as 16, more improvements can be achieved
in Method I. Further improvements can be gaingdefnumber of eigenvalues is increased to 64. lisr t
case, the convergences of Method | and Il are dlsarse. Results show that with only one eigenvalue,
large improvements can be achieved in the convesgeh Method Il. The performance of Method 1 is
poor if only one eigenvalue is used. However, begberformances can be achieved by increasing the
number of eigenvalues. Since increasing the nurmabeigenvalues also increases the CPU time, in the
solution of linear Laplace equation, the perforneaatMethod Il is better.

The performances of the acceleration methods folimear problems are studied in the iterative
solution of the Euler and Navier-Stokes equatidnsthese solutions, four-stage Runga-Kutta scheme,
local time stepping and a multigrid method are u§dt proposed convergence acceleration method is
implemented at the finest grid level. Results nesented for the maximum value of the CFL number.
Figure 7 shows the performances of the method&fiber equations. As in the solution of the Laplace
equation, Method Il achieves a large reductiorhentumber of iterations with only one eigenvaluéhw
the original iterative algorithm, the norm valueretidual can be reduced to order of round of @rror
2000 iterations. With the implementation of MetHbdthe same residual reduction can be achieved in
1000 iterations. For the number of eigenvalues, @f dnd 16, the convergence of Method | is slowhe
performances of both convergence acceleration rdethee getting closer to each other if the number o
eigenvalues is set to 64. In Method Il, better @vgences can be achieved with a smaller number of
eigenvalues. This may be important as far as thg t@Re is concerned. The results with Navier-Stokes
equations are shown in Figure 8. With the origiibelative algorithm, 60,000 iterations are needed t
reduce the norm value of residual to order of rooffderror. If Method | is activated, a significant
reduction in the number of iteration is achievetle Tame convergence level is achieved in 6000 and
16000 iterations with a number of eigenvalues ofab@ 4, respectively. An attempt to increase the
number of eigenvalues further is failed. The perfance of Method Il is deteriorated in the solutain
Navier-Stokes equations. Compared to the convesg@mprovements achieved in the solution of the
Laplace and Euler equations, the improvement idlsmthe solution of the Navier-Stokes equatiors.
Figure 8c, the pressure distributions of the expenital and computational results are comparedeAs s
from the figure, the pressure distributions areueately matched.
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6 Conclusion and Future Work

In iteratively solved problems, new methods areettgped to estimate the convergence error and to
accelerate the convergence. The convergence atioration method is based on the eigenvalue amsalysi
of linear systems, the accuracy of which is vetiffer both linear and nonlinear problems. The tssul
show that the convergence error can be accuragtijmated with the developed method. The residual
itself, on the other hand, is not considered t@ beliable parameter to predict the convergena®.€fhe
performance of the proposed method on the estimatiche magnitude of eigenvalues is also studied.
Results show that the developed method can be tosestimate the magnitude of the eigenvalues. The
use of Newton’'s method in eigenvalue analysis naase some problems. These problems may be related
to having singular Jacobian matrices. Two methads developed for convergence acceleration. The
convergence acceleration is achieved by subtrattiagconvergence error from iterative solution. The
acceleration methods show good performances inllaéar and nonlinear problems.
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