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Abstract: Intelligent In-Situ Feature Detection, Tracking and Visualization for 
Turbulent Flow Simulations (IFDT) is a new prototype visualization and CFD data 
analysis software system for flow feature data tracking and extraction. The system 
utilizes volume rendering with an Intelligent Adaptive Transfer Function that 
allows the user to train the visualization system to highlight flow features such as 
turbulent vortices. A feature extractor based upon a Prediction-Correction method 
then tracks and extracts the flow features and determines the statistics of features 
over time. The method executes In-Situ with a flow solver via a Python Interface 
Framework to avoid the overhead of saving data to file. This prototype system 
enables the user to readily explore, detect, track and analyze flow features 
predicted by large scale unsteady CFD simulations.  
Keywords: Feature Detection, Computational Fluid Dynamics, Turbulence, 
Visualization, In-Situ, Feature Tracking. 

 
 

1. Introduction 

 
Large Scale scientific and engineering physics based simulations have become more attainable 

with the advent of more affordable computing. Whereas ten years ago large scale computations were 
steady and on the order of 10’s of millions of grid points, today’s large scale computations are 
unsteady and on the order of 100’s of millions and exceeding billions of grid points. Furthermore, 
large scale computations may contain a wealth of information as these computations can now better 
resolve the turbulent behavior of the fluid, simulate multiple species due to mixing and reactions and 
capture complicated shock interactions.  

Better tools that can automatically detect pertinent flow features are needed. Contemporary open 
source and commercial CFD Post-Processing software have built-in functionalities to automatically 
detect such flow features. For instance, FieldView [1] has the capability to compare different data sets 
using its Data Set comparison tool. In addition, it has the capability to automatically detect vortex 
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cores and separation and reattachment lines using either vorticity or eigenvalue analyses by Haimes 
[2]. However, these tools and other feature detection tools as highlighted by Thompson [3] were 
developed for steady state flow fields. These methods lack the ability to sample and explore extensive 
unsteady data sets. They furthermore rely upon visualization techniques that compare images and 
require excessive user intervention. New tools are needed that allow for more straightforward feature 
extraction to yield better physical understanding of turbulent and inherently unsteady flow phenomena 
which will help one to predict and understand key physics in all speed regimes.   

The new prototype visualization system “Intelligent In-Situ Feature Detection, Tracking and 
Visualization”, (IFDT) presented herein addresses these needs. This method utilizes a Python-based 
Software Interface Framework that enables a Python wrapped flow solver to share, without I/O 
penalties, the pertinent data structures and allows it to be controlled from the familiar (but modified) 
FieldView user interface shown in Figure 1. The user interface provides an interactive graphical front 
end tool that allows knowledgeable domain experts (i.e. combustion turbulence or structural aero-
acoustics experts) to identify and pick flow features rendered in a few initial time steps of the 
solution. Once identified the system automatically tracks those flow features in time and gathers 
pertinent statistics of that feature.  

2. Software Components 

IFDT consists of the flow solver (currently LESLIE3D), a Python Software Interface Framework, 
Predictor-Corrector Feature Extraction and Tracking (PCFET), and Intelligent Adaptive Transfer 
Function (IATF). In addition IFDT includes a modified version of the FieldView version 13 client 
that supports Direct Volume Rendering, has prototype Python based graphical user interfaces (GUI) 
to control PCFET and IATF and In-Situ FieldView servers that can share memory space with the 
CFD solver; avoiding file I/O. The following sub-sections describe in detail each of these 
components.  

Figure 1: IFDT User Interface 
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2.1. Flow Solver LESLIE3D 
The flow solver “Large- Eddy Simulations with Linear-Eddy Model in 3D (LESLIE3D) by 

Menon, et.al [4] is a research level Computational Fluid Dynamics (CFD) code used to investigate a 
wide array of turbulence phenomena such as mixing, combustion, and acoustics. It is a structured-grid 
CFD solver that incorporates Large-Eddy Simulations (LES) methods with various high-fidelity 
mixing and combustion models. LESLIE3D has been used to model a very wide range of turbulent 
flow problems including gas turbine combustors [5] and super-critical liquid fueled rocket engines 
[6]. LESLIE3D has also been used to model more fundamental flow physics such as premixed flame 
dynamics in isotropic turbulence [7]. 

LESLIE3D solves the compressible form of the governing Navier-Stokes or filtered LES equations 
using a multi-block structured-grid finite-volume scheme. The 2nd-order accurate explicit McCormack 
predictor-corrector scheme is used to solve unsteady problems. LESLIE3D is capable of either 2nd or 
4th-order spatial accuracy for both the viscous and inviscid terms. The turbulence kinetic energy 
equation (k-equation) is solved when turbulence modeling is required. Block-decomposition with MPI 
is employed for distributed parallel computing. 

A reduced version of the larger LESLIE3D code was used in the IFDT in-situ coupling process. 
This version of the code, 107.leslie3d, is distributed as part of the SPEC CPU2007 Benchmark suite 
of codes designed to measure scalar and parallel hardware performance on CPU-intensive 
applications [8]. This benchmark code is specially designed to solve the unsteady evolution of a 
mixing shear layer that can be modeled with a single Cartesian computational grid in either 2- or 3-
dimensions and with a wide range of grid resolutions. Further, it can be initialized and validated 
analytically without requiring any file I/O making it an ideal candidate for scaling and performance 
studies. 

2.2. Python Software Interface Framework and In-Situ Processing 
LESLIE3D and the feature tracking components were coupled with FieldView based upon the 

Python Software Interface Framework (SIF) described by Sitaraman, et.al. [9]. The SIF is a 
framework in which multiple tools such as a solver, post-processor and feature detector share the 
same address space passing pointers to memory instead of writing and reading datafiles; avoiding 
bottlenecks from having to read and write large data files. To operate within the SIF, each program is 
converted to a shared library and execute under a Python high level control.  

Figure 2 presents a schematic on how the in-situ feature tracking works in IFDT. Here the flow 
solver (FS) and the “Predictor Corrector” based Feature Tracking tool (PC), data resampler (RS) and 
the FieldView server processes (fvsrv) execute all on the same server nodes (Node 1….N). The server 
machine can be a distributed processor system accessed across a wide area network as shown or a 
shared memory machine with all processes and communication occurring local to one compute node. 
All the components are Python wrapped which allows them to share data structures via the Python 
based execution interface. For polygonal surfaces, fvsrv points and copies the nodal based data, 
creates surface extracts and then sends it to the client for rendering. For Direct Volume Rendering, 
volume data extracts are sent from the RS to the fvsrv to the master fvsrv at Node 0 for interactive 
viewing and analysis by the user on the client. In either case, the user has full functionality of 
FieldView and its standard polygon based graphics such as iso-surfaces, boundary surfaces, 2-D plots. 
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For volume rendering, voxel 
information is collected from all 
the server nodes and sent to the 
client computer. Each In-situ 
FieldView server sees only its 
portion of a single large grid being 
solved by LESLIE3D.  When the 
FieldView client requests voxels it 
specifies a bounding box (Region 
of Interest – ROI) within the single 
large grid. The bounding box is 
sent to all the FieldView servers 
which then send a portion of the 
original grid they hold and return 
the intersection bounding box. 

 

The In-situ capability of IFDT relies upon the ability to directly and efficiently access CFD 
solution data without resorting to file I/O. In the current in-situ IFDT design, the parallel CFD solvers 
and FieldView servers run concurrently on separate threads within the same Linux process. This 
design allows the FieldView server to directly access solution data since they share the same memory 
space.  

The FieldView server allocates memory for the xyz grid, iblank, solution q and function-array. For 
simplicity, let us assume an equal grid size (N) in the IJK grid directions; therefore, each FieldView 
server would allocate 3 (xyz) + 1 (iblank) + 5 (q) + 5 (function) = 14 arrays with size N3. The 
LESLIE3D finite-volume scheme requires approximately 110 double-precision arrays with additional 
3-layers of ghost-cell data. For large values of N, the ghost-cell data contribution can be ignored. In 
this situation, the FieldView server memory only adds 7% to the total memory footprint. 
LESLIE3D’s storage requirement is higher than most production-level CFD codes so the relative 
overhead from the FieldView server is likely higher for other codes. For example, NASA’s 
OVERFLOW-2 [10] solver requires approximately 49 N3 arrays, ignoring the added storage required 
by the overset grid algorithm. This equates to approximately a 14% overhead for the FieldView 
server storage. 

The in-situ IFDT direct Volume Rendering based visualization processes currently require uniform 
Cartesian data. Since most CFD simulations of interest use curvilinear or unstructured grids, the 
underlying simulation data within the user-defined region-of-interest (ROI) is interpolated onto a 
uniform Cartesian mesh. Therefore, the FieldView server threads also perform an interpolation 
process. This process, known as re-sampling, adds some measure of memory and computational 
overhead to the CFD solver. By virtue of the full-copy extraction method, the re-sampling operation 
can proceed concurrently to the CFD solver reducing the negative performance impact. The worst-
case scenario would occur when the re-sampling and the CFD resolution matched. In this situation, 
the re-sampling algorithm increased the FieldView server overhead to 9% with LESLIE3D. However, 
one of the design features of the re-sampling process is to allow a coarser visualization mesh. Using 
half the CFD resolution reduces the total number of re-sampling points by 1/8, nearly an order of 
magnitude, and thus, imposes a negligible memory overhead. 

Figure 2 – Client and Server Flow Chart for In-Situ Intelligent 
Feature Detection and Tracking 
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The Volume Rendering occurs on the FieldView Client whereby all the re-sampled data is 
assembled on the master FieldView server then sent to the Client. This design imposes a restriction 
upon the size of the re-sampling mesh; it must be small enough to fit on the single FieldView master 
server computer. However, the re-sampling and feature tracking algorithms only consider a single 
scalar value. Further, the re-sampled mesh is Cartesian and requires only 36 bytes to be fully defined, 
a considerable savings compared to explicitly storing the xyz coordinates of the re-sampled mesh. The 
storage for one array is quite small relative to that required by most CFD solvers. For example, a 5123 
simulation, over 100 million grid points, only requires 512 MB on the FieldView master; a small 
memory overhead on modern systems. As stated earlier, the re-sampling algorithm allows the user to 
control the post-processing cost by adjusting the ROI location and resolution.  

2.3. Predictor-Corrector Feature Extraction and Tracking 
 

The Feature Extraction and Tracking method deployed in IFDT is based upon the prediction-
correction method by Muelder and Ma [11]. This method uses a prediction step to make the best guess 
of the feature region in the subsequent time step, followed by growing and shrinking the border of the 
predicted region to coherently extract the actual feature of interest. They utilize information from 
previous time steps to predict a feature’s region in the current time step, then correcting the predicted 
region to extract the feature’s actual region through growing and shrinking processes. As shown in 

Figure 3 the approach works by predicting a 
feature’s region in subsequent time steps then 
extracting the actual region starting with this 
predicted region. By doing this it effectively 
reuses the information from previous time 
steps to reduce the amount of work needed in 
each time step. This method allows for the 
extraction of individual features without the 
need to do a global segmentation where all 
features are extracted at once. This capability 
gives it the interactive response needed for the 
IFDT system. The user can dynamically pick or 
select features for extraction and tracking and 
dynamically adjust parameters and alter the 
volume being tracked.  

The technique combines the prediction of a 
feature’s region and then corrects by adjusting 
the surface of this region. Prediction is the 
process of guessing a feature’s region in space 
based on its location in previous time steps. 
Once this prediction is made, then the actual 
region is extracted by adjusting the surface of 
the predicted region through the use of a 
technique based on region growing. When 
predicting a region for a time step, the 
prediction will almost never line up exactly 
with the correct region. Thus, it is necessary to 
correct the region by adjusting its boundary as 

Figure 4 - Coherent extraction. First, the feature in 
the previous time steps is used to predict the feature’s 
region in the current timestep. However, the 
predicted region of the feature is not the correct 
region. The region is then corrected by shrinking and 
growing the boundary (Taken From: Muelder, C. 
and Ma, K.L, “Interactive Feature Extraction and 
Tracking By Utilizing Region Coherancy”, [11] 

Figure 3: Feature tracking approach utilizes 
coherency between time steps in the extraction 
(Taken From: Muelder, C. and Ma, K.L, “Interactive 
Feature Extraction and Tracking By Utilizing Region 
Coherancy”, [11] 
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necessary. As depicted in Figure 4, this adjustment is actually a combination of two processes: 
boundary growing and boundary shrinking. Both boundary growing and shrinking are based on region 
growing [12]. 

2.4. Intelligent Adaptive Transfer Function IATF 
 

When extracting and visualizing time dependent flow features in large volume datasets,  the values 
of the scalar functions defining the flow features (i.e. vorticity magnitude, Q-Criterion or Lambda-2) 
may change dramatically as the flow evolves in breadth (min-max values) and absolute magnitude. 
These variations make it difficult for a user to determine the correct scalars to choose that will 
highlight the flow features and enable a successful feature extraction.   

To overcome these issues, the Intelligent Adaptive Transfer Function method by Tzeng and Ma 
[13] was adopted. Whereas conventional methods require either an analytical description of the 
feature of interest or tedious manual intervention throughout the feature extraction and tracking 
process, they showed that it was possible for a visualization system to “learn” to extract and track 
features in a complex transient flow field according to their “visual” properties, location, shape, and 
size. The basic approach was to employ machine learning in the process of visualization. The power 
of such an intelligent system approach is its ability to extract and track a feature of interest in a high-
dimensional space without explicitly specifying the relations between those dimensions, resulting in a 

Figure 5: A DNS turbulent reacting plane jet data set using IATF. The key frames are bounded in red, and 
the transfer function used for each key frame is also applied to different time steps shown in the same row. 
The fourth row shows the rendered results using the derived transfer function. Taken From F.-Y. Tzeng and 
K.-L. Ma, "Intelligent Feature Extraaction and Tracking for Large-Scale 4D Flow Simulations," [13] 
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greatly simplified and intuitive visualization interface. 

In volume rendering, a one-dimensional transfer function is a simple ramp, piecewise linear or 
arbitrary table function that maps between the original data to an opacity and a color to be rendered 
within a given computational volume element (voxel). Through this one-dimensional mapping, 
transfer function, one can enhance the visibility of desired spatial structures within a given 
visualization as will be shown in following sections.  

In the IATF, the user manually adjusts a one-dimensional transfer function for selected time steps 
to highlight features/regions of interest, and then an adaptive transfer function for the whole time 
sequence is automatically generated using the machine learning system. In this case, the adaptive 
transfer function takes into account the scalar field and the data distribution variations over time. The 
tracked feature can be represented by any type of graphical object. One such object they used was a 
volume rendered feature tracking technique based on such intelligent transfer functions. The user 
manually highlights features during rendering as the tracking proceeds, and enables a variety of 
highlighting criteria to enhance the features of interest. 

Figure 5 illustrates Tzeng and Ma’s approach. The user first selects a couple of key frames and 
assigns a 1D transfer function for each key frame to define the features of interest. These 1D transfer 
functions are then sent to a machine learning engine for training. Training is an iterative process and 
the trained machine learning engine is able to generate an adaptive transfer function by using these 
image driven transfer functions, as well as the data-driven properties of the data set. During rendering, 
the adaptive transfer function is used to assign opacity to each voxel. The user can visualize the 
rendered results using the adaptive transfer function and add new key frames when needed.  

2.5. FieldView and GUI for Volume Rendering, PCFET and IATF 
FieldView version 13 was used as the baseline platform for the prototype where by Volume 

Rendering, Python wrapped servers and a QT based prototype GUI to control the data extracts and 
Volume Rendering were added. This 
prototype version was designed to support 
polygonal surfaces (i.e. boundary surfaces, 
iso-surfaces, computational surfaces) 
displayed along with volume rendered 
images, client side (desktop/workstation) 
Volume Rendering so as to exploit the local 
GPU. 

IFDT utilizes a client-server paradigm 
whereby the FieldView client machine 
communicates via secure sockets to the 
master server and the FieldView master 
server in turn communicates via MPI with 

the slave servers. Each slave server machine performs operations on a single grid.  

A ray traced volume render shader code was added to the FieldView 13 scene graph. For volume 
rendering, the volume data is stored into a 3d texture. The sides of the volume cube are sent as normal 
polygons. The shader is presented with each pixel of each side of the cube. From this pixel and the 
eye location, it draws a ray into the volume and computes the pixels’ color. At this time, only regular 
Cartesian grids are supported which requires a one to one correspondence between voxels and 

Figure 6 - Iso-Surfaces and Volume Rendering of a TML 
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resampled grid elements. Currently, the code does not correctly render mixed volume and polygonal 
data; the polygonal data renders behind the volume data. Figure 6 shows an image of a volume 
rendered region (lower-right image) displayed together with polygonal data surfaces (upper-left 
image) generated for a result from LESLIE3D of a Temporal Mixing Layer. 

2.6. IFDT Panel Implementation 
The Predictor Corrector Feature Extractor and Tracking (PCFET) graphical user interface from Ma 

et.al. [14] was integrated into FieldView and coupled with LESLIE3D. Figure 1 illustrates FieldView 
version 13 with the PCFET environment and a LESLIE3D case running in-situ with FieldView. The 
image shows both the Volume Rendered vortex on the lower right and polygonal rendered iso-surface 
of vorticity magnitude on the upper left corner. The method works either in direct mode whereby all 
the tools execute on one desktop system or in a client-server mode whereby the solver and Predictor-
Corrector method execute on a remote server while the Volume Rendering and User Interface run on 
the user’s local client.  Three new panels have been integrated into FieldView. The top left panel 
(IFDT), is the main control panel for IFDT which allows the user to select when to cause FieldView 
to pause the flow solver, copy current data to memory, release the solver to continue solving and then 
render a polygonal image of the solution at the copied time instance. Full FieldView functionality is 
maintained such that the user can create iso-surfaces, 2-D plots or point-probe as if using the standard 
FieldView product.  

Figure 7 shows the “Control Center Panel” for the IATF and the Predictor-Corrector Feature 
Extraction. The “IATF” tab panel contains the transfer function histogram which the user can 
manually manipulate. In the example shown, the transfer function color map used the same color map 
and scalar function of Vorticity Magnitude as the FieldView “NASA-1” colormap and was adjusted to 
display the vortices. The IATF panel has a push button on the transfer function GUI to create default 
Gaussian curves which make data exploration easier. A Gaussian curve can be created and moved left 
or right to search for features. This operation is somewhat similar to sweeping an iso-surface in 
FieldView. However, unlike an iso-surface the Gaussian can span a range of values and since the 
resample volume data resides in memory, when the position of the Gaussian changes the image 
immediately updates. 

Lighting parameters can be directly controlled on the GUI. These controls include the Ambient 
Lighting fraction, Ka, the Diffuse lighting fraction, Kd, Specular fraction, Ks, and Shininess. In 
addition, “Sampling” controls the number of steps taken along the ray cast. By moving the slider to 
the right, the ray cast results in less steps, coarser images but faster translation and rotation of the 
graphic object.  If the user moves the slider to the left, this action would result in a greater number of 
steps along the ray cast, much better resolved images but slower response.  

The “Track” Tab controls the tracking and extraction of the flow features. When the user presses 
“Start” on the Track tab the system will begin to record volume data snapshots on the client. The 
system continuously performs the volume rendering steps as described above. At every N-th time step 
as requested by the user, the system collects statistics information of the tracked feature. To avoid 
reducing solver performance a request to the solver for volume data is made at a different user defined 
time interval. This recording of volume data values for rendering will continue until the stop button is 
pressed or if the record-buffer fills, currently defined as 25% the size of physical RAM.  The IATF 
tab contains a "Time Steps" slider. Moving the slider to any position will display that recorded 
volume data. This slider always has a maximum value equal to the number of captured volumes. 
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The Track tab panel also controls the “Picking” and “Extraction” of a tracked feature. There are 
two settings for “Threshold” which controls the range of values that shall be tracked and extracted – 
Opacity and Value. The “Value Min” and “Value Max” set the minimum and maximum bound of the 
voxels that shall be tracked, respectively. The “Opacity Min” and “Opacity Max” set the minimum 
and maximum value of those voxels that shall be included in the tracked feature. Once these values 

have been set, the user may then 
“Pick” a feature for tracking by 
manually clicking a desired feature 
displayed in the volume rendering. The 
voxels of the feature of interest whose 
scalar value is bounded by the two sets 
of threshold min max are then colored 
by a single color that the user selects 
with the color wheel and triangle 
shown in Figure 8; currently set to red. 
As an example, Figure 8 shows a 
resulting volume rendered image 
displayed in the FieldView graphics 
window which shows the resulting 
image of the vortex flow (colored 
voxels) and the picked voxels shown in 

Figure 8 - Control Panel – Track Tab Panel Showing Tracked 
Feature in Red  

Figure 7 - IATF and Track Control Panel 
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red.  

As the system collects time history data for the picked and extracted feature, the “Statistics 
Viewer”, panel in the lower left of Figure 8, allows the user to interactively select different scalar 
quantities for monitoring and whether that data is either an average of that quantity over the entire 
feature voxel set or the value of the scalar at the centroid of the picked feature voxels.  

Figure 9 illustrates the training process for IATF as applied to a temporal mixing layer as 
simulated by the LESLIE3D code. For the example presented here, the grid size is 65 x 65 x 33 grid 
points. The volume rendered solution is colored by Q-Criterion and the transfer function was 
manually set by the user. The colormap was set to be consistent with FieldView’s NASA-1 colormap 
and the opacity shape (the black S-shape line or sigmoid) is known through experience to highlight 
the vortex core. 

As shown in Figure 9, the IATF panel contains the transfer function currently being used to create 
the volume rendered image. The “Time Steps” slider allows the user to interactively move to any of 
the re-sampled time steps that were loaded into memory during the previous “tracking” step.  The user 
can move the slider to any time step, manually adjust the transfer function and interactively view how 

that transfer function affects the volume rendered 
image.  

The user creates the set of training data for the 
derived transfer function by repeatedly advancing the 
Time Step to advancing positions, manually adjusting 
the Transfer Function to highlight the feature and then 
click on “Set the Key Frame”. In the example shown 
in Figure 9, the user has moved the slider to Step 272, 
interactively adjusted the transfer function to 
highlight the flow feature and then selected “Set Key 
Frame”. They repeated the above steps for time steps 
313 and 395 as evidenced by the “Time Step” Table.  

Once the user is satisfied with the set of training 
data, they then would click on “IA Operation -> 
Train” which causes the IATF to compute derived 

transfer functions based upon the Keyframes.  Once the training is complete, the derived Transfer 
Functions may be applied to either select time steps or to all the saved time steps. For the example 
shown in Figure 9, we see the derived transfer function being applied to Time Step 272. 

2.7. Transfer Function Usage for Feature Discrimination 
In volume rendering, a “Transfer Function” controls the color and opacity displayed in the graphic. 

In the IFDT user interface, the Volume Rendering user interface is controlled in the Control Panel - 
IATF Tab. Figure 10 shows the Transfer Function user interface (UI). The X-axis represents the 
scalar function value of currently displayed Time Step from the minimum value on the left to the 
maximum value on the right. The user can select the different colors along that spectrum by selecting 
colors from the color wheel in the IATF tab and clicking on the triangles shown. The triangles can 
slide to any position hence controlling the position of the scalar color. 

Figure 9: Temporal Mixing Layer with 
Derived Transfer Function Applied & IATF 

Panel Shown 



11 

The y-axis of the Transfer Function User 
Interface represents the opacity. The user controls 
the opacity by manually scribing a line via mouse 
controls in the colored area. A line at the bottom 
corresponds to completely transparent while a line at 
the top of the vertical scale represents fully opaque. 
The color spectrum stripe at the top represents the 
color that would be shown in the graphic.  

The example shown in Figure 10 uses the 
Gaussian tool; enabled by clicking on the “F” button. 
The user can control the width of the Gaussian by 
moving the mouse up and down while simultaneously 

click and holding on the red rectangle. Similarly, the user controls the height of the curve by click and 
holding on the green rectangle and moving the mouse up and down. The horizontal position of the 
Gaussian can be moved to the left or right by click and holding on the green rectangle and moving the 
mouse to the left or right. 

The Transfer Function UI is a very useful tool for 
interactively highlighting and evaluating flow 
features - Feature Discrimination. There are four 
types of transfer function shapes that may be applied 
by the user.   

1. Gaussian 
2. Step function 
3. Sigmoid – “S-Curve” 
4. Delta Function (Sharp Gaussian) 

Figure 11 shows the Gaussian function and the 
resulting image. As shown, the color at the peak of 
the curve causes the voxels corresponding to that 
scalar value to be colored accordingly and as a solid 
otherwise known as opaque). The voxels 
corresponding to scalar values to the left and right 
shall be assigned different colors and less opaque 
(transparent). 

A Step Function as shown in Figure 12 is another 
transfer function type. To the left of the step all 
corresponding voxels shall be completely 
transparent. Voxels to the right of the function are 
completely opaque. This function is manually drawn 
using the mouse by click and holding towards the top 
of the color spectrum window and sliding the mouse. 
The Step Function can be used to highlight features 
such as the vortex structures shown. By moving the 
step to the left or to the right different features will 
show with no extraneous transparent voxels; needed 
for good feature picking. 

Figure 10 - Transfer Function Control in IATF 
Panel Tab 

Figure 11 -Gaussian Transfer Function 

Figure 12 : Step Function Transfer Function 
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The Sigmoid or “S-Curve”, Figure 13, is either 
a hand drawn curve or automatically created by 
the IATF training algorithm. The S-Curve is a 
good method for both highlighting a feature and 
showing the flow around the feature.  As shown 
here, the voxels in the magenta region scalar 
values are all drawn as opaque, while all other 
voxels of lesser value are less opaque smoothly 
fading out in the blue spectrum. 

Combining the Gaussian and Step function as 
shown in Figure 14 is a good method for creating 
an S-Curve without hand drawing. The issue with 
the hand drawn S-Curve is that it requires care and 
manual mouse dexterity to get a smooth curve. By 
combining the Gaussian and Step function, two 
curves that have a more easily controled drawing 
UI, the user can control an S-curve much more 
readily.  This combination can result in stunning 
graphic images as shown. 

Any of the transfer functions presented so far 
can be used to discriminate flow features. For 
vortical flow features where maxima of either 
vorticity magnitude or Q-criterion are indicators 
for a vortex, it was found that a “Delta Function” 
that is approximated by a very narrow Gaussian 

curve is very useful for interactive exploration of the flow field. Figure 15 shows the application of 
the Delta function. As shown, the Gaussian is very sharp and narrow. The user can readily click and 
hold the Gaussian and slide it to the left or right and immediately see the effect upon the volume 
rendered image. This technique is very useful in finding the flow features of interest so that they can 
be picked for feature tracking and extraction.  

 
Figure 15 : Delta Function in Green and Magenta 

 
 

Figure 13- Sigmoid (S-Curve) Manual Drawn 
Transfer Function 

Figure 14 - Gaussian + Step Transfer Function 
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2.8. Statistics Viewer 
During feature tracking, transient information of the tracked feature is collected by the server 

processes and sent via a secured socket to the client for display in an interactive Statistics Viewer 
Panel as shown in Figure 16. Currently, time history for the feature volume, mass, position, density, 
momentum, stagnation energy, vorticity magnitude, vortex position and Q-criterion is collected for all 
the voxels within a given tracked feature. The Average value of all the voxels contained in the feature 
and also the value at the Centroid of the volume of voxels is also determined and collected.  The user 
can then select to display either the Average or Centroid value of any of the feature values collected.  

The statistical data is displayed as 
either an FFT (2-D plot on the top) or 
as a time history (2-D plot shown on 
the bottom). For the example shown, 
the FFT displays the Fourier Modes 
on the x-axis and the magnitude on 
the y-axis for the Volume of all the 
Voxels in the picked feature. In the 
time plot, we see the time evolution 
of the feature with time on the x-axis 
(time steps) and the total feature 
volume on the y-axis.  

3. Results 

3.1. Test Case – Temporal Mixing Layer 
The test problem simulates the unsteady dynamics of a 

temporally evolving planar mixing layer (TML). This type of 
fundamental flow mimics the dynamics encountered when 
two fluid layers slide past one another and is found in 
atmospheric and ocean fluid dynamics as well as combustion 
and chemical processing. The two sliding fluid layers are 
subject to inviscid instabilities and can evolve from largely 
2-d laminar flow into fully developed, 3-d turbulent flow. 
See Metcalfe et.al. [15] and references therein for further 
mathematical details on the subject. 

The initial velocity profile of the LESLIE3D TML 
benchmark leads to vortex roll-up and, depending on the 
domain extent, vortex pairing due to the specially tuned 2-d 
instabilities introduced in the initial profiles. An example of 
the 2-d vortex roll-up is shown Figure 17, whereby the 2-d 

flow has evolved from the initial unstable velocity profile into a classical roll-up shape and is 
dominated by the single span-wise vortex over the (2x2)π domain. The TML tracks this flow feature 
in time and has no mean motion. 

A larger 2-d span-wise domain length allows multiple span-wise vortices to roll-up. These vortices 
can, in turn, pair and merge into a single vortex. A time sequence of this phenomenon is shown in the 

Figure 16 - Statistics Viewer Panel 

Figure 17 - . 2-d vortex roll-up in 
planar temporal mixing layer with 

(2x2)π domain. Vorticity magnitude is 
plotted 
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following image sequence. The time sequence simulation uses a (4x4)π domain with 256x256 grid 
resolution. The first image, Figure 18(a), shows a close resemblance to the single-mode result shown 
in Figure 17. The two vortices remain largely stationary; however, they mutually induce a small 
relative velocity. Eventually, the small perturbation grows causing a rapid pairing of the two vortices. 
Note, the peak vorticity is constant during the entire simulation. Viscosity and numerical dissipation 
slowly dissipate energy causing the only change in vorticity. 

 

a) τ = 12.3 b) τ = 37.1 c) τ = 61.8 

d) τ = 86.6 e) τ = 111 f) τ = 136 

Figure 18. Time sequence of 2-d TML over (4x4)π domain. Showing vorticity magnitude with maximum 
at 15 s-1. 

 
Three-dimensional instabilities can also be introduced to the shear layer. Under these conditions, 

counter-rotating vortices develop in the highly strained region between the dominate 2-d span-wise 
rollers. These rib vortices can inhibit 2-d vortex pairing if sufficiently energetic and are dependent 
upon the balance between the instability energy growth and dissipation. These rib flow structures 
enhance the mixing rate between the two fluid streams due to the smaller size and high vorticity. 

An example of the unsteady 3-d vortex dynamics in the TML is shown in the following sequence 
of 4 images. These images show the vorticity field at equally spaced intervals for a TML computation 
initialized with both 2- and 3-d perturbations. The computational domain is (4x4x2)π with a uniform 
mesh of 256x256x128. The first image, at non-dimensional time τ = 12, shows the iso-scalar surface 
of vorticity magnitude at 20% of the peak value is shown along with a contour plot of the vorticity 
magnitude. At this early point in the TML evolution, the vorticity is still largely confined to a 
nominally 2-d vortex sheet and the peak vorticity (18 s-1) is not significantly above the initial 
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distribution. However, the 3-d perturbations are evident in the span-wise direction. The 2nd image, at τ 
= 24, clearly shows the growth of the 2 counter-rotating rib vortex pairs in the high strain regions. 
Again, the iso-scalar surface is at 20% of the peak which has increased, due to non-linear vortex 
dynamics, to 28 s-1. The increase in peak vorticity is confined to the high-strain “braid zone”. The 
vorticity originally distributed along the span-wise vortex sheet in the braid zone is rolling into 
stream-wise ribs. Recall that the peak vorticity is constant throughout the 2-d time sequence shown in 
Figure 18; non-linear vortex stretching is only present in 3-d flows. The 3rd image in the sequence, at 
τ = 32, again shows the rapid increase in the intensity of the rib vortices as they are further stretched. 
The final image, at τ = 48, shows a highly turbulent flow-field. The intense rib vortices have 
penetrated the 2-d span-wise rollers and destroyed the coherence of the TML. Unlike the 2-d TML, 
pairing of the 2-d span-wise rollers was suppressed by the influence of the 3-d perturbations. 

a) τ = 12 b) τ = 24 

c) τ = 32 d) τ = 48 
Figure 19. Time sequence of 3-d TML on (4x4)π domain with 3-d perturbations. 

3.2. Interactive use of IFDT 
The following presents a step by step use of IFDT to track a picked feature simulated by the 

Three-Dimensional TML case. The IFDT system is started from the command line by first initializing 
an “mpd-ring” on the remote server where LESLIE3D and FieldView servers execute and the starts 
the statistics viewer on the client which communicates to the server side across a secure socket 
connection. The IFDT system then sequentially initiates an ssh remote call to the server to launch the 
SIF, launch LESLIE3D using mpiexec, and open another secure socket connection across which the 
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FieldView client process communicates to the FieldView master server. FieldView and the IFDT 
panels will then show as illustrated back in Figure 1. 

Next, the user would start the FieldView slave 
servers and load the latest solution data by clicking 
on the IFDT GUI button “Get current solver result”. 
This action initiates a Manual Start FieldView 
client server process, causees the SIF to pause the 
LESLIE3D process and the FieldView slave servers 
to load the current data. Once the FieldView slave 
servers have loaded the current data, the flow solver 
is released and it continues to solve. FieldView then 
executes a corresponding FieldView restart which 
creates a surface and creates an image. At this 
point, the user has full control of FieldView and can 
create surfaces as in standard FieldView.  

For a feature pick operation, IFDT simply grabs 
the first non-zero opacity voxel along the line of 
sight where the pick occurred. Therefore, the best 
transfer function for picking and discriminating 
features is either a delta function or step function as 
shown in Figure 20. To pick, the user first adjusts 
the transfer function until the desired feature 
appears on the screen.  The user will then click on 
the “Track” panel and click on the “Tracking 
Features and Region Grow” radio button. The user 
would then adjust the picking color through the 
color wheel User Interface. The user activates the 
pick color by clicking the left mouse button on the 
left square below the color wheel; “White” in this 
example. The threshold range sets the scalar 
function value range for a given feature. By 
clicking on Manual, the user manually sets these 
threshold ranges. The user would then hold down 
the “Shift” button on the keyboard and place the 
mouse select arrow over the desired feature and 
click the left mouse button on the feature. If a 
successful pick occurred, the client will emit a 
“beep” sound, write the voxel location to the 
console window of the pick and the feature will 
become colored as shown in Figure 21. In this 
example, one of the vortex braids has been 
highlighted with the color white.  

To start the feature tracking, extraction and 
statistics gathering, the user would enter under the 
“record statistics every Nth solver step a value for 

Figure 20: IATF Tab Panel, Transfer Function 
with Gausian and Step Function 

Figure 21: Feature Picked and Tracking 

Figure 22: Combined use of a Step and Gaussian 
Transfer Function 
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data sampling. The valid range is from 1 to 500. When the user clicks on “Start” the feature tracking 
begins. At every Nth solver step, the feature statistics information is computed and the statistics 
information is sent to the client and then displayed on the statistics viewer. The volume render graphic 
shown on the screen and the resampled data volume and feature tags are sent to the client at different 
time intervals to maintain good interactive performance for the user.  

The time difference between the recorded volume time history and the statistics gather gives the 
user interactive capability while gathering in-situ data from the flow solver. For the case shown here, 
the volume rendered update has been set to 5 minutes while the statistics and IATF volume history 
data is update every 10 time steps (approximately every 1 minute of wall clock time). In between the 
graphic updates, the user can change the transfer functions, rotate, pan and zoom the volume render 
graphic and even create polygon surfaces. Figure 22 shows the transfer function has been changed 
while the statistics is being updated simultaneously. 

a) Time Step Playback 1  b) Time Step Playback 19  c) Time Step Playback 38 

Figure 23 : IATF Tab - Time Step Playback 
The recorded volume data may be interactively viewed with the IATF tab Volume data playback. 

Figure 23 shows the IATF Tab at three different recorded Time Steps (1, 19 & 38). The user may 
move the slider to any time step, click through to any time step, or click on the Play button to sweep 
through the series of recorded Time Steps. The user may also change the Transfer Function to explore 
the effect upon each time step. This ability to sweep through and interactively explore transient 
data is a new method that helps the user gain more knowledge about their data. 

3.3. Discussion of Problem Size and Scale-Up issues  
A series of benchmarks were conducted to assess the performance and scalability of the prototype 

software. The first series of benchmarks was designed to assess the scalability and performance of 
IFDT in a remote client-server configuration. Two grid sizes were used in the LESLIE3D TML 
simulation: 257x129x33 and 257x129x65. Each test was run using Intelligent Light’s compute cluster 
(Nilchi) as the FieldView server and compute engine and a remote client connected over broadband 
internet. Nilchi has nine (9) HP BL460c nodes, two dual-core Xeon X5260 processors per node, 
16GB of RAM per node, 72GB SCSI storage on each node with both GigE and Infiniband network 
fabric between the head node and the 8 compute nodes. The head node of Nilchi was used as the 
FieldView master server and the 8 compute nodes as the FieldView slave servers and the CFD 
calculators. The network speeds between the head node to the remote client ranged between 64-128 
kbytes per second depending upon load. The simulations were run for 500 CFD time-steps before 
timings were collected. Timings were collected over 1000 CFD time-steps. The lag in starting the 
timings was to allow sufficient time for the FieldView IFDT GUI to be manually attached over the 
internet and for the volume rendering to be configured as needed. 
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The impact of volume rendering on the computational throughput was measured by varying the 
frequency that the CFD dataset is sampled and rendered. This is controlled in the IFDT GUI by 
adjusting the Nth-step value. The functionality of the Nth-step controller forces synchronous 
interaction with the CFD solver. Dataset sampling is initiated and completed synchronously every 
Nth-step of the CFD solver. Volume image update is still done asynchronously. 

Volume sampling of the CFD dataset has two purposes in the IFDT. First, it is used in the feature 
tracking application. Simple time history statistics on the tracked features can be computed. A fixed 
sampling frequency is required in order for these computed statistics to be properly analyzed in 
spectral space leading to the change in meaning of the Nth-step control variable described above. 
Volume sampling is also used in the volume rendering phases on the IFDT client. Since this is only 

for visualization purposes, this operation is still 
allowed to be asynchronous. Note, the server-to-
client network transmission requirements are 
different for these two features. For feature 
statistics, only the reduced values must be 
transmitted from the FieldView server to the remote 
client. This will be less than 1 kilobyte. Volume 
rendering requires that the entire re-sampled 
volume data be transmitted to the client and is 
dependent upon the re-sampled mesh size.  

The raw performance of the IFDT software 
without any re-sampling is shown in Figure 24 for 
the medium size grid (256x128x32). These 
performance measurements were obtained on the 
Nilchi test cluster using the high-speed Internet 
Protocol over the Infiniband (IPoIB) and the 
standard Gigabit Ethernet (GigE) networks. The 
IPoIB network provides close to 10Gigabit speed; 
however, it does not provide the low latency 
associated with some of the hardware-assisted 
protocols designed specifically for Infiniband. 

With no re-sampling or any other interaction 
from the FieldView server, the Figure 24 graph 
shows the performance of the CFD solver 
LESLIE3D itself. The parallel scalability on the 
Nilchi system is shown in Figure 25 . The parallel 
efficiency drops from nearly 100% when using 1 

core per node (8 cores total) to less than 50% when 4-cores per node are used (32 cores total) with 
both networks. The network speed appears to have a much lower impact on the scalability than the 
core loading. The scalability of the same benchmark was also measured on a shared-memory 8-core 
workstation (green line in Figure 25). No network fabric is required for this parallel computation but 
the parallel efficiency is still seen to be poor strengthening the argument that the inter-node network 
speed is only marginally important in this scenario. For this reason, only the faster IPoIB results will 
be discussed further. 

Figure 24: Total wallclock time (sec) vs. number 
of the cores for IFDT software for medium grid 
size (256x128x32) using IPoIB (blue) and GigE 
(red) networks. 

Figure 25: Scalability of the LESLIE3D solver 
using the medium (256x128x32) grid on the Nilchi 
test cluster using IPoIB (blue) and GigE (red) 
networks. Scalability on a shared-memory 
workstation (8-core) shown in green 
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The next phase of the benchmarks measured the 
impact of in-situ processing on the total simulation 
run-time. Figure 26 shows the run-time breakdown 
of the in-situ simulation. The LESLIE3D large grid 
(256x128x64) was used with the IPoIB network on 
16 cores. The cost of the LESLIE3D solver and the 
re-sampling components of the compute processes 
are shown. Two re-sampling resolutions were 
tested: full and half. At full resolution, the re-
sampling mesh matches the underlying CFD grid. 
At half resolution, the re-sampled space is half the 
resolution in each direction for a total 1/8th the re-
sampled grid size. The Nth-step value was varied 
from 0 (no re-sampling) to 50 and, in this context, 
the Nth-step value represents the frequency at 
which data is sent from the FieldView master to the 
client for volume rendering compared to the re-
sampling rate. That is, when Nth is 10, the volume 
and feature-tracking data is sent to the client every 
10 re-samples. This was described previously as 
asynchronous re-sampling. 

Intuitively, a higher Nth value should result in a 
lower re-sampling cost. However, the opposite 
trend is seen in Figure 26. Instead, the re-sampling 
cost rises quickly as the Nth value is increased for 
the full resolution re-sampling case. The cause of 
this non-intuitive behavior is directly caused by the 
asynchronous re-sampling procedure. During 
asynchronous feature tracking, re-sampling is 
initiated immediately and only interrupted when 
data is transmitted to the client. That is, there is no 
correlation between the CFD solver time-step and 
the re-sampling frequency. Since the re-sampling 
cost is vastly cheaper than the transmission cost in 
the client-server configuration, the effective re-
sampling rate is greater for a higher Nth value. 
This is clearly seen in the  Figure 27 where the 

number of re-samplings is plotted against the Nth value for the full and half resolution cases. The 
greater number of re-samplings for the half resolution case is easily explained with the same logic: the 
cost to re-sample the volume is roughly 1/8th the full-resolution and the cost to transmit the data to the 
client is also approximately 1/8th meaning a higher number of re-samplings can occur within the same 
run-time. Note, however, that the total run-time cost of the in-situ simulation with the half-resolution 
is considerably lower despite the higher re-sampling frequency. Again, the transmission and re-
sampling costs are 1/8th of the full-resolution reducing the in-situ overhead. 

The impact of network bandwidth on the re-sampling frequency was measured by running a 
similar simulation on a shared-memory workstation. There, the FieldView client and the in-situ 

Figure 26: . Run-time cost of the LESLIE3D CFD 
solver and re-sampling algorithm as a function of 
re-sampling frequency (Nth-value) and re-
sampled resolution (full vs. half). Using Large grid 
with 16 cores 

Figure 27: Total number of re-samplings as a 
function of Nth value over 1000 CFD time-steps 
for full and half resolution re-sampling volumes. 
Using Large grid with 16 cores. 

Figure 28: Run-time cost breakdown for shared-
memory in-situ simulation on Medium grid with 
4 cores 
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processes were run on the same machine removing the need for network communication. Due to 
memory constraints, only the Medium grid was tested in this scenario. This simulation used 4 CPU 
cores for the CFD and re-sampling processes Figure 28 shows the same run-time breakdown of the 
CFD solver and re-sampling components for different Nth-step values. However, unlike the previous 

result, the re-sampling component has zero 
dependency upon the Nth-step value. In this 
scenario, 1000 re-samplings were executed over the 
1000 CFD time-steps for all Nth-step values. Since 
there was no data transmission overhead, the 
asynchronous coupling allowed the re-sampler to 
continuously query the CFD solver for new data at 
the same rate the CFD solver could process a time-
step. Aside from changing the frequency that the 
volume rendered image is refreshed, differing non-
zero values of Nth-step have no impact on the run-
time. 

The Nth-step value can alternatively be used in 
a synchronous mode. In this scenario, re-sampling 
is done every Nth CFD time-step. Data is 
transmitted to the client and rendered at every Nth-
step as well. This effectively synchronizes the 
CFD solver to the FieldView rendering client. That 
is, over a 1000 CFD time-steps, 20, 100 and 1000 
re-samplings will occur for Nth values of 50, 10 
and 1, respectively. The run-time costs of the re-
sampling and CFD solver components of the in-
situ simulation are shown for this scenario in  

Figure 29. The run-time for the Nth-step = 1 is seen to be substantially increased compared to that 
shown in the alternative scenario, Figure 29. As the Nth-step value increases from 1 to 50, the run-
time quickly reduces until the cost is almost entirely attributed to the CFD solver, an ideal outcome 
for the end-user. This run-time scenario has the additional benefit of providing regular tracker feature 
histories allowing for proper statistical analysis. 

Figure 30 shows the run-time between successive time-history and volume rendering (image) 
updates. Again, only a small amount of data is required for the time-history calculator so the 
transmission delay should be relatively minor. The Nth-step value was varied from 1 to 50 and the re-
sampling volume was either full or half the resolution of the CFD simulation. And, the Nth-step value 
is configured synchronously in this situation so the frequency of re-sampling is in lock-step with the 
CFD solver. Because of the low bandwidth required by the time-history, the refresh rate follows 
closely to the CFD run-time. The average wall clock time per time-step without re-sampling is 
approximately 1s. With full resolution re-sampling at each time-step (Nth=1), the run-time cost 
increases to 3.5s due to re-sampling, nearly a 200% overhead. However, this impact quickly drops as 
the Nth value increases to 50. There, the re-sampling cost is hidden by the much larger CFD solver 
time. 

The volume rendered image refresh rate is also shown in  Figure 30 using full resolution re-
sampling. For the same Nth-step value, the delay time between updates is seen to be many times 
higher. This is directly caused by the transmission time between the remote client and server. 

Figure 30: Client-side update time (sec) in client-
server mode with 256x256x128 grid. Error bars 
represent percent deviation from mean 

Figure 29: Run-time cost breakdown using 
synchronous Nth-step method on Large grid with 
16 cores 
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Currently, all volume rendering must be conducted on the client in order to harness the rendering 
efficiency of the graphics pipeline; that is, GPU’s. However, CPU-based volume rendering on the 
FieldView server side may, in fact, prove more efficient since the substantial transmission delay 
would be avoided. Other options include a remote desktop in which GPU acceleration is used on the 
FieldView server directly. 

The FieldView server computational overhead is more variable than the memory footprint since 
the dominant cost, re-sampling, is directly linked to the re-sampling rate, that is, the Nth-step value. 
Without feature tracking or volume rendering enabled (i.e., no re-sampling), the FieldView server 
overhead is very nearly 0%. Benchmarks on LESLIE3D with Nth-step = 50 and with full re-sampling 
resolution showed the overhead to be just under 20% using 16 processors. With half the CFD 
resolution, this overhead was only 9%. It is important to note that LESLIE3D uses an explicit time-
step algorithm with a low per-step cost. This low per-step cost can inflate the re-sampling overhead 
ratio. Codes using implicit time-step algorithms, which are generally several times more expensive 
per-step, will likely experience a much lower FieldView server overhead. 

3     Conclusion and Future Work 
 

IFDT demonstrates a new prototype capability for feature detection and extraction of turbulent 
flows. A flow solver, LESLIE3D, was demonstrated to work well In-Situ with the various other 
components needed to visualize, gather statistics and track a selected flow feature. A prototype 
Volume Rendering capability was integrated in FieldView and presents a new capability that can be 
integrated into the commercial product. The Intelligent Adaptive Transfer Function (IATF) method 
was integrated and tested. Although the User Interface presented new capability and techniques for 
exploring large scale unsteady data, more research and study is needed to yield a more robust and 
computationally efficient training capability. The feature tracking, based upon the Predictor-Corrector 
Feature Extraction and Tracking (PCFET) method demonstrated the capability to discriminate, pick 
and track turbulent flow features. The resulting feature extracts demonstrated the capability to reduce 
the size of unsteady data and enable interactive exploration of the data which enhances discovery and 
understanding of large unsteady CFD derived data. The prototype IFDT system presents a new 
capability that enables scientists and engineers to more readily explore large unsteady datasets. As a 
whole, the feasibility to couple flow solvers and other data analysis techniques such as the Statistics 
Viewer and the Volume Rendering enabled FieldView was clearly demonstrated.  
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