
1

Seventh International Conference on
Computational Fluid Dynamics (ICCFD7),
Big Island, Hawaii, July 9-13, 2012

ICCFD7-1703

IFDT – Intelligent In-Situ Feature Detection, Extraction,

Tracking and Visualization for Turbulent Flow Simulations
Earl P.N. Duque1 , Daniel Hiepler2, Christopher P. Stone.3 and Steve M Legensky4

 Intelligent Light, Rutherford, New Jersey, 07070

and
Kwan-Liu Ma5, Christopher Muelder 6 and Jishang Wei7

College of Engineering, Department of Computer Science,
University of California, Davis 95616

Abstract: Intelligent In-Situ Feature Detection, Tracking and Visualization for
Turbulent Flow Simulations (IFDT) is a new prototype visualization and CFD data
analysis software system for flow feature data tracking and extraction. The system
utilizes volume rendering with an Intelligent Adaptive Transfer Function that
allows the user to train the visualization system to highlight flow features such as
turbulent vortices. A feature extractor based upon a Prediction-Correction method
then tracks and extracts the flow features and determines the statistics of features
over time. The method executes In-Situ with a flow solver via a Python Interface
Framework to avoid the overhead of saving data to file. This prototype system
enables the user to readily explore, detect, track and analyze flow features
predicted by large scale unsteady CFD simulations.
Keywords: Feature Detection, Computational Fluid Dynamics, Turbulence,
Visualization, In-Situ, Feature Tracking.

1. Introduction

Large Scale scientific and engineering physics based simulations have become more attainable

with the advent of more affordable computing. Whereas ten years ago large scale computations were
steady and on the order of 10’s of millions of grid points, today’s large scale computations are
unsteady and on the order of 100’s of millions and exceeding billions of grid points. Furthermore,
large scale computations may contain a wealth of information as these computations can now better
resolve the turbulent behavior of the fluid, simulate multiple species due to mixing and reactions and
capture complicated shock interactions.

Better tools that can automatically detect pertinent flow features are needed. Contemporary open
source and commercial CFD Post-Processing software have built-in functionalities to automatically
detect such flow features. For instance, FieldView [1] has the capability to compare different data sets
using its Data Set comparison tool. In addition, it has the capability to automatically detect vortex

1 Manager, Applied Research Group, 301 Rt 17N, 7th Floor.
2 Research Engineer, Applied Research Group, 301 Rt 17N, 7th Floor.
3 Research Engineer, Applied Research Group, 301 Rt 17N, 7th Floor.
4 General Manager & Founder, Intelligent Light, 301 Rt 17N, 7th Floor.
5 Professor of Computer Science, University of California-Davis, 1 Shields Avenue, Davis, California
6 Post-Doctorate Researcher, University of California-Davis, 1 Shields Avenue, Davis, California
7 Graduate Research Assistant, University of California-Davis, 1 Shields Avenue, Davis, California

2

cores and separation and reattachment lines using either vorticity or eigenvalue analyses by Haimes
[2]. However, these tools and other feature detection tools as highlighted by Thompson [3] were
developed for steady state flow fields. These methods lack the ability to sample and explore extensive
unsteady data sets. They furthermore rely upon visualization techniques that compare images and
require excessive user intervention. New tools are needed that allow for more straightforward feature
extraction to yield better physical understanding of turbulent and inherently unsteady flow phenomena
which will help one to predict and understand key physics in all speed regimes.

The new prototype visualization system “Intelligent In-Situ Feature Detection, Tracking and
Visualization”, (IFDT) presented herein addresses these needs. This method utilizes a Python-based
Software Interface Framework that enables a Python wrapped flow solver to share, without I/O
penalties, the pertinent data structures and allows it to be controlled from the familiar (but modified)
FieldView user interface shown in Figure 1. The user interface provides an interactive graphical front
end tool that allows knowledgeable domain experts (i.e. combustion turbulence or structural aero-
acoustics experts) to identify and pick flow features rendered in a few initial time steps of the
solution. Once identified the system automatically tracks those flow features in time and gathers
pertinent statistics of that feature.

2. Software Components

IFDT consists of the flow solver (currently LESLIE3D), a Python Software Interface Framework,
Predictor-Corrector Feature Extraction and Tracking (PCFET), and Intelligent Adaptive Transfer
Function (IATF). In addition IFDT includes a modified version of the FieldView version 13 client
that supports Direct Volume Rendering, has prototype Python based graphical user interfaces (GUI)
to control PCFET and IATF and In-Situ FieldView servers that can share memory space with the
CFD solver; avoiding file I/O. The following sub-sections describe in detail each of these
components.

Figure 1: IFDT User Interface

3

2.1. Flow Solver LESLIE3D
The flow solver “Large- Eddy Simulations with Linear-Eddy Model in 3D (LESLIE3D) by

Menon, et.al [4] is a research level Computational Fluid Dynamics (CFD) code used to investigate a
wide array of turbulence phenomena such as mixing, combustion, and acoustics. It is a structured-grid
CFD solver that incorporates Large-Eddy Simulations (LES) methods with various high-fidelity
mixing and combustion models. LESLIE3D has been used to model a very wide range of turbulent
flow problems including gas turbine combustors [5] and super-critical liquid fueled rocket engines
[6]. LESLIE3D has also been used to model more fundamental flow physics such as premixed flame
dynamics in isotropic turbulence [7].

LESLIE3D solves the compressible form of the governing Navier-Stokes or filtered LES equations
using a multi-block structured-grid finite-volume scheme. The 2nd-order accurate explicit McCormack
predictor-corrector scheme is used to solve unsteady problems. LESLIE3D is capable of either 2nd or
4th-order spatial accuracy for both the viscous and inviscid terms. The turbulence kinetic energy
equation (k-equation) is solved when turbulence modeling is required. Block-decomposition with MPI
is employed for distributed parallel computing.

A reduced version of the larger LESLIE3D code was used in the IFDT in-situ coupling process.
This version of the code, 107.leslie3d, is distributed as part of the SPEC CPU2007 Benchmark suite
of codes designed to measure scalar and parallel hardware performance on CPU-intensive
applications [8]. This benchmark code is specially designed to solve the unsteady evolution of a
mixing shear layer that can be modeled with a single Cartesian computational grid in either 2- or 3-
dimensions and with a wide range of grid resolutions. Further, it can be initialized and validated
analytically without requiring any file I/O making it an ideal candidate for scaling and performance
studies.

2.2. Python Software Interface Framework and In-Situ Processing
LESLIE3D and the feature tracking components were coupled with FieldView based upon the

Python Software Interface Framework (SIF) described by Sitaraman, et.al. [9]. The SIF is a
framework in which multiple tools such as a solver, post-processor and feature detector share the
same address space passing pointers to memory instead of writing and reading datafiles; avoiding
bottlenecks from having to read and write large data files. To operate within the SIF, each program is
converted to a shared library and execute under a Python high level control.

Figure 2 presents a schematic on how the in-situ feature tracking works in IFDT. Here the flow
solver (FS) and the “Predictor Corrector” based Feature Tracking tool (PC), data resampler (RS) and
the FieldView server processes (fvsrv) execute all on the same server nodes (Node 1….N). The server
machine can be a distributed processor system accessed across a wide area network as shown or a
shared memory machine with all processes and communication occurring local to one compute node.
All the components are Python wrapped which allows them to share data structures via the Python
based execution interface. For polygonal surfaces, fvsrv points and copies the nodal based data,
creates surface extracts and then sends it to the client for rendering. For Direct Volume Rendering,
volume data extracts are sent from the RS to the fvsrv to the master fvsrv at Node 0 for interactive
viewing and analysis by the user on the client. In either case, the user has full functionality of
FieldView and its standard polygon based graphics such as iso-surfaces, boundary surfaces, 2-D plots.

4

For volume rendering, voxel
information is collected from all
the server nodes and sent to the
client computer. Each In-situ
FieldView server sees only its
portion of a single large grid being
solved by LESLIE3D. When the
FieldView client requests voxels it
specifies a bounding box (Region
of Interest – ROI) within the single
large grid. The bounding box is
sent to all the FieldView servers
which then send a portion of the
original grid they hold and return
the intersection bounding box.

The In-situ capability of IFDT relies upon the ability to directly and efficiently access CFD
solution data without resorting to file I/O. In the current in-situ IFDT design, the parallel CFD solvers
and FieldView servers run concurrently on separate threads within the same Linux process. This
design allows the FieldView server to directly access solution data since they share the same memory
space.

The FieldView server allocates memory for the xyz grid, iblank, solution q and function-array. For
simplicity, let us assume an equal grid size (N) in the IJK grid directions; therefore, each FieldView
server would allocate 3 (xyz) + 1 (iblank) + 5 (q) + 5 (function) = 14 arrays with size N3. The
LESLIE3D finite-volume scheme requires approximately 110 double-precision arrays with additional
3-layers of ghost-cell data. For large values of N, the ghost-cell data contribution can be ignored. In
this situation, the FieldView server memory only adds 7% to the total memory footprint.
LESLIE3D’s storage requirement is higher than most production-level CFD codes so the relative
overhead from the FieldView server is likely higher for other codes. For example, NASA’s
OVERFLOW-2 [10] solver requires approximately 49 N3 arrays, ignoring the added storage required
by the overset grid algorithm. This equates to approximately a 14% overhead for the FieldView
server storage.

The in-situ IFDT direct Volume Rendering based visualization processes currently require uniform
Cartesian data. Since most CFD simulations of interest use curvilinear or unstructured grids, the
underlying simulation data within the user-defined region-of-interest (ROI) is interpolated onto a
uniform Cartesian mesh. Therefore, the FieldView server threads also perform an interpolation
process. This process, known as re-sampling, adds some measure of memory and computational
overhead to the CFD solver. By virtue of the full-copy extraction method, the re-sampling operation
can proceed concurrently to the CFD solver reducing the negative performance impact. The worst-
case scenario would occur when the re-sampling and the CFD resolution matched. In this situation,
the re-sampling algorithm increased the FieldView server overhead to 9% with LESLIE3D. However,
one of the design features of the re-sampling process is to allow a coarser visualization mesh. Using
half the CFD resolution reduces the total number of re-sampling points by 1/8, nearly an order of
magnitude, and thus, imposes a negligible memory overhead.

Figure 2 – Client and Server Flow Chart for In-Situ Intelligent
Feature Detection and Tracking

5

The Volume Rendering occurs on the FieldView Client whereby all the re-sampled data is
assembled on the master FieldView server then sent to the Client. This design imposes a restriction
upon the size of the re-sampling mesh; it must be small enough to fit on the single FieldView master
server computer. However, the re-sampling and feature tracking algorithms only consider a single
scalar value. Further, the re-sampled mesh is Cartesian and requires only 36 bytes to be fully defined,
a considerable savings compared to explicitly storing the xyz coordinates of the re-sampled mesh. The
storage for one array is quite small relative to that required by most CFD solvers. For example, a 5123
simulation, over 100 million grid points, only requires 512 MB on the FieldView master; a small
memory overhead on modern systems. As stated earlier, the re-sampling algorithm allows the user to
control the post-processing cost by adjusting the ROI location and resolution.

2.3. Predictor-Corrector Feature Extraction and Tracking

The Feature Extraction and Tracking method deployed in IFDT is based upon the prediction-
correction method by Muelder and Ma [11]. This method uses a prediction step to make the best guess
of the feature region in the subsequent time step, followed by growing and shrinking the border of the
predicted region to coherently extract the actual feature of interest. They utilize information from
previous time steps to predict a feature’s region in the current time step, then correcting the predicted
region to extract the feature’s actual region through growing and shrinking processes. As shown in

Figure 3 the approach works by predicting a
feature’s region in subsequent time steps then
extracting the actual region starting with this
predicted region. By doing this it effectively
reuses the information from previous time
steps to reduce the amount of work needed in
each time step. This method allows for the
extraction of individual features without the
need to do a global segmentation where all
features are extracted at once. This capability
gives it the interactive response needed for the
IFDT system. The user can dynamically pick or
select features for extraction and tracking and
dynamically adjust parameters and alter the
volume being tracked.

The technique combines the prediction of a
feature’s region and then corrects by adjusting
the surface of this region. Prediction is the
process of guessing a feature’s region in space
based on its location in previous time steps.
Once this prediction is made, then the actual
region is extracted by adjusting the surface of
the predicted region through the use of a
technique based on region growing. When
predicting a region for a time step, the
prediction will almost never line up exactly
with the correct region. Thus, it is necessary to
correct the region by adjusting its boundary as

Figure 4 - Coherent extraction. First, the feature in
the previous time steps is used to predict the feature’s
region in the current timestep. However, the
predicted region of the feature is not the correct
region. The region is then corrected by shrinking and
growing the boundary (Taken From: Muelder, C.
and Ma, K.L, “Interactive Feature Extraction and
Tracking By Utilizing Region Coherancy”, [11]

Figure 3: Feature tracking approach utilizes
coherency between time steps in the extraction
(Taken From: Muelder, C. and Ma, K.L, “Interactive
Feature Extraction and Tracking By Utilizing Region
Coherancy”, [11]

6

necessary. As depicted in Figure 4, this adjustment is actually a combination of two processes:
boundary growing and boundary shrinking. Both boundary growing and shrinking are based on region
growing [12].

2.4. Intelligent Adaptive Transfer Function IATF

When extracting and visualizing time dependent flow features in large volume datasets, the values
of the scalar functions defining the flow features (i.e. vorticity magnitude, Q-Criterion or Lambda-2)
may change dramatically as the flow evolves in breadth (min-max values) and absolute magnitude.
These variations make it difficult for a user to determine the correct scalars to choose that will
highlight the flow features and enable a successful feature extraction.

To overcome these issues, the Intelligent Adaptive Transfer Function method by Tzeng and Ma
[13] was adopted. Whereas conventional methods require either an analytical description of the
feature of interest or tedious manual intervention throughout the feature extraction and tracking
process, they showed that it was possible for a visualization system to “learn” to extract and track
features in a complex transient flow field according to their “visual” properties, location, shape, and
size. The basic approach was to employ machine learning in the process of visualization. The power
of such an intelligent system approach is its ability to extract and track a feature of interest in a high-
dimensional space without explicitly specifying the relations between those dimensions, resulting in a

Figure 5: A DNS turbulent reacting plane jet data set using IATF. The key frames are bounded in red, and
the transfer function used for each key frame is also applied to different time steps shown in the same row.
The fourth row shows the rendered results using the derived transfer function. Taken From F.-Y. Tzeng and
K.-L. Ma, "Intelligent Feature Extraaction and Tracking for Large-Scale 4D Flow Simulations," [13]

7

greatly simplified and intuitive visualization interface.

In volume rendering, a one-dimensional transfer function is a simple ramp, piecewise linear or
arbitrary table function that maps between the original data to an opacity and a color to be rendered
within a given computational volume element (voxel). Through this one-dimensional mapping,
transfer function, one can enhance the visibility of desired spatial structures within a given
visualization as will be shown in following sections.

In the IATF, the user manually adjusts a one-dimensional transfer function for selected time steps
to highlight features/regions of interest, and then an adaptive transfer function for the whole time
sequence is automatically generated using the machine learning system. In this case, the adaptive
transfer function takes into account the scalar field and the data distribution variations over time. The
tracked feature can be represented by any type of graphical object. One such object they used was a
volume rendered feature tracking technique based on such intelligent transfer functions. The user
manually highlights features during rendering as the tracking proceeds, and enables a variety of
highlighting criteria to enhance the features of interest.

Figure 5 illustrates Tzeng and Ma’s approach. The user first selects a couple of key frames and
assigns a 1D transfer function for each key frame to define the features of interest. These 1D transfer
functions are then sent to a machine learning engine for training. Training is an iterative process and
the trained machine learning engine is able to generate an adaptive transfer function by using these
image driven transfer functions, as well as the data-driven properties of the data set. During rendering,
the adaptive transfer function is used to assign opacity to each voxel. The user can visualize the
rendered results using the adaptive transfer function and add new key frames when needed.

2.5. FieldView and GUI for Volume Rendering, PCFET and IATF
FieldView version 13 was used as the baseline platform for the prototype where by Volume

Rendering, Python wrapped servers and a QT based prototype GUI to control the data extracts and
Volume Rendering were added. This
prototype version was designed to support
polygonal surfaces (i.e. boundary surfaces,
iso-surfaces, computational surfaces)
displayed along with volume rendered
images, client side (desktop/workstation)
Volume Rendering so as to exploit the local
GPU.

IFDT utilizes a client-server paradigm
whereby the FieldView client machine
communicates via secure sockets to the
master server and the FieldView master
server in turn communicates via MPI with

the slave servers. Each slave server machine performs operations on a single grid.

A ray traced volume render shader code was added to the FieldView 13 scene graph. For volume
rendering, the volume data is stored into a 3d texture. The sides of the volume cube are sent as normal
polygons. The shader is presented with each pixel of each side of the cube. From this pixel and the
eye location, it draws a ray into the volume and computes the pixels’ color. At this time, only regular
Cartesian grids are supported which requires a one to one correspondence between voxels and

Figure 6 - Iso-Surfaces and Volume Rendering of a TML

8

resampled grid elements. Currently, the code does not correctly render mixed volume and polygonal
data; the polygonal data renders behind the volume data. Figure 6 shows an image of a volume
rendered region (lower-right image) displayed together with polygonal data surfaces (upper-left
image) generated for a result from LESLIE3D of a Temporal Mixing Layer.

2.6. IFDT Panel Implementation
The Predictor Corrector Feature Extractor and Tracking (PCFET) graphical user interface from Ma

et.al. [14] was integrated into FieldView and coupled with LESLIE3D. Figure 1 illustrates FieldView
version 13 with the PCFET environment and a LESLIE3D case running in-situ with FieldView. The
image shows both the Volume Rendered vortex on the lower right and polygonal rendered iso-surface
of vorticity magnitude on the upper left corner. The method works either in direct mode whereby all
the tools execute on one desktop system or in a client-server mode whereby the solver and Predictor-
Corrector method execute on a remote server while the Volume Rendering and User Interface run on
the user’s local client. Three new panels have been integrated into FieldView. The top left panel
(IFDT), is the main control panel for IFDT which allows the user to select when to cause FieldView
to pause the flow solver, copy current data to memory, release the solver to continue solving and then
render a polygonal image of the solution at the copied time instance. Full FieldView functionality is
maintained such that the user can create iso-surfaces, 2-D plots or point-probe as if using the standard
FieldView product.

Figure 7 shows the “Control Center Panel” for the IATF and the Predictor-Corrector Feature
Extraction. The “IATF” tab panel contains the transfer function histogram which the user can
manually manipulate. In the example shown, the transfer function color map used the same color map
and scalar function of Vorticity Magnitude as the FieldView “NASA-1” colormap and was adjusted to
display the vortices. The IATF panel has a push button on the transfer function GUI to create default
Gaussian curves which make data exploration easier. A Gaussian curve can be created and moved left
or right to search for features. This operation is somewhat similar to sweeping an iso-surface in
FieldView. However, unlike an iso-surface the Gaussian can span a range of values and since the
resample volume data resides in memory, when the position of the Gaussian changes the image
immediately updates.

Lighting parameters can be directly controlled on the GUI. These controls include the Ambient
Lighting fraction, Ka, the Diffuse lighting fraction, Kd, Specular fraction, Ks, and Shininess. In
addition, “Sampling” controls the number of steps taken along the ray cast. By moving the slider to
the right, the ray cast results in less steps, coarser images but faster translation and rotation of the
graphic object. If the user moves the slider to the left, this action would result in a greater number of
steps along the ray cast, much better resolved images but slower response.

The “Track” Tab controls the tracking and extraction of the flow features. When the user presses
“Start” on the Track tab the system will begin to record volume data snapshots on the client. The
system continuously performs the volume rendering steps as described above. At every N-th time step
as requested by the user, the system collects statistics information of the tracked feature. To avoid
reducing solver performance a request to the solver for volume data is made at a different user defined
time interval. This recording of volume data values for rendering will continue until the stop button is
pressed or if the record-buffer fills, currently defined as 25% the size of physical RAM. The IATF
tab contains a "Time Steps" slider. Moving the slider to any position will display that recorded
volume data. This slider always has a maximum value equal to the number of captured volumes.

9

The Track tab panel also controls the “Picking” and “Extraction” of a tracked feature. There are
two settings for “Threshold” which controls the range of values that shall be tracked and extracted –
Opacity and Value. The “Value Min” and “Value Max” set the minimum and maximum bound of the
voxels that shall be tracked, respectively. The “Opacity Min” and “Opacity Max” set the minimum
and maximum value of those voxels that shall be included in the tracked feature. Once these values

have been set, the user may then
“Pick” a feature for tracking by
manually clicking a desired feature
displayed in the volume rendering. The
voxels of the feature of interest whose
scalar value is bounded by the two sets
of threshold min max are then colored
by a single color that the user selects
with the color wheel and triangle
shown in Figure 8; currently set to red.
As an example, Figure 8 shows a
resulting volume rendered image
displayed in the FieldView graphics
window which shows the resulting
image of the vortex flow (colored
voxels) and the picked voxels shown in

Figure 8 - Control Panel – Track Tab Panel Showing Tracked
Feature in Red

Figure 7 - IATF and Track Control Panel

10

red.

As the system collects time history data for the picked and extracted feature, the “Statistics
Viewer”, panel in the lower left of Figure 8, allows the user to interactively select different scalar
quantities for monitoring and whether that data is either an average of that quantity over the entire
feature voxel set or the value of the scalar at the centroid of the picked feature voxels.

Figure 9 illustrates the training process for IATF as applied to a temporal mixing layer as
simulated by the LESLIE3D code. For the example presented here, the grid size is 65 x 65 x 33 grid
points. The volume rendered solution is colored by Q-Criterion and the transfer function was
manually set by the user. The colormap was set to be consistent with FieldView’s NASA-1 colormap
and the opacity shape (the black S-shape line or sigmoid) is known through experience to highlight
the vortex core.

As shown in Figure 9, the IATF panel contains the transfer function currently being used to create
the volume rendered image. The “Time Steps” slider allows the user to interactively move to any of
the re-sampled time steps that were loaded into memory during the previous “tracking” step. The user
can move the slider to any time step, manually adjust the transfer function and interactively view how

that transfer function affects the volume rendered
image.

The user creates the set of training data for the
derived transfer function by repeatedly advancing the
Time Step to advancing positions, manually adjusting
the Transfer Function to highlight the feature and then
click on “Set the Key Frame”. In the example shown
in Figure 9, the user has moved the slider to Step 272,
interactively adjusted the transfer function to
highlight the flow feature and then selected “Set Key
Frame”. They repeated the above steps for time steps
313 and 395 as evidenced by the “Time Step” Table.

Once the user is satisfied with the set of training
data, they then would click on “IA Operation ->
Train” which causes the IATF to compute derived

transfer functions based upon the Keyframes. Once the training is complete, the derived Transfer
Functions may be applied to either select time steps or to all the saved time steps. For the example
shown in Figure 9, we see the derived transfer function being applied to Time Step 272.

2.7. Transfer Function Usage for Feature Discrimination
In volume rendering, a “Transfer Function” controls the color and opacity displayed in the graphic.

In the IFDT user interface, the Volume Rendering user interface is controlled in the Control Panel -
IATF Tab. Figure 10 shows the Transfer Function user interface (UI). The X-axis represents the
scalar function value of currently displayed Time Step from the minimum value on the left to the
maximum value on the right. The user can select the different colors along that spectrum by selecting
colors from the color wheel in the IATF tab and clicking on the triangles shown. The triangles can
slide to any position hence controlling the position of the scalar color.

Figure 9: Temporal Mixing Layer with
Derived Transfer Function Applied & IATF

Panel Shown

11

The y-axis of the Transfer Function User
Interface represents the opacity. The user controls
the opacity by manually scribing a line via mouse
controls in the colored area. A line at the bottom
corresponds to completely transparent while a line at
the top of the vertical scale represents fully opaque.
The color spectrum stripe at the top represents the
color that would be shown in the graphic.

The example shown in Figure 10 uses the
Gaussian tool; enabled by clicking on the “F” button.
The user can control the width of the Gaussian by
moving the mouse up and down while simultaneously

click and holding on the red rectangle. Similarly, the user controls the height of the curve by click and
holding on the green rectangle and moving the mouse up and down. The horizontal position of the
Gaussian can be moved to the left or right by click and holding on the green rectangle and moving the
mouse to the left or right.

The Transfer Function UI is a very useful tool for
interactively highlighting and evaluating flow
features - Feature Discrimination. There are four
types of transfer function shapes that may be applied
by the user.

1. Gaussian
2. Step function
3. Sigmoid – “S-Curve”
4. Delta Function (Sharp Gaussian)

Figure 11 shows the Gaussian function and the
resulting image. As shown, the color at the peak of
the curve causes the voxels corresponding to that
scalar value to be colored accordingly and as a solid
otherwise known as opaque). The voxels
corresponding to scalar values to the left and right
shall be assigned different colors and less opaque
(transparent).

A Step Function as shown in Figure 12 is another
transfer function type. To the left of the step all
corresponding voxels shall be completely
transparent. Voxels to the right of the function are
completely opaque. This function is manually drawn
using the mouse by click and holding towards the top
of the color spectrum window and sliding the mouse.
The Step Function can be used to highlight features
such as the vortex structures shown. By moving the
step to the left or to the right different features will
show with no extraneous transparent voxels; needed
for good feature picking.

Figure 10 - Transfer Function Control in IATF
Panel Tab

Figure 11 -Gaussian Transfer Function

Figure 12 : Step Function Transfer Function

12

The Sigmoid or “S-Curve”, Figure 13, is either
a hand drawn curve or automatically created by
the IATF training algorithm. The S-Curve is a
good method for both highlighting a feature and
showing the flow around the feature. As shown
here, the voxels in the magenta region scalar
values are all drawn as opaque, while all other
voxels of lesser value are less opaque smoothly
fading out in the blue spectrum.

Combining the Gaussian and Step function as
shown in Figure 14 is a good method for creating
an S-Curve without hand drawing. The issue with
the hand drawn S-Curve is that it requires care and
manual mouse dexterity to get a smooth curve. By
combining the Gaussian and Step function, two
curves that have a more easily controled drawing
UI, the user can control an S-curve much more
readily. This combination can result in stunning
graphic images as shown.

Any of the transfer functions presented so far
can be used to discriminate flow features. For
vortical flow features where maxima of either
vorticity magnitude or Q-criterion are indicators
for a vortex, it was found that a “Delta Function”
that is approximated by a very narrow Gaussian

curve is very useful for interactive exploration of the flow field. Figure 15 shows the application of
the Delta function. As shown, the Gaussian is very sharp and narrow. The user can readily click and
hold the Gaussian and slide it to the left or right and immediately see the effect upon the volume
rendered image. This technique is very useful in finding the flow features of interest so that they can
be picked for feature tracking and extraction.

Figure 15 : Delta Function in Green and Magenta

Figure 13- Sigmoid (S-Curve) Manual Drawn
Transfer Function

Figure 14 - Gaussian + Step Transfer Function

13

2.8. Statistics Viewer
During feature tracking, transient information of the tracked feature is collected by the server

processes and sent via a secured socket to the client for display in an interactive Statistics Viewer
Panel as shown in Figure 16. Currently, time history for the feature volume, mass, position, density,
momentum, stagnation energy, vorticity magnitude, vortex position and Q-criterion is collected for all
the voxels within a given tracked feature. The Average value of all the voxels contained in the feature
and also the value at the Centroid of the volume of voxels is also determined and collected. The user
can then select to display either the Average or Centroid value of any of the feature values collected.

The statistical data is displayed as
either an FFT (2-D plot on the top) or
as a time history (2-D plot shown on
the bottom). For the example shown,
the FFT displays the Fourier Modes
on the x-axis and the magnitude on
the y-axis for the Volume of all the
Voxels in the picked feature. In the
time plot, we see the time evolution
of the feature with time on the x-axis
(time steps) and the total feature
volume on the y-axis.

3. Results

3.1. Test Case – Temporal Mixing Layer
The test problem simulates the unsteady dynamics of a

temporally evolving planar mixing layer (TML). This type of
fundamental flow mimics the dynamics encountered when
two fluid layers slide past one another and is found in
atmospheric and ocean fluid dynamics as well as combustion
and chemical processing. The two sliding fluid layers are
subject to inviscid instabilities and can evolve from largely
2-d laminar flow into fully developed, 3-d turbulent flow.
See Metcalfe et.al. [15] and references therein for further
mathematical details on the subject.

The initial velocity profile of the LESLIE3D TML
benchmark leads to vortex roll-up and, depending on the
domain extent, vortex pairing due to the specially tuned 2-d
instabilities introduced in the initial profiles. An example of
the 2-d vortex roll-up is shown Figure 17, whereby the 2-d

flow has evolved from the initial unstable velocity profile into a classical roll-up shape and is
dominated by the single span-wise vortex over the (2x2)π domain. The TML tracks this flow feature
in time and has no mean motion.

A larger 2-d span-wise domain length allows multiple span-wise vortices to roll-up. These vortices
can, in turn, pair and merge into a single vortex. A time sequence of this phenomenon is shown in the

Figure 16 - Statistics Viewer Panel

Figure 17 - . 2-d vortex roll-up in
planar temporal mixing layer with

(2x2)π domain. Vorticity magnitude is
plotted

14

following image sequence. The time sequence simulation uses a (4x4)π domain with 256x256 grid
resolution. The first image, Figure 18(a), shows a close resemblance to the single-mode result shown
in Figure 17. The two vortices remain largely stationary; however, they mutually induce a small
relative velocity. Eventually, the small perturbation grows causing a rapid pairing of the two vortices.
Note, the peak vorticity is constant during the entire simulation. Viscosity and numerical dissipation
slowly dissipate energy causing the only change in vorticity.

a) τ = 12.3 b) τ = 37.1 c) τ = 61.8

d) τ = 86.6 e) τ = 111 f) τ = 136

Figure 18. Time sequence of 2-d TML over (4x4)π domain. Showing vorticity magnitude with maximum
at 15 s-1.

Three-dimensional instabilities can also be introduced to the shear layer. Under these conditions,

counter-rotating vortices develop in the highly strained region between the dominate 2-d span-wise
rollers. These rib vortices can inhibit 2-d vortex pairing if sufficiently energetic and are dependent
upon the balance between the instability energy growth and dissipation. These rib flow structures
enhance the mixing rate between the two fluid streams due to the smaller size and high vorticity.

An example of the unsteady 3-d vortex dynamics in the TML is shown in the following sequence
of 4 images. These images show the vorticity field at equally spaced intervals for a TML computation
initialized with both 2- and 3-d perturbations. The computational domain is (4x4x2)π with a uniform
mesh of 256x256x128. The first image, at non-dimensional time τ = 12, shows the iso-scalar surface
of vorticity magnitude at 20% of the peak value is shown along with a contour plot of the vorticity
magnitude. At this early point in the TML evolution, the vorticity is still largely confined to a
nominally 2-d vortex sheet and the peak vorticity (18 s-1) is not significantly above the initial

15

distribution. However, the 3-d perturbations are evident in the span-wise direction. The 2nd image, at τ
= 24, clearly shows the growth of the 2 counter-rotating rib vortex pairs in the high strain regions.
Again, the iso-scalar surface is at 20% of the peak which has increased, due to non-linear vortex
dynamics, to 28 s-1. The increase in peak vorticity is confined to the high-strain “braid zone”. The
vorticity originally distributed along the span-wise vortex sheet in the braid zone is rolling into
stream-wise ribs. Recall that the peak vorticity is constant throughout the 2-d time sequence shown in
Figure 18; non-linear vortex stretching is only present in 3-d flows. The 3rd image in the sequence, at
τ = 32, again shows the rapid increase in the intensity of the rib vortices as they are further stretched.
The final image, at τ = 48, shows a highly turbulent flow-field. The intense rib vortices have
penetrated the 2-d span-wise rollers and destroyed the coherence of the TML. Unlike the 2-d TML,
pairing of the 2-d span-wise rollers was suppressed by the influence of the 3-d perturbations.

a) τ = 12 b) τ = 24

c) τ = 32 d) τ = 48
Figure 19. Time sequence of 3-d TML on (4x4)π domain with 3-d perturbations.

3.2. Interactive use of IFDT
The following presents a step by step use of IFDT to track a picked feature simulated by the

Three-Dimensional TML case. The IFDT system is started from the command line by first initializing
an “mpd-ring” on the remote server where LESLIE3D and FieldView servers execute and the starts
the statistics viewer on the client which communicates to the server side across a secure socket
connection. The IFDT system then sequentially initiates an ssh remote call to the server to launch the
SIF, launch LESLIE3D using mpiexec, and open another secure socket connection across which the

16

FieldView client process communicates to the FieldView master server. FieldView and the IFDT
panels will then show as illustrated back in Figure 1.

Next, the user would start the FieldView slave
servers and load the latest solution data by clicking
on the IFDT GUI button “Get current solver result”.
This action initiates a Manual Start FieldView
client server process, causees the SIF to pause the
LESLIE3D process and the FieldView slave servers
to load the current data. Once the FieldView slave
servers have loaded the current data, the flow solver
is released and it continues to solve. FieldView then
executes a corresponding FieldView restart which
creates a surface and creates an image. At this
point, the user has full control of FieldView and can
create surfaces as in standard FieldView.

For a feature pick operation, IFDT simply grabs
the first non-zero opacity voxel along the line of
sight where the pick occurred. Therefore, the best
transfer function for picking and discriminating
features is either a delta function or step function as
shown in Figure 20. To pick, the user first adjusts
the transfer function until the desired feature
appears on the screen. The user will then click on
the “Track” panel and click on the “Tracking
Features and Region Grow” radio button. The user
would then adjust the picking color through the
color wheel User Interface. The user activates the
pick color by clicking the left mouse button on the
left square below the color wheel; “White” in this
example. The threshold range sets the scalar
function value range for a given feature. By
clicking on Manual, the user manually sets these
threshold ranges. The user would then hold down
the “Shift” button on the keyboard and place the
mouse select arrow over the desired feature and
click the left mouse button on the feature. If a
successful pick occurred, the client will emit a
“beep” sound, write the voxel location to the
console window of the pick and the feature will
become colored as shown in Figure 21. In this
example, one of the vortex braids has been
highlighted with the color white.

To start the feature tracking, extraction and
statistics gathering, the user would enter under the
“record statistics every Nth solver step a value for

Figure 20: IATF Tab Panel, Transfer Function
with Gausian and Step Function

Figure 21: Feature Picked and Tracking

Figure 22: Combined use of a Step and Gaussian
Transfer Function

17

data sampling. The valid range is from 1 to 500. When the user clicks on “Start” the feature tracking
begins. At every Nth solver step, the feature statistics information is computed and the statistics
information is sent to the client and then displayed on the statistics viewer. The volume render graphic
shown on the screen and the resampled data volume and feature tags are sent to the client at different
time intervals to maintain good interactive performance for the user.

The time difference between the recorded volume time history and the statistics gather gives the
user interactive capability while gathering in-situ data from the flow solver. For the case shown here,
the volume rendered update has been set to 5 minutes while the statistics and IATF volume history
data is update every 10 time steps (approximately every 1 minute of wall clock time). In between the
graphic updates, the user can change the transfer functions, rotate, pan and zoom the volume render
graphic and even create polygon surfaces. Figure 22 shows the transfer function has been changed
while the statistics is being updated simultaneously.

a) Time Step Playback 1 b) Time Step Playback 19 c) Time Step Playback 38

Figure 23 : IATF Tab - Time Step Playback
The recorded volume data may be interactively viewed with the IATF tab Volume data playback.

Figure 23 shows the IATF Tab at three different recorded Time Steps (1, 19 & 38). The user may
move the slider to any time step, click through to any time step, or click on the Play button to sweep
through the series of recorded Time Steps. The user may also change the Transfer Function to explore
the effect upon each time step. This ability to sweep through and interactively explore transient
data is a new method that helps the user gain more knowledge about their data.

3.3. Discussion of Problem Size and Scale-Up issues
A series of benchmarks were conducted to assess the performance and scalability of the prototype

software. The first series of benchmarks was designed to assess the scalability and performance of
IFDT in a remote client-server configuration. Two grid sizes were used in the LESLIE3D TML
simulation: 257x129x33 and 257x129x65. Each test was run using Intelligent Light’s compute cluster
(Nilchi) as the FieldView server and compute engine and a remote client connected over broadband
internet. Nilchi has nine (9) HP BL460c nodes, two dual-core Xeon X5260 processors per node,
16GB of RAM per node, 72GB SCSI storage on each node with both GigE and Infiniband network
fabric between the head node and the 8 compute nodes. The head node of Nilchi was used as the
FieldView master server and the 8 compute nodes as the FieldView slave servers and the CFD
calculators. The network speeds between the head node to the remote client ranged between 64-128
kbytes per second depending upon load. The simulations were run for 500 CFD time-steps before
timings were collected. Timings were collected over 1000 CFD time-steps. The lag in starting the
timings was to allow sufficient time for the FieldView IFDT GUI to be manually attached over the
internet and for the volume rendering to be configured as needed.

18

The impact of volume rendering on the computational throughput was measured by varying the
frequency that the CFD dataset is sampled and rendered. This is controlled in the IFDT GUI by
adjusting the Nth-step value. The functionality of the Nth-step controller forces synchronous
interaction with the CFD solver. Dataset sampling is initiated and completed synchronously every
Nth-step of the CFD solver. Volume image update is still done asynchronously.

Volume sampling of the CFD dataset has two purposes in the IFDT. First, it is used in the feature
tracking application. Simple time history statistics on the tracked features can be computed. A fixed
sampling frequency is required in order for these computed statistics to be properly analyzed in
spectral space leading to the change in meaning of the Nth-step control variable described above.
Volume sampling is also used in the volume rendering phases on the IFDT client. Since this is only

for visualization purposes, this operation is still
allowed to be asynchronous. Note, the server-to-
client network transmission requirements are
different for these two features. For feature
statistics, only the reduced values must be
transmitted from the FieldView server to the remote
client. This will be less than 1 kilobyte. Volume
rendering requires that the entire re-sampled
volume data be transmitted to the client and is
dependent upon the re-sampled mesh size.

The raw performance of the IFDT software
without any re-sampling is shown in Figure 24 for
the medium size grid (256x128x32). These
performance measurements were obtained on the
Nilchi test cluster using the high-speed Internet
Protocol over the Infiniband (IPoIB) and the
standard Gigabit Ethernet (GigE) networks. The
IPoIB network provides close to 10Gigabit speed;
however, it does not provide the low latency
associated with some of the hardware-assisted
protocols designed specifically for Infiniband.

With no re-sampling or any other interaction
from the FieldView server, the Figure 24 graph
shows the performance of the CFD solver
LESLIE3D itself. The parallel scalability on the
Nilchi system is shown in Figure 25 . The parallel
efficiency drops from nearly 100% when using 1

core per node (8 cores total) to less than 50% when 4-cores per node are used (32 cores total) with
both networks. The network speed appears to have a much lower impact on the scalability than the
core loading. The scalability of the same benchmark was also measured on a shared-memory 8-core
workstation (green line in Figure 25). No network fabric is required for this parallel computation but
the parallel efficiency is still seen to be poor strengthening the argument that the inter-node network
speed is only marginally important in this scenario. For this reason, only the faster IPoIB results will
be discussed further.

Figure 24: Total wallclock time (sec) vs. number
of the cores for IFDT software for medium grid
size (256x128x32) using IPoIB (blue) and GigE
(red) networks.

Figure 25: Scalability of the LESLIE3D solver
using the medium (256x128x32) grid on the Nilchi
test cluster using IPoIB (blue) and GigE (red)
networks. Scalability on a shared-memory
workstation (8-core) shown in green

19

The next phase of the benchmarks measured the
impact of in-situ processing on the total simulation
run-time. Figure 26 shows the run-time breakdown
of the in-situ simulation. The LESLIE3D large grid
(256x128x64) was used with the IPoIB network on
16 cores. The cost of the LESLIE3D solver and the
re-sampling components of the compute processes
are shown. Two re-sampling resolutions were
tested: full and half. At full resolution, the re-
sampling mesh matches the underlying CFD grid.
At half resolution, the re-sampled space is half the
resolution in each direction for a total 1/8th the re-
sampled grid size. The Nth-step value was varied
from 0 (no re-sampling) to 50 and, in this context,
the Nth-step value represents the frequency at
which data is sent from the FieldView master to the
client for volume rendering compared to the re-
sampling rate. That is, when Nth is 10, the volume
and feature-tracking data is sent to the client every
10 re-samples. This was described previously as
asynchronous re-sampling.

Intuitively, a higher Nth value should result in a
lower re-sampling cost. However, the opposite
trend is seen in Figure 26. Instead, the re-sampling
cost rises quickly as the Nth value is increased for
the full resolution re-sampling case. The cause of
this non-intuitive behavior is directly caused by the
asynchronous re-sampling procedure. During
asynchronous feature tracking, re-sampling is
initiated immediately and only interrupted when
data is transmitted to the client. That is, there is no
correlation between the CFD solver time-step and
the re-sampling frequency. Since the re-sampling
cost is vastly cheaper than the transmission cost in
the client-server configuration, the effective re-
sampling rate is greater for a higher Nth value.
This is clearly seen in the Figure 27 where the

number of re-samplings is plotted against the Nth value for the full and half resolution cases. The
greater number of re-samplings for the half resolution case is easily explained with the same logic: the
cost to re-sample the volume is roughly 1/8th the full-resolution and the cost to transmit the data to the
client is also approximately 1/8th meaning a higher number of re-samplings can occur within the same
run-time. Note, however, that the total run-time cost of the in-situ simulation with the half-resolution
is considerably lower despite the higher re-sampling frequency. Again, the transmission and re-
sampling costs are 1/8th of the full-resolution reducing the in-situ overhead.

The impact of network bandwidth on the re-sampling frequency was measured by running a
similar simulation on a shared-memory workstation. There, the FieldView client and the in-situ

Figure 26: . Run-time cost of the LESLIE3D CFD
solver and re-sampling algorithm as a function of
re-sampling frequency (Nth-value) and re-
sampled resolution (full vs. half). Using Large grid
with 16 cores

Figure 27: Total number of re-samplings as a
function of Nth value over 1000 CFD time-steps
for full and half resolution re-sampling volumes.
Using Large grid with 16 cores.

Figure 28: Run-time cost breakdown for shared-
memory in-situ simulation on Medium grid with
4 cores

20

processes were run on the same machine removing the need for network communication. Due to
memory constraints, only the Medium grid was tested in this scenario. This simulation used 4 CPU
cores for the CFD and re-sampling processes Figure 28 shows the same run-time breakdown of the
CFD solver and re-sampling components for different Nth-step values. However, unlike the previous

result, the re-sampling component has zero
dependency upon the Nth-step value. In this
scenario, 1000 re-samplings were executed over the
1000 CFD time-steps for all Nth-step values. Since
there was no data transmission overhead, the
asynchronous coupling allowed the re-sampler to
continuously query the CFD solver for new data at
the same rate the CFD solver could process a time-
step. Aside from changing the frequency that the
volume rendered image is refreshed, differing non-
zero values of Nth-step have no impact on the run-
time.

The Nth-step value can alternatively be used in
a synchronous mode. In this scenario, re-sampling
is done every Nth CFD time-step. Data is
transmitted to the client and rendered at every Nth-
step as well. This effectively synchronizes the
CFD solver to the FieldView rendering client. That
is, over a 1000 CFD time-steps, 20, 100 and 1000
re-samplings will occur for Nth values of 50, 10
and 1, respectively. The run-time costs of the re-
sampling and CFD solver components of the in-
situ simulation are shown for this scenario in

Figure 29. The run-time for the Nth-step = 1 is seen to be substantially increased compared to that
shown in the alternative scenario, Figure 29. As the Nth-step value increases from 1 to 50, the run-
time quickly reduces until the cost is almost entirely attributed to the CFD solver, an ideal outcome
for the end-user. This run-time scenario has the additional benefit of providing regular tracker feature
histories allowing for proper statistical analysis.

Figure 30 shows the run-time between successive time-history and volume rendering (image)
updates. Again, only a small amount of data is required for the time-history calculator so the
transmission delay should be relatively minor. The Nth-step value was varied from 1 to 50 and the re-
sampling volume was either full or half the resolution of the CFD simulation. And, the Nth-step value
is configured synchronously in this situation so the frequency of re-sampling is in lock-step with the
CFD solver. Because of the low bandwidth required by the time-history, the refresh rate follows
closely to the CFD run-time. The average wall clock time per time-step without re-sampling is
approximately 1s. With full resolution re-sampling at each time-step (Nth=1), the run-time cost
increases to 3.5s due to re-sampling, nearly a 200% overhead. However, this impact quickly drops as
the Nth value increases to 50. There, the re-sampling cost is hidden by the much larger CFD solver
time.

The volume rendered image refresh rate is also shown in Figure 30 using full resolution re-
sampling. For the same Nth-step value, the delay time between updates is seen to be many times
higher. This is directly caused by the transmission time between the remote client and server.

Figure 30: Client-side update time (sec) in client-
server mode with 256x256x128 grid. Error bars
represent percent deviation from mean

Figure 29: Run-time cost breakdown using
synchronous Nth-step method on Large grid with
16 cores

21

Currently, all volume rendering must be conducted on the client in order to harness the rendering
efficiency of the graphics pipeline; that is, GPU’s. However, CPU-based volume rendering on the
FieldView server side may, in fact, prove more efficient since the substantial transmission delay
would be avoided. Other options include a remote desktop in which GPU acceleration is used on the
FieldView server directly.

The FieldView server computational overhead is more variable than the memory footprint since
the dominant cost, re-sampling, is directly linked to the re-sampling rate, that is, the Nth-step value.
Without feature tracking or volume rendering enabled (i.e., no re-sampling), the FieldView server
overhead is very nearly 0%. Benchmarks on LESLIE3D with Nth-step = 50 and with full re-sampling
resolution showed the overhead to be just under 20% using 16 processors. With half the CFD
resolution, this overhead was only 9%. It is important to note that LESLIE3D uses an explicit time-
step algorithm with a low per-step cost. This low per-step cost can inflate the re-sampling overhead
ratio. Codes using implicit time-step algorithms, which are generally several times more expensive
per-step, will likely experience a much lower FieldView server overhead.

3 Conclusion and Future Work

IFDT demonstrates a new prototype capability for feature detection and extraction of turbulent
flows. A flow solver, LESLIE3D, was demonstrated to work well In-Situ with the various other
components needed to visualize, gather statistics and track a selected flow feature. A prototype
Volume Rendering capability was integrated in FieldView and presents a new capability that can be
integrated into the commercial product. The Intelligent Adaptive Transfer Function (IATF) method
was integrated and tested. Although the User Interface presented new capability and techniques for
exploring large scale unsteady data, more research and study is needed to yield a more robust and
computationally efficient training capability. The feature tracking, based upon the Predictor-Corrector
Feature Extraction and Tracking (PCFET) method demonstrated the capability to discriminate, pick
and track turbulent flow features. The resulting feature extracts demonstrated the capability to reduce
the size of unsteady data and enable interactive exploration of the data which enhances discovery and
understanding of large unsteady CFD derived data. The prototype IFDT system presents a new
capability that enables scientists and engineers to more readily explore large unsteady datasets. As a
whole, the feasibility to couple flow solvers and other data analysis techniques such as the Statistics
Viewer and the Volume Rendering enabled FieldView was clearly demonstrated.

4 Acknowledgements

This work was funded by a Phase II STTR from the Air Force Research Lab. The authors would
like to thank Dr. Fariba Fahroo, Air Force Office of Scientific Research for her support. We would
also like to thank Prof. Suresh Menon, Georgia Tech, for providing the LESLIE3D code and to Prof.
Marilyn Smith for her review of the work.

References

[1] "Intelligent Light," [Online]. Available: www.ilight.com. [Accessed May 2012].
[2] R. Haimes, "pV3: A Distributed System for Large-Scale unsteady CFD Visualization," AIAA

Paper 94-0321, 1994.
[3] D. S. Thompson, J. S. Nair, S. D. Machiraju, M. Jiang and Craciun, "Physics-Based feature

22

Mining for Large Data Exploration," Computing in Science and Engineering, vol. 4, no. 4, pp.
22-30, July 2002.

[4] S. Menon, C. Stone, H. Soo and H. Feiz, "Modeling Actiive Control Technologies using LES,"
in 41st AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper No. 2003-0840, Reno, NV,
2003.

[5] C. Stone and S. Menon, "Open Loop Control of Combustion Instabilities in a Model Gas Turbine
Combustor," Journal of Turbulence, vol. 4, no. 4, 2003.

[6] M. Masquelet, S. Menon, Y. Jin and R. Friedrick, "Simulation of Unsteady Combustion in a
LOX-GH2 Fueled Rocket Engine," Aerospace Science and Technology, vol. 13, 2009.

[7] T. Smith and S. Menon, "The Structure of Premixed Flame in a Spatially Evolving Turbulent
Flow," Combustion Science and Technology, vol. 119, 1996.

[8] "http://www.spec.org/cpu2006/," [Online].
[9] J. Sitaraman, A. Katz, B. Jayaraman, A. Wissink and V. Sankaran, "Evaluation of a Multi-Solver

Paradigm for CFD using Unstructured and Structured Adaptive Cartesian Grids," in 46th AII
Aerospace Sciences Conference, AIAA-2008-0660, Reno, NV, 2008.

[10] P. G. Buning, R. J. Gomez and W. I. Scallion, "CFD Approaches for Simulation of Wind-Body
Stage Separation," in AIAA 22nd Applied Aerodynamics Conference, AIAA-2004-4838,
Providence, RI, 2004.

[11] C. Muelder and K.-L. Ma, "Interactive feature extraction and trakcing by utilizing region
coherancy," in Proceedings of 2009 IEEE Pacific Visualization Symposium, 2009.

[12] R. Huang and K.-L. Ma, "Region Growing Based Technique for Volume Visualization," in
Proceedings of the 11th Pacific Conference on Computer Graphics and Applications,
Washtington, DC, USA, 2003.

[13] F.-Y. Tzeng and K.-L. Ma, "Intelligent Feature Extraaction and Tracking for Large-Scale 4D
Flow Simulations," in SuperComputing 2005.

[14] K.-L. Ma and J. Wei, Personal Communication, 2010.
[15] R. Metcalfe, S. Orszag, M. Brachet, S. Menon and J. Riley, "Secondary instabilities of a

temporally growing mixing layer," Journal of Fluid Mechanics, vol. 184, 2987.

	2.1. Flow Solver LESLIE3D
	2.2. Python Software Interface Framework and In-Situ Processing
	2.3. Predictor-Corrector Feature Extraction and Tracking
	2.4. Intelligent Adaptive Transfer Function IATF
	2.5. FieldView and GUI for Volume Rendering, PCFET and IATF
	2.6. IFDT Panel Implementation
	2.7. Transfer Function Usage for Feature Discrimination
	2.8. Statistics Viewer
	3. Results
	3.1. Test Case – Temporal Mixing Layer
	3.2. Interactive use of IFDT
	3.3. Discussion of Problem Size and Scale-Up issues

