
Seventh International Conference on
Computational Fluid Dynamics (ICCFD7),
Big Island, Hawaii, July 9-13, 2012

ICCFD7-2012-1606

Convergence Acceleration of High Order Numerical

Simulations using a Hybrid Spectral Difference - Finite

Volume Multigrid Method

Y. Allaneau∗,†, L. Y. Li† and A. Jameson†

Corresponding author: allaneau@stanford.edu

∗ Metacomp Technologies, Inc., CA 91301, USA
† Stanford University, CA 94305, USA.

Abstract: The goal of this paper is to show how numerical simulations of fluid flow using high
order methods for unstructured meshes can be sped up using a hybrid multigrid method. In our
work we accelerate the steady state convergence of a Spectral Difference code by coupling it to
a Finite Volume solver. While we want to obtain the solution for the SD code, low frequency
corrections to the solution are computed using the finite volume code.

Keywords: Numerical Algorithms, Computational Fluid Dynamics, Spectral Differences, Multigrid.

1 Introduction

High order numerical methods for unstructured meshes have recently received a lot of attention in the CFD
community. However, these methods can be slow to converge due to the very strong limitations on the time
steps that can be taken. While a lot of work is devoted in the community to developing implicit schemes
to overcome this difficulty (see for example the work by Persson[1, 2] or Birken[3]), we focus instead on a
multigrid approach to solving the problem.

1.1 Multigrid methods

Assume we are interested in solving a problem R(u) = 0 in a basis Bh counting n elements using an iterative
method. Very often, the computation of the solution uh in basis Bh to a good level of accuracy requires a
very large number of iterations. The idea behind multigrid methods is to adjust an unconverged solution uh
by estimating a correction in a basis B2h counting twice as less elements as basis Bh. In the case of PDEs,
the dimension of the solution space is decreased by coarsening the mesh (hence the notation h and 2h, where
h denotes a characteristic length of the mesh). The physical interpretation to multigrid methods in this
case is that the correction on the coarser mesh allows to capture large scale phenomenon more quickly. Our
description of multigrid methods can be broadened however and projecting the problem to a basis counting
less elements is just a way to speed up computations. Basically, we could estimate the corrections to the
solution using a completely different method, even counting more degrees of freedom, as long as it allows us
to obtain a rough estimate of the solution in a time quicker than the original method.

1.1.1 Linear problems

The multigrid method has been widely used to solve linear problems (Laplace equation for example). We
describe here very briefly its working principle. Consider a linear problem Lu = g, where L is a linear
operator and u the solution. Assume we can find an approximate solution uh such that Luh = gh 6= g (we
assume that L represent the same operator in the appropriate basis). There exists a correction vh such that

1

ICCFD7-1606

u = uh + vh. Now since L is a linear operator, it follows that vh must satisfy this equation:

Lvh = g − gh = eh

While solving this problem exactly would be as expensive as the original one, the idea is instead to solve
for Lv2h = e2h, where the subscript 2h indicates that the vector representing the solution in a base B2h has
twice as less elements as one with a subscript h (by mesh coarsening for example). The original solution uh
is then corrected by the operation

uh ← uh + Ih2hv2h

It can be noted that a correction of v2h could be obtained in a basis B4h and the correction to the correction
of v2h could be computed in a basis B8h...

1.1.2 Euler equations

It was established very early that the multigrid method could accelerate the convergence transonic potential
flow calculations[5, 6, 7, 8], although the governing equations are of mixed elliptic and hyperbolic type.
Jameson[4] extended the approach to the Euler and Navier Stokes equations in the ’80s. The problem is
not as simple as when dealing with linear sets of equations. Indeed, an equation for the correction vh is not
immediately defined and instead we correct uh using v2h = u2h − Ih2huh, where u2h is an estimate of the
solution on a coarser mesh:

uh ← uh + Ih2h
(
u2h − I2hh uh

)
We define the Euler equations as R(u) = 0. As mentioned before we use an iterative method to solve for

u (in this case we solve by homotopy, by introducing a pseudo time step). When we transfer the solution to
the next coarser mesh to estimate the correction, we add a forcing term P2h to the residual:

P2h = I2hh Rh(uh)−R2h(u
(0)
2h)

Therefore when we update the solution u2h using a multistage time stepping scheme with the forcing term,
the formula becomes

u
(1)
2h = u

(0)
2h − α0∆t

(
R2h(u

(0)
2h) + P2h)

)
. . .

u
(q+1)
2h = u

(0)
2h − αq∆t

(
R2h(u

(q)
2h) + P2h)

)
. . .

u
(k)
2h = u

(0)
2h −∆t

(
R2h(u

(k−1)
2h) + P2h)

)
un+1
2h = u

(k)
2h

Details on this scheme can be found in the original papers on the multigrid scheme by Jameson[4]. Two

things should be noted. In the first stage of the scheme, P2h cancels R2h(u
(0)
2h) and replaces it with I2hh Rh(uh).

Therefore, the solution is driven by the residual of the fine mesh. The other important thing is that when

the solution is converged on the fine mesh, Rh(uh) = 0. It follows that u
(q+1)
2h = · · · = u

(1)
2h = u

(0)
2h = I2hh uh.

Therefore v2h = 0 and the multigrid does not introduce unwanted corrections.

2 Hybrid multigrid method

Classical geometric multigrid methods for PDEs compute the solution on a fine mesh and corrections to the
solution on successive coarser meshes to eliminate the various components of the error at a faster rate. The
method relies on the fact that low frequency components of the error can be represented on coarser meshes
and be damped or propagated outside of the numerical domain more efficiently on these meshes. In our work,
the solution is computed on an unstructured mesh using the Spectral Difference method and low frequency
corrections to the solution are performed on multiple levels using a Finite volume code. The reason behind
this idea is that convergence acceleration using Finite Volume multigrid method is well known and a easier
to implement than a full SD multigrid method.

2

2.1 SD and FV flow solvers

2.1.1 Spectral difference method

In this work, we used the Spectral Difference code developed in the Aerospace Computing Lab at Stanford.
The code is based on the method pioneered by Kopriva et al. in 1996, as the ‘conservative staggered-grid
Chebyshev multi-domain method’[9]. It was then extended by Liu et al.[10], who first called it the spectral
difference method, Wang et al.[11], who implemented it for simplex cells for 2D Euler equations, May et
al [12], who applied it to 2D N-S equations, and Sun et al.[13], who implemented it for 3D hexahedral cells for
3D N-S equations. Premasuthan et al. then investigated and developed convergence acceleration techniques
and shock capturing with artificial viscosity[14, 15, 16]. Jameson in 2010 gave a proof for energy stability of
the SD method for linear PDEs for all orders of accuracy[18].

For an unstructured quadrilateral or hexahedral mesh, each element in the physical domain {xi} is firstly
transformed into a standard element in the computational domain {ξi} ∈ [0, 1]d, where d is the dimension.
The Euler equations in the physical domain is transformed into the computational domain as follows:

Figure 1: Transformation from (x1, x2) to (ξ1, ξ2).

∂w̃

∂t
+
∂F̃i

∂ξi
= 0 (1)

where

w̃ = |J | · w, F̃i = |J | · [J−1]ijFj , J =
∂x

∂ξ
(2)

The Basis Function and the Reconstructed Polynomials

Two staggered sets of points are defined in the standard element, namely the solution points and the
flux points. The values of the conservative variables are calculated at the solution points, and the values
of the flux vectors are computed at the flux points. In the following context, the conservative variables are

3

also referred to as the solution variables. In each dimension, the number of solution points is one less than
the number of flux points, such that the order of the reconstructed solution polynomial is one less than that
of the reconstructed flux polynomial. Therefore the flux derivatives (∂F̃i/∂ξi) are of the same order as the
solution polynomial (w̃).

In each dimension, in order to reconstruct a solution polynomial of order N − 1, N solution points and
N + 1 flux points are needed. The solution points (ξs)are defined to be at the Gauss-Lobatto points:

ξs =
1

2

[
1− cos

(
2s− 1

2N
· π
)]

, s = 1, 2, ..., N (3)

and the flux points (ξs+ 1
2
) at the Legendre-Gauss-Quadrature points to ensure stability of the scheme, as

suggested by Huynh[17] and proved by Jameson[18].
The basis functions in 1D are the Lagrange polynomials {hi}i=1,...,N ⊂ PN−1 interpolated from the

solution points, and {li+ 1
2
}i=0,...,N ⊂ PN interpolated from the flux points, i.e.

hi(ξ) =

N∏
s=1
s 6=i

(
ξ − ξs
ξi − ξs

)

li+ 1
2
(ξ) =

N∏
s=0
s 6=i

(
ξ − ξs+ 1

2

ξi+ 1
2
− ξs+ 1

2

)

The reconstructed solution and flux polynomials in higher dimensions are therefore just the tensor prod-
ucts of these 1D polynomials.

Implementation in 2D

A standard element in 2D with solution points and flux points is illustrated in Figure 2. The reconstructed
solution polynomial in the standard element is

w(ξ1, ξ2) =

N∑
j=1

N∑
i=1

w̃i,j

|Ji,j |
· hi(ξ1) · hj(ξ2) (4)

Figure 2: A SD standard element in 2D, with N = 3.

Similarly, the reconstructed flux polynomials are

F̃1 =

N∑
j=1

N∑
i=0

F̃1
i+1

2
,j
· li+ 1

2
(ξ1) · hj(ξ2) (5)

F̃2 =

N∑
i=1

N∑
j=0

F̃2
i,j+1

2

· hi(ξ1) · lj+ 1
2
(ξ2) (6)

4

The reconstructed solution polynomials are continuous within each element, but discontinuous at the
element interfaces. Therefore an approximate Riemann solver is needed to compute a common flux at each
interface flux points. In this work, a Rusanov solver is used. At each time step, the residual needed to
update the solution vectors (∂w̃/∂t) is computed as follows:

1. Given the solution variables at the solution points, the solution variables are computed at the flux
points using Equation (4).

2. The fluxes are computed at the interior flux points.

3. The fluxes at the interface flux points are computed using the Rusanov Riemann solver.

4. The flux derivatives at the solution points are calculated by differentiating Equation (5):(
∂F̃1

∂ξ1

)
i,j

=

N∑
j=1

N∑
i=0

F̃1
i+1

2
,j
· l′i+ 1

2
(ξ1) · hj(ξ2) (7)

(
∂F̃2

∂ξ2

)
i,j

=

N∑
i=1

N∑
j=0

F̃2
i,j+1

2

· hi(ξ1) · l′j+ 1
2
(ξ2) (8)

5. Eventually, the residual at the solution points is(
∂w̃

∂t

)
i,j

= −

(
∂F̃1

∂ξ1

)
i,j

−

(
∂F̃2

∂ξ2

)
i,j

(9)

2.1.2 Finite Volume solver

Our hybrid multigrid method is obtained by coupling the SD code to a preexisting multigrid finite volume
code (based on FLO and FLO). These 2D finite volume codes are designed to deal with O and C-
meshes to compute inviscid and viscous flows around airfoils. They were developed in the ’80s and are
highly optimized for performance. Details on the implementation can be found in the same paper describing
the multigrid[4]; this paper also contains the description of the JST artificial dissipation scheme used to
stabilized simulations.

2.2 Transfers from SD to FV

The implementation of the multigrid method requires us to transfer both the solution uSD and the residual
RSD(uSD) to the finite volume code. We denote by SD quantities related to the SD mesh and by FV

quantities related to the finest FV mesh. Also we denote by IFV
SD the transfer operator from SD to FV

and ISD
FV the transfer operator from FV to SD. Note that the residual is actually transferred (operation

IFV
SDRSD(uSD)) instead of computing the FV residual on the SD solution RFV (IFV

SD uSD).
Transferring quantities from the SD mesh to a FV cell is relatively easy. The first most simple approach

is to evaluate the SD solution (which is piecewise polynomial) at the FV cell center location. We then take
the FV cell value to be the one of its center location. The second method is a slightly more complicated and
estimates the average value of the finite volume cell by integration (numerical quadrature). Note that both
these methods do not enforce conservation of the solution in time, which does not really matter as we are
seeking for a steady state solution.

2.3 Transfers from FV to SD

Transferring the solution from the FV mesh to a SD node is not as easy and defining ISD
FV requires more

work. We start by isolating the SD node where we want to evaluate the quantity (step 1). Then we need to
identify the neighboring FV cells to this node such that the dual cell (obtained by joining FV cell centers)
contains the SD node (step 2). Once the FV dual cell has been identified, we need to evaluate the local
coordinates (ξ, η) of the SD node inside this cell (step 3). Finally, we can evaluate the quantity at the SD
node by bilinear reconstruction (step 4). Most of the work can be done at the beginning of the run and only
step 4 is done during the actual multigrid cycle. The various steps are depicted in table 2.

5

Method 1 - Compute the value Method 2 - Integrate the values over the FV
at the center of the FV cell cell to estimate an average value

Table 1: Transfer of quantities from SD to FV

Step 1 - Identify the SD node Step 2 - Identify the FV cells
of interest around the node

Step 3 - Construct the dual FV cell and obtain Step 4 - Evaluate the SD node value by bilinear
the local coordinates (ξ, η) of the node in this cell interpolation inside the FV dual cell

Table 2: Transfer of quantities from FV to SD

3 Results

The method was used to compute the steady state inviscid subsonic flow around a NACA 0012 airfoil. The
solution is expected to be of order 4 on a mesh counting 2048 cells. The various finite volume meshes used
in the multigrid cycles count 512× 64 (32,768), 256× 32 (8,192), 128× 16 (2,048), 64× 4 (256) and 32× 2
(64) cells. Therefore, the multigrid counts a total of 6 levels in this example (5 + 1 for the SD mesh). We
denote these meshes as LSD, L1, L2, L3, L4, L5, with L1 being the finest FV mesh and L5 the coarsest. We

6

started by generating the fine Finite Volume mesh L1 counting 512 × 64 cells. Then we considered 4 × 4
blocs of cells; by connecting the outside vertices, we created the SD quad mesh LSD. The various coarser
FV meshes were also obtained from the finest FV mesh, mesh Lk being obtained from Lk−1 by picking every
other nodes. As a consequence, LSD and L3 are the same meshes. Figure 3 depicts the SD mesh on the left
and the fine FV mesh on the right in an area close to the airfoil. Figure 4 is a detail of meshes LSD and L1.
The SD mesh is drawn in thick lines. On the right, we represent the SD solution points. In this case, we see
16 nodes per cell (4 in each direction) because we run the SD code at a 4th order of accuracy.

(a) SD mesh LSD (b) FV fine mesh L1

Figure 3: SD and fine FV meshes used for the computations

(a) Overlapping of LSD and L1 (b) SD solution points

Figure 4: Local comparison of SD and FV meshes

Figure 5 shows the flow solution around the airfoil using the multigrid method.
In Figure 6, the residual convergence is plotted. We notice a huge acceleration in convergence during

the first steps (the residual is more than 2 orders of magnitude smaller for the hybrid multigrid method
after 1000 steps). After that convergence seems to become the same for both method and the residuals keep

7

Figure 5: Density contour around the airfoil

decreasing at similar rates. At this point, we do not explain the slow down in residual convergence and we
are still investigating this issue. For a pure finite volume scheme, the original multigrid method was able
to converge to machine zero in a couple dozen iterations only. However, as can be seen on Figure 7, this
initial speed up in convergence as dramatic effect on the convergence of other values of interest. In this case,
we consider the same simulation at a 2◦ angle of attack. Note how fast we get an estimate of C` using the
hybrid method.

(a) Convergence of Hybrid method (SD 4th order) (b) Convergence of Hybrid method (SD 1st and 2nd order)

Figure 6: Residual convergence of SD and FV methods

4 Conclusion and Future Work

Considerable speed up of the SD method was obtained and preliminary results are very promising. Great
accelerations are obtained both in the convergence of the residuals and in the convergence of quantities
of interest such as the lift or drag. These improvements make the SD method (and by extension most of
high order methods for unstructured meshes) a better candidate for real life computations. In the future,

8

(a) Global convergence (b) Detail on first steps

Figure 7: Convergence of lift, 2◦ angle of attack

it will be interesting to compare speed up with implicit solvers. However, the use of high order method for
unstructured meshes in more justified for the computation of unsteady flows and it would be interesting to
see how this multigrid scheme can be used in conjonction to a dual pseudo time stepping scheme or as a
preconditioner for an implicit solver.

Acknowledgments

The authors would like to thank Philipp Birken from the University of Kassel for his interesting suggestions
as well as Guido Lodato from the Aerospace Computing Lab at Stanford. This work was supported in
part by AFOSR Grant #FA 9550-07-1-0195 from the Computational Math Program under the direction of
Dr. Fariba Fahroo and by NFS Grant #0915006 monitored by Dr. Leland Jameson. Yves Allaneau and
Lala Yi Li were also supported by the Stanford Graduate Fellowship. The authors would also like to thank
Metacomp Technologies for their support in this work.

References

[1] P.-O. Persson and J. Peraire, Newton-GMRES preconditioning for Discontinuous Galerkin Discretiza-
tions of the Navier-Stokes Equations, Journal of Scientific Computing, 30:2709-2733, 2008

[2] P.-O Persson, High-Order LES Simulations using Implicit-Explicit Runge-Kutta schemes, AIAA paper
2011-684, 2011

[3] P. Birken, G. Gassner, M. Hass and C.-D. Munz, A new class of preconditioners for discontinuous
Galerkin methods for unsteady 3D Navier-Stokes equations: ROBO-SGS, Journal of Computational
Physics, submitted.

[4] A. Jameson, Solution of the Euler Equations For Two Dimensional Transonic Flow by a Multigrid
Method. Applied Mathematics and Computations, 13:327-356, 1983.

[5] J. C. South and A. Brandt, Application of Multi-Level Grid Method to Transonic Flow Calculations,
Hemisphere 180-206, 1977

[6] A. Jameson, Acceleration of Transonic Potential Flow Calculations on Arbitrary Meshes by the Multiple
Grid Method, Proc AIAA 4th CFD conference, 122-146, 1979

9

[7] D. R. McCarthy and T. A. Reyhner, Multigrid code for Three Dimensional Transonic Potential Flow
About Inlets, AIAA journal 20:45-50, 1982

[8] D. A. Caughey, Multigrid Calculation of the Three Dimensional Transonic Potential Flows, AIAA paper
83-0374, 1983

[9] D.A. Kopriva, A Conservative Staggered-Grid Chebychev Multidomain Method for Compressible Flows.
II. A Semi-Structured Method, Journal of Computational Physics, 128:475-488, 1996

[10] Y. Liu, M. Vinokur and Z.J. Wang, Spectral Difference Method for Unstructured Grids I: Basic Formu-
lation, Journal of Computational Physics, 216:780-801, 2006.

[11] Z.J. Wang, Y. Liu, G. May and A. Jameson, Spectral Difference Method for Unstructured Grids II:
Extension to the Euler Equations, Journal of Scientific Computing, 32:45-71, 2006

[12] G. May and A. Jameson, A Spectral Difference Method for the Euler and Navier Stokes Equations,
AIAA paper, 2006-304, 2006

[13] Y. Sun, Z.J. Wang and Y. Liu, High-order Multidomain Spectral Difference Method for the Navier-Stokes
Equations on Unstructured Hexahedral Grids, Communications in Computational Physics, 2:310-333,
2007

[14] S. Premasuthan, A Spectral Difference Method for Viscous Compressible Flows with Shocks, AIAA
paper, 2009-3785, 2009

[15] S. Premasuthan, Computation of Flows with Shocks using Spectral Difference Scheme with Artificial
Viscosity, AIAA paper, 2010-1449, 2010

[16] S. Premasuthan, Towards and Efficient and Robust High Order Accurate Flow Solver for Viscous
Compressible Flow, PhD thesis, Stanford University, 2010

[17] H. T. Huynh, A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous
Galerkin Methods, AIAA paper, 2007-4079, 2007

[18] A. Jameson, A Proof of the Stability of the Spectral Difference Method for All Orders of Accuracy,
Journal of Scientific Computing, 45:348-358, 2010

10

