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Abstract: This paper describes a novel numerical approach for simulating multiphysics �ow
problems using several moments. Unsteady evolution of the moments are obtained by the lattice
Boltzmann framework. Three dimensional incompressible isothermal �ows can be described using
lower ten moments. The Chapman-Enskog distribution functions for three dimensional lattice
(for example, D3Q19) are temporary constructed from the moments. The time evolution of the
moments can be obtained using the standard lattice Boltzmann method. As compared with the
standard lattice Boltzmann method, the present method can save storage and improve numerical
stability. Numerical experiments indicate that the advantage is more evident for multiphysics �ow
problems.
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1 Introduction

Nowadays the lattice Boltzmann method is widely used especially for simulating incompressible isothermal
�ows [1],[2]. Simpleness f the algorithm is one of the advantage of the lattice Boltzmann method. On the
other hand, the method need more storage compared with the incompressible Navier-Stokes solver, especially
for three dimensional multiphysics �ow problems, such as thermal �ows [3], [4] and two-phase �ows [5], [6].

Even if we use the three dimensional D3Q19 model, the incompressible isothermal Navier-Stokes solu-
tion may be obtained using the lower ten moments instead of the nineteen lattice Boltzmann distribution
functions. Unsteady evolution of those moments can be obtained using the simple algorithm of the standard
lattice Boltzmann method. For thermal �ows, additional four moments are only required of the nineteen
thermal lattice distribution functions. In total only 14 moments of 38 distribution functions are required.
Similar estimation can be made for two-phase �ow problems Thus the moment base lattice Boltzmann
method saves storage especially for multiphysics �ow problems.

2 Lattice Boltzmann Method

In the Lattice Boltzmann method, unsteady evolution of the distribution function for incompressible isother-
mal �ows are obtained simply as:

fα(t+ δt,x+ eαδt) = fα(t,x)−
1

τ
(fα(t,x)− feq

α (t,x)) (1)

where eα are the discrete velocities, δt is the time step size, and τ is the relaxation time which is given with
the kinematic viscosity ν as

η = 3ν +
1

2
(2)
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The discrete velocities, for example, for two dimensional nine velocity (D2Q9) model are given by

eα =


(0, 0) α = 0,

(cos((α− 1)π/2), sin((α− 1)π/2)) α = 1, 2, 3, 4√
2 (cos((2α− 9)π/4), sin((2α− 9)π/4)) α = 5, 6, 7, 8

(3)

and for three dimensional nineteen velocity (D3Q19) model are

e0 = (0, 0, 0)
e1 = (1, 0, 0), e2 = (−1, 0, 0), e3 = (0, 1, 0), e4 = (0,−1, 0), e5 = (0, 0, 1), e6 = (0, 0,−1)

e7 = (1, 1, 0), e8 = (1,−1, 0), e9 = (−1, 1, 0), e10(−1,−1, 0), e11 = (0, 1, 1), e12 = (0, 1,−1)
e13 = (0,−1, 1), e14 = (0,−1,−1), e15 = (1, 0, 1), e16(−1, 0, 1), e17 = (1, 0,−1), e18 = (−1, 0,−1)

(4)

The equilibrium distribution function feq
α is written in the form

feq
α = wαρ

[
1 + 3(eα · u) + 9

2
(eα · u)2 − 3

2
u2

]
(5)

Here the unit ratio of the lattice constant δx to the time step sizeδt is assumed for simplicity. The weighting
factor wα for D2Q9 model are given by

wα =

 4/9 α = 0
1/9 α = 1, 2, 3, 4
1/36 α = 5, 6, 7, 8

(6)

and for D3Q19 model are

wα =

 1/3 α = 0,
1/18 α = 1, 2, ..., 6
1/36 α = 7, 8, ..., 18

(7)

The density ρ and the velocity u can be obtained by the moments

ρ =
∑
α

fα (8)

and
ρu =

∑
α

eαfα (9)

3 Moment Base Lattice Boltzmann Method

The distribution function of D2Q9 model may be written in the following polynomial expression

fα = C(0) + C
(1)
i eαi + C

(2)
i,j eαieαj + C

(3)
i eα

2
i eαj + C(4)eα

2
i eα

2
j (10)

Taking the lower 9 moments of bath side and obtaining the coe�cients Cs, the distribution function can be
written as

fα = feq
α + wαρ

[
S
(2)
i,j

(
eαieαj −

1

3
δij

)
+ S

(3)
i

(
eα

2
i −

1

3
δi, j

)
eαj + S(4)eα

2
i eα

2
j

]
(11)

where the moments S are obtained by

ρS
(2)
i,j =

9

2

(∑
α

eαieαjfα − 1

3
ρδi,j − ρuiuj

)
, (12)
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Figure 1: Vorticity contours
obtained with MLBM on a
128× 128 grid.

Figure 2: Vorticity contours
obtained with LBM on a 128×
128 grid.

Figure 3: Vorticity contours
obtained with PSM on a 128×
128 grid.

Figure 4: Vorticity contours
obtained with MLBM on a
257× 257 grid.

Figure 5: Vorticity contours
obtained with LBM on a 257×
257 grid.

Figure 6: Vorticity contours
obtained with PSM on a 257×
257 grid.

ρS
(3)
i =

9

2

(
3
∑
α

eα
2
i eαjfα − ρuj

)
, (13)

and

ρS(4) =
9

4

(
9
∑
α

eα
2
i eα

2
jfα − ρ− 3ρ(u2

i + u2
j )− ρ(S

(2)
ii + S

(2)
jj )

)
(14)

The kinetic theory indicates the solution of Navier-Stokes equations may be obtained using the distri-
bution function constructed with proper number of lower moments. The solution of the incompressible
isothermal �ows may be obtained using the distribution function

fα = feq
α + wαρ

(
eαieαj −

1

3
δi,j

)
S
(2)
i,j (15)

For the distribution function, Eq. (1) becomes the expression

fα(t+ δt,x+ eαδt) = feq
α (t,x) + (1− 1

τ
)wαρ

(
eαieαj −

1

3
δi,j

)
S
(2)
i,j (t,x) (16)

Using the expression the solution of two dimensional incompressible isothermal �ows can be obtained by the

evolution of 6 moments ( ρ, ui, and S
(2)
i,j ). Thus the number of unknown quantities, that is, memory can be

reduced to 2
3 compared to the original D2Q9 model. For D3Q19 model, since the solution can be obtained

with similar 10 moments, the memory can be reduced to 10
19 .

Validation of the moment base lattice Boltzmann method is carried out for two dimensional doubly
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Figure 7: Comparison of x-component velocity
between MLBM and PSM results on a 128×128
grid.
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Figure 8: Comparison of y-component velocity
between MLBM and PSM results on a 128×128
grid.

Figure 9: Numerical conditions of natural convection �ow.

periodic shear layers. The computational domain is a square with unit length. The initial conditions are

u =

 tanh[γ(y − 0.25)] fory ≤= 0.5

tanh[γ(0.75− y)] fory >= 0.5
(17)

and

v = λ sin[2π(x+ 0.25)] (18)

at γ of 80 and λ of 0.05. The Reynolds number is 10000. Figure 1 shows the vorticity contours obtained
with the moment base lattice Boltzmann method (MLBM) at nondimensional time t of 1.0 on a 128 × 128
grid. For comparison, similar contours obtained with the normal lattice Boltzmann method (LBM) and a
pseudo spectral method (PSM) are plotted in Fig. 2 and Fig. 3, respectively. The numerical results obtained
with MLBM and PSM are in good agreement each other, while spurious vortices are observed in the result
of LBM. The three numerical results obtained on a 257 × 257 grid are compared in Figs. 4 to 6. Since the
LBM produces the reasonable result on the �ner grid, three numerical results are well compared with one
another. The x-component velocities along the line of x = 0.75 and the y-component velocities along the line
of y = 0.75 are plotted in Fig. 7 and Fig. 8, respectively. The numerical results obtained with MLBM are
compared with those of PSM. Although the results obtained on the coarse grid, good comparison is again
observed.
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Figure 10: Temperature con-
tours obtained with MTLBM
at Ra of 104 on a 128 × 128
grid.

Figure 11: Temperature con-
tours obtained with TLBM of
Shi et al. at Ra of 104 on a
128× 128 grid..
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Figure 12: Comparison of
temperature distribution at
y = 0.5.

4 Moment Base Thermal Lattice Boltzmann Method

The moment base Lattice Boltzmann method is more e�ective for multiphysics problems, in which plural
number of distribution function may be introduced. For thermal �ow problems, Shi et al [4] propose a
thermal lattice Boltzmann model using dual distribution functions, the density distribution function fα and
the temperature distribution function gα. The unsteady evolution of the latter function gα is obtained as

gα(t+ δt,x+ eαδt) = gα(t,x)−
1

η
(gα(t,x)− geqα (t,x)) (19)

where η is the temperature relaxation time which is given with the thermal conductivity κ and speci�c heat
cv,

η = 3
κ

ρcv
+

1

2
(20)

The equilibrium temperature distribution function geqα is written in the form

geqα = wαρT

[
1 + 3(eα · u) + 9

2
(eα · u)2 − 3

2
u2

]
(21)

The temperature T is obtained by the moment

ρT =
∑
α

gα (22)

In our moment base thermal lattice Boltzmann method, the temperature distribution function is expressed
as

gα = geqα + wαρeαiT
(1)
i (23)

where the moments T
(1)
i are obtained by

ρT
(1)
i = 3

∑
α

eαigα − ρTui (24)

The evolution of the temperature is obtained from

gα(t+ δt,x+ eαδt) = geqα (t,x) + (1− 1

η
)wαρ eαiT

(1)
i (t,x) (25)

Using the expression the solution of two dimensional thermal �ows can be obtained by the evolution of

9 moments ( ρ, ui, S
(2)
i,j , T , and T

(1)
i ). Thus the number of unknown quantities, that is, memory can be
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Figure 13: Relative pressure contours obtained
with the present method at Mo = 10−2, Bo =
10, ρl

ρg
= 1000, and µl

µg
= 100.

Figure 14: Relative pressure contours obtained
with the NS solver at Mo = 10−2, Bo = 10,
ρl

ρg
= 1000, and µl

µg
= 100.

reduced to 1
2 compared to the original D2Q9 model. For D3Q19 model, since the solution can be obtained

with similar 14 moments, the memory can be reduced to 7
19 .

In order to validate the moment base thermal lattice Boltzmann method (MTLBM), numerical simulation
of the natural convection �ow in a two dimensional square cavity is carried out. Flow conditions are illustrated
in Fig. 9. Figure 10 shows the temperature contours obtained with MLBM at Rayleigh number Ra of 10000
on a 128×128 grid. For comparison, numerical results obtained with the original thermal lattice Boltzmann
model (TLBM) of Shi et al. are plotted in Fig. 11. The temperature distribution along y = 0.5 is compared
in Fig. 12. Results of MTLBM agree well with those of TLBM.

5 Multiphase Moment Base Lattice Boltzmann Method

For multiphase �ow problems, dual distribution functions, the pressure distribution function fα instead of
the density and the distribution function hα for a level set function ϕ [7] are introduced as

fα = feq
α + wαρ(ϕ)

(
eαieαj −

1

3
δi,j

)
S
(2)
i,j (26)

and

hα = heq
α + wαeαiH

(1)
i (27)
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Figure 15: Rising bubble shape obtained at√
d t/

√
g = 4 with the present method at

Mo = 10−2, Bo = 10, ρl

ρg
= 100, and µl

µg
= 10.

Figure 16: Rising bubble shape obtained at√
d t/

√
g = 8 with the present method at

Mo = 10−2, Bo = 10, ρl

ρg
= 100, and µl

µg
= 10.

The evolution of the distribution function is obtained by

fα(t+ δt,x+ eαδt) = feq
α (t,x)− (1− 1

τ∗
)wαρ(ϕ

∗)

(
eαieαj −

1

3
δi,j

)
S
(2)
i,j (t,x) + Fα (28)

and

hα(t+ δt,x+ eαδt) = heq
α (t,x) + (1− 1

ζ
)wαeαiH

(1)
i (t,x) (29)

where Fα is forcing terms and ζ is the relaxation time. The level set function ϕ and the moments H
(1)
i are

obtained by

ϕ =
∑
α

hα (30)

and

H
(1)
i = 3

∑
α

eαihα − ϕui (31)

The equilibrium pressure distribution function feq
α and the equilibrium level set distribution function heq

α

are given by
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feq
α = wα

{
p+ ρ(ϕ∗)

[
3(eα · u) + 9

2
(eα · u)2 − 3

2
u2

]}
(32)

and

heq
α = (ϕ+ δϕ)

{
Φα + wα

[
3(eα · u) + 9

2
(eα · u)2 − 3

2
u2

]}
(33)

where the weighting factor Φα are given by

Φα =

{
1 α = 0,
0 α ̸= 1

(34)

In order to reinitialize the level set function, δϕ is included in Eq. (29), which is obtained by

δϕ = ω sgn(ϕ)(1− |∇ϕ|) (35)

where sgn is the sign function and ω is an adjusting constant.
The density ρ(ϕ∗) is evaluated at x+ eαδt by

ρ =

 ρ1 if ϕ > ϵ
ρ2 if ϕ < −ϵ

ρ̄+∆ρ cos(πϕ/ϵ) otherwise
(36)

where ρ̄ = (ρ1 + ρ2)/2 and ∆ρ = (ρ1 − ρ2)/2. Similarly τ∗ is evaluated with the density ρ(x+ eαδt) and the
viscosity µ(x) which is given by

µ =

 µ1 if ϕ > ϵ
µ2 if ϕ < −ϵ

µ̄+∆µ cos(πϕ/ϵ) otherwise
(37)

where µ̄ = (ν1 + µ2)/2 and ∆µ = (µ1 − µ2)/2.
The forcing terms Fα may be given as

Fα = 3(e− u) ·
[
σ∇ ·

(
∇ϕ

|∇ϕ|

)
δ(ϕ)∇ϕ+G

]
wα

[
1 + 3(eα · u) + 9

2
(eα · u)2 − 3

2
u2

]
(38)

where σ is the surface tension, G is the gravitational force, and δ(ϕ) is the modi�ed delta function de�ned
by

δ(ϕ) =

{
1 if |ϕ| < ϵ
0 otherwise

(39)

The multiphase moment base lattice Boltzmann method is applied to the simulation of a rising bubble
in a liquid at rest. At �rst several two dimensional test cases are calculated. Figure 13 shows the contours
of the relative pressure to the hydrostatic pressure obtained with the present method at the Morton number
Mo of 10−2, the Bond number Bo of 10, the density ratio ρl

ρg
of 1000, and the viscosity ratio µl

µg
of 100 on

a 128 × 256 grid over 4d × 8d computational domain, where d is the initial diameter of the bubble. At the
high density ratio case, a limit function of the pressure at the interface is introduced in order to stabilize the
present method. For comparison, reference solution, which is obtained using a fractional step method for
the incompressible Navier-Stokes equations with the level set function, is plotted in Fig. 14. The interface
thickness parameter ϵ is set at 2δx for both methods. Good comparison is observed.

Figures 15 and 16 show the three dimensional shape of rising bubble obtained with the present method
at the Morton number Mo of 10−2, the Bond number Bo of 10, the density ratio ρl

ρg
of 100, and the viscosity

ratio µl

µg
of 10 on a 128× 128× 256 grid over 4d× 4d× 8d computational domain.

Finally area or volume conservation for the bubbles are examined. Figures 17 and 18 show bubble area
and volume as a function of nondimensional time (

√
g t/

√
d ) obtained with the present method for the two

dimensional case and three dimensional case, respectively. Adjusting the relaxation time ζ, the conservation
of the present method properly good.

8



 0.0  2.0  4.0  6.0  8.0
  0.8

  0.9

  1.0

  1.1

  1.2

A(t)
-----
A(0)

T

Figure 17: Bubble area as a function of nondi-
mensional time (

√
g t/

√
d ) obtained at Mo =

10−2, Bo = 10, ρl

ρg
= 1000, and µl

µg
= 100.
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Figure 18: Bubble volume as a function of
nondimensional time (

√
g t/

√
d ) obtained at

Mo = 10−2, Bo = 10, ρl

ρg
= 100, and µl

µg
= 10.

6 Conclusion

Novel numerical approach for simulating multiphysics �ow problems using minimum number of necessary
moments. Unsteady evolution of the moments are obtained by the lattice Boltzmann framework. The
validation of the method carried out unsteady shear �ow, natural convection �ow, and a rising bubble �ow.
Numerical experiments indicate that the moment base lattice Boltzmann Method can improve numerical
stability and save storage as compared with the standard lattice Boltzmann method. The advantage is more
evident for mulltiphysics �ow problems.
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