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Abstract: In this work, we present a hybrid solver coupling a high-order LES solver with Carte-
sian mesh and a RANS solver with body-fitting mesh. This hybrid solver is developed within
a dual-mesh consistent hybrid framework, where LES and RANS simulations for the same flow
are conducted simultaneously on different computational domains and different meshes. In the
LES, an immersed boundary method with relaxation forcing is used with the Cartesian mesh to
enforce non-slip boundary conditions at the curved boundaries. The flow over periodic hills at
Reynolds number Re = 2800 is simulated using the new solver. The adequacy of the boundary
representation and forcing strategy is demonstrated. It is concluded that dual-mesh consistent
hybrid framework is successful in the context of coupling a high-order LES solver on Cartesian
mesh and a general-purpose RANS solver on body-fitting mesh. The approach explored in the new
hybrid solver could be used to take advantage of the potential of many existing academic codes to
simulate practical flows in industry and in nature, where complex geometries and wall boundaries
currently represent major hurdles.
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1 Introduction
Large Eddy Simulations (LES) for industrial flows are mostly conducted on unstructured grids using second-
order numerical schemes. This is to take advantage of the existing infrastructures available in Reynolds
Averaged Navier Stokes (RANS) equation solvers. However, in many cases it is desirable to perform LES
with high-order numerical schemes with low dissipation and on massively parallel computers. In these
scenarios, high accuracy and high efficiency are essential, and the general-purpose CFD tools developed for
RANS simulations are not suitable. Consequently, in academic research large amounts of efforts have been
invested in developing such high-order LES solvers with good scalability on parallel computers with tens of
thousand of processors. A recently developed solver IMPACT is such an example [1, 2]. Compared to LES
solvers with low-order numerical schemes on unstructured meshes, these solvers have very little numerical
dissipation, which is critical for many detailed investigations of fluid dynamics such as noise generation in
turbulence flows. Conceptually, they also offer the advantage of being able to distinguish the numerical
approximation errors from the Sub-Grid Scale (SGS) modeling errors [3]. Another practically important
advantage is the high efficiency of these solvers on parallel computers, largely due to the use of structured
meshes which leads to lean memory consumption and fast memory access.

Despite numerous advantages of the high-order LES solvers on structured meshes mentioned above, a
major drawback of these methods is the difficulty of dealing with flows with complex boundaries. The
difficulty comes from two related but distinct issues: (1) the representation of immersed complex boundaries
in LES with Cartesian mesh; and (2) the modeling of near-wall turbulence in LES. The first issue has been
addressed by several authors using immersed-boundary methods [4]. To deal with the second difficulty, the
commonly used approach is the hybrid LES/RANS methods, where RANS simulations are performed in the
near-wall region while LES is performed in the free-shear region.
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Recently, Xiao and Jenny [5] proposed a dual-mesh consistent hybrid framework, where LES and RANS
are conducted simultaneously in the entire domain on separate meshes. In this model, relaxation forces
are used to ensure the consistency between the two solutions in terms of velocity and turbulent quantities.
As a proof-of-concept of the consistent hybrid framework, they developed a hybrid solver using the LES
and RANS solvers based on the CFD platform OpenFOAM. Both solvers used body-fitting mesh covering
computational domains identical to the physical flow domain.

The objective of this work is to present an extended version the original framework using a high-order
LES solvers on Cartesian meshes. The LES solver developed by Henniger et al. [1] is chosen for this study,
although other LES codes can also be used. The same RANS solver based on OpenFOAM and the same
coupling schemes as in ref. [5] are used. A simple immersed-boundary method with relaxation forcing is used
in the LES solver to represent the irregular domain.

The rest of the paper is organized as follows. Section summarizes the hybrid framework and the imple-
mentation of the new hybrid solver. Section 3 presents numerical simulations of the flow over periodic hills
at Reynolds number Re = 2800. Based on these simulations, conclusions are drawn in Section 4.

2 Hybrid LES/RANS Framework and Its Implementation

2.1 Dual-Mesh Consistent Hybrid LES/RANS Framework
In incompressible flows with constant density, the momentum and pressure equations for the filtered quan-
tities and the Reynolds-averaged quantities can be written in a unified form as follows [5]:

∂U∗i
∂t

+
∂
(
U∗i U

∗
j

)
∂xj

=− 1

ρ

∂p∗

∂xi
+ ν

∂2U∗i
∂xj∂xj

−
∂τ∗ij
∂xj

+Q∗i (1a)

and
1

ρ

∂2p∗

∂xi∂xi
=− ∂2

∂xi∂xj

(
U∗i U

∗
j + τ∗ij

)
+
∂Q∗i
∂xi

, (1b)

where t and xi are time and space coordinates, respectively; ν is the kinematic viscosity, ρ is the constant
fluid density, and p∗ is the pressure. In filtered equations, U∗i , p∗, and τ∗ij represent filtered velocity U i,
filtered pressure p, and residual stresses τ sgs

ij , respectively. In Reynolds-averaged equations, U∗i , p∗, and
τ∗ij represent Reynolds-averaged velocity 〈Ui〉, Reynolds-averaged pressure 〈p〉, and Reynolds stresses τij ,
respectively. The Reynolds stress τij is defined as the correlations of velocity fluctuations 〈u′iu′j〉, although
the apparent Reynolds stresses are actually −〈u′iu′j〉 (see, e.g., Chapter 4 of ref. [6]). Q∗i represents the
drift forces applied in the filtered equations (QL

i ) and in the Reynolds-averaged equations (QR
i ) to ensure

consistency between the two solutions. This term will be detailed in Equations (3) and (4).
In this hybrid framework, the filtered equations and the Reynolds-averaged equations are solved simul-

taneously in the entire domain but on separate meshes. This leads to some redundancy, and the consistency
between the two solutions is enforced via relaxation forcing terms in the respective equations.

We first define Exponentially Weighted Average (EWA, or simply referred to as average hereafter) quan-
tities including velocity, dissipation, and turbulent stress for the LES as
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respectively, where T is the averaging time; u′′i = U i − 〈U i〉AVG is the fluctuating velocity with respect to
the exponentially weighted average; Sij is the filtered rate-of-strain tensor. The terms inside the integrals
in Equations (2b) and (2c) are the total turbulent stress and the total dissipation rate in LES including the
resolved and modeled parts.
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The consistency between the two solutions requires that the exponentially weighted average quantities
and the Reynolds-averaged quantities be approximately equal, e.g., 〈U i〉AVG ≈ 〈Ui〉 for the velocities and
〈τij〉AVG ≈ τij for the turbulent stresses. The regions well-resolved by the LES mesh are classified as LES
regions where the LES solution would dominate, and the under-resolved regions are called RANS regions
where the RANS solution should prevail. The consistency and the selective dominance mechanism are
enforced via drift forces (QL

i in filtered equations and QR
i in Reynolds-averaged equations) defined as follows:

QL
i =

{
(〈Ui〉 − 〈U i〉AVG)/T (L) +Giju

′′
j /T

(G) in RANS regions
0 in LES regions,

(3)

and

QR
i =

{
0 in RANS regions
(〈U i〉AVG − 〈Ui〉)/T (R) in LES regions,

(4)

where
Gij =

τij − 〈τij〉AVG

〈τkk〉AVG
, (5)

and T (L), T (G), T (R) are the relaxation time scales. Similarly, to ensure consistency on the turbulent quantities
in RANS simulation, in the well-resolved (LES) regions they are relaxed towards the corresponding LES
quantities via the following drift terms. Detailed solution algorithms and the choice of the parameters are
presented in ref. [5].

2.2 Implementation
The hybrid framework is implemented for incompressible flows based on the open source CFD platform
OpenFOAM [7, 8] and a high-order LES/DNS solver IMPACT (Incompressible Turbulent flows with Compact
differentiation on Massively PArallel Computers) recently developed by Henniger et al. [1]. In the current
study, we use a combination of an open-source general purpose CFD solver and an in-house academic code
to demonstrates the flexibility of the hybrid framework, as well as its potential to unleash the power of many
existing high-order high-efficiency academic codes.

The LES solver IMPACT is a high-order high-efficiency solver for incompressible turbulent flows devel-
oped for massively parallel computers. Structured grids are used to allow for fast memory access. Spatial
derivatives are discretized on staggered grids with compact finite differences of arbitrary convergence order.
A sixth-order finite difference scheme is used for all the spatial derivative terms in this study. Temporal
derivatives are discretized explicitly using a third-order Runge-Kutta scheme with efficient storage. Paral-
lelization is achieved via three-dimensional domain decomposition in space. More details can be found in
refs. [1] and [2]. The ADM-RT (Approximate Deconvolution Model with Relaxation Term) is used for the
SGS turbulence modeling [9, 10].

In RANS simulations, the continuity and momentum equations for incompressible turbulent flows are
solved using the PISO (Pressure Implicit with Splitting of Operators) algorithm on unstructured meshes [11].
Collocated grids are used with the Rhie and Chow interpolation being employed to prevent the pressure–
velocity decoupling [12]. Spatial derivatives are discretized with the finite volume method using the second-
order central scheme for both convection and diffusion terms. A second-order implicit time-integration
scheme is used to discretize the temporal derivatives. For the turbulent modeling, the k–ε two-equation
model of Launder–Sharma [13] is used as closure for the RANS equations.

The dual-mesh hybrid framework introduced above assumes that the LES and the RANS simulations
solve the same flow on identical computational domains. To use an LES solver with Cartesian mesh in the
framework, the irregular domains need to be taken into account. In this study, a simple immersed boundary
method is employed to account for the solid boundaries. At the beginning of each simulation, the locations
of the points in the Cartesian mesh are examined. The points falling outside the fluid domain are identified
and flagged. During the simulations, a damping force is applied on momentum equations corresponding to
all the points outside the fluid domain. The forcing QIB

i has an opposite direction as the velocity and has a
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magnitude proportional to the velocity, i.e.,

QIB
i = −αUi. (6)

where α is a positive constant with the dimension of frequency. Consequently, the forcing effectively drives
the velocities on these points to zero, imposing correct non-slip boundary conditions at walls.

3 Numerical Simulations
To demonstrate the capability of the developed hybrid solver, the flow over periodic hills is simulated. This
configuration features a massive separation and recirculations. Extensive experiments and well-resolved DNS
and LES have been conducted for this configuration at various Reynolds numbers to provide benchmark
data [14, 15]. We choose the flow at Reynolds number Re = 2800.

The LES and RANS meshes used for this case are shown in Figure 1. Spacial and time resolution
information can be found in Table 1. The same set of algorithmic parameters as in ref. [5] are used:
T = 2.2H/Ub, τl = 0.28H/Ub, τr = 0.28H/Ub, and τg = 0.07H/Ub. For simplicity, the RANS regions are
pre-specified as consisting of all cells with distance smaller than D = 0.2H from the nearest wall. To ensure
numerical stability, a linear ramp function ranging from 0 to 1 is multiplied on all drift terms during an
initial simulation period of 2T .

As in ref. [5] for the original solver hybridLRFoam, the internal consistency of the hybrid solver impact-
Foam. The mean streamwise velocities obtained from the LES and from the RANS simulation in the hybrid
solver are compared in Figure 2(a). The results show very good consistency between the velocities in the
LES and those in the RANS simulations. The data points outside the physical fluid domain (i.e., in the solid
region) are kept in the plot as indications of the quality of enforcing immersed boundary conditions. The
mean velocity profiles from pure LES and pure RANS simulations are shown in Figure 2(b) as reference.
It can be seen that the LES solver and the RANS solver give very different velocity profiles in standalone
simulations.

The streamwise mean velocities at nine cross sections of the channel are presented in Figure 3(a). The
mean velocities are obtained by performing time averaging and spanwise averaging of the LES velocities.
However, due to the internal consistency between the mean LES velocity and the velocities in the RANS
simulation, the distinction between mean LES velocities and mean RANS velocities are not important. The
overall good predictions of velocity profiles in this simulation suggest that both for the pure LES and for
the hybrid solver the boundary representation and forcing do not pose a major difficulty. It can also be
seen that the LES mesh resolution is rather good for this Reynolds number. The pure LES results show
some deviations from the benchmark simulation results particularly in the free-shear region (from y/H = 1.5
to 2.5) and the reattached flow regions (from x/H = 4 to 7). Since the hybrid solver has much better
predictions in these regions, and the hybrid solver differs from the pure LES only in near-wall modeling,
it can be inferred that the deviations in the pure LES results are mostly likely caused by the inadequate
near-wall resolution, and not due to the immersed boundary representation and forcing.

4 Conclusion
In this paper, we present a hybrid solver coupling a high-order LES solver with Cartesian mesh with a RANS
solver with body-fitting mesh. With this solver, numerical simulations of the flow over periodic hill have been
performed. The simulation results demonstrate the adequacy of the boundary representation and forcing
strategy, as well as the accuracy of the pure LES solver. More importantly, the simulations also suggest that
the consistent hybrid framework is successful in the new hybrid solver with high-order LES on Cartesian
mesh and RANS solver on body-fitting mesh.

The approach explored in the new hybrid solver could be used to take advantage of the potential of many
existing academic codes to simulate practical flows in industry and in nature, where complex geometries and
wall boundaries currently represent major hurdles.
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Table 1: Domain and mesh parameters for the flows over periodic hill at Re = 2800. x, y, z are aligned with
streamwise, wall-normal, and spanwise directions, respectively.

Domain size (Lx × Ly × Lz) 9H × 3.036H × 4.5H
Simulation time-spanb 50Tthr
Nx ×Ny ×Nz (LES) 128× 64× 32
Nx ×Ny ×Nz (RANS) 128× 37× 16
∆x×∆y ×∆z in y+ (LES) 13× 9× 27
First grid point (RANS)c Below 0.7y+

Time-step size 2.8× 10−3 H/Ub

a Through-time Tthr is defined as Lx/Ub.
b The wall unit is defined as y+ = ν/uτ = ν/

√
τw/ρ.
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(a) LES mesh with immersed boundary

(b) RANS mesh

Figure 1: Illustration of (a) the Cartesian LES mesh for finite differencing and (b) the RANS body-fitting
mesh for finite-volume discretization, using the periodic hill case as example. The LES mesh has uniform
spacing with the immersed boundary indicated. The RANS mesh is refined in the wall-normal direction near
the wall. The free-shear region is very coarse.
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Figure 2: Internal consistency between the LES and the RANS: mean streamwise velocity from the LES and
that from the RANS are compared for the flow over periodic hills at Re = 2800. (a) LES and RANS velocities
from the hybrid solver with coupling; (b) LES and RANS velocities from standalone LES and RANS solvers
without coupling. The velocities are shown in the solid zone for both cases. For the LES results, the lines
pass through all data points, but markers are only shown for every seventh points for clarity.
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Figure 3: Mean velocities in the streamwise direction in the flow over periodic hills at Re = 2800, with
comparison among hybrid simulation, pure LES simulation, and the benchmark simulation of Breuer et
al. [14]. The reattached region (shaded) in plot (a) is zoomed-in and shown in plot (b).
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