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Abstract: A new methodology is devised and demonstrated for accurately capturing discontinu-
ities in multi-block finite difference simulations of hyperbolic partial differential equations. The
fourth-order energy-stable weighted essentially non-oscillatory (ESWENO) finite difference scheme
on closed domains is combined with simultaneous approximation term (SAT) weak interface and
boundary conditions. Smoothness of grid-spacing across subdomain interfaces is not required.
WENO stencil-biasing is truncated near subdomain boundaries and only collocated interface points
are communicated between neighboring subdomains. The methodology is demonstrated for sig-
nificant jumps in grid-spacing across subdomain interfaces. Results are presented for the linear
scalar hyperbolic wave equation in one and two dimensions and the Euler equations in one and two
dimensions. It is demonstrated that this methodology allows strong discontinuities to be passed
across subdomain interfaces without significant distortion. Moreover it is demonstrated that the
methodology provides stable and accurate results even when large differences in the grid-spacing
exist, whereas strong imposition of the interface conditions causes noticeable oscillations. Weak
subdomain interdependence, low subdomain-to-subdomain message-passing overhead, and ease of
local grid refinement make the new methodology promising for scalable massively-parallel simula-
tions and complex geometries.

Keywords: Multi-Block Finite-Difference Schemes, Boundary Conditions, High-Order Numerical
Methods, Shock-capturing, Computational Fluid Dynamics.

1 Introduction
High-order weighted essentially non-oscillatory (WENO) methods have become popular for simulations where
delicate physical behavior exists in the presence of strong discontinuities.1–4 The high-order nature of such
schemes allow for accurate resolution of detailed physics while the stencil-biasing mechanics prevent numerical
oscillations around discontinuities, thus maintaining numerical stability. The simulation of sound generation
in a shock-vortex interaction5,6 is an example computational fluid dynamics (CFD) application where WENO
methods are well-suited. While WENO schemes are very robust in practice, they do not satisfy a summation
by parts (SBP) convention;7,8 therefore, a general stability proof cannot be derived.9

In contrast to classical WENO schemes, the recently-developed energy-stable WENO (ESWENO) scheme
satisfies SBP and is time-stable in an L2 sense. The ESWENOmethodology was first introduced by Yamaleev
and Carpenter in Ref. [9] where the theoretical foundation and a third-order implementation is developed.
They later developed a basic framework for developing ESWENO schemes of arbitrary order.10 Numerical
examples were presented for systems of hyperbolic equations in one dimension that demonstrate the stability
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and convergence benefits of ESWENO schemes over fixed-stencil schemes and the classical WENO scheme of
Jiang and Shu. These seminal ESWENO works developed in the context of a periodic domain were followed
by boundary closures in the finite-domain fourth-order ESWENO work of Fisher et al., making ESWENO
accessible for numerical simulations of a wider array of problems.11,12 The fourth-order finite-domain scheme
is denoted ESWENO 3-4-3 in reference to fourth-order interior accuracy and third-order accurate boundary
closures. The global accuracy converges to fourth-order. Fisher et al. demonstrated the ESWENO 3-4-3
scheme in simulations of a two-dimensional chemically-reacting supersonic hydrogen-air spatially developing
mixing layer. The purpose of the present work is to build upon previous ESWENO works by extending and
demonstrating the ESWENO 3-4-3 scheme for multi-block domains.

A major challenge in the application of high-order numerical schemes such as ESWENO to problems of
practical interest is in generating appropriate finite-difference grids. Grids must be smoothly-varying and
match boundaries with high-order accuracy. In even moderately complex geometries, mapping such a smooth
mesh to complicated boundaries can be extremely time consuming, if not impossible altogether. If such a
mesh can be generated, the grid resolution is not necessarily tuned to to the problem physics. Excess grid
points may exist in some regions while grid resolution may be lacking in key areas such as boundary and shear
layers. Local grid refinement is possible; however, smoothness requirements dictate a smooth transition to a
coarse mesh in the remaining domain, at the cost of excess grid resolution in some areas. In highly-complex
geometries, mapping boundaries with a single curvilinear mesh is not feasible. Such geometries arise often
in practical problems such as gas-turbine combustors and aircraft airframes; they are often handled with
unstructured finite volume techniques at the sacrifice of high-order accuracy.

Multi-block meshes can alleviate the difficulties above. The spatial domain is decomposed into a number of
smaller subdomains, each of which can be more easily mapped with a boundary-fitted curvilinear mesh. The
subdomains are patched together at interfaces using interpolation functions. In cases with many subdomains,
interpolation schemes can consume a significant portion of compute time. While this approach works when
the simulation variables are smooth functions, the presence of discontinuities in the flow presents a unique
challenge. A shock-capturing scheme such as WENO can be used on the subdomain interior in order to
sufficiently resolve the shock; however, the lack of stencil-biasing and the imposition of interpolated interface
conditions cause significant distortion of the shock at the boundary. Additionally, long-time energy-stability
is difficult to ensure in such simulations.

The literature concerning WENO shock capturing in a multi-block setting is sparse. Sebastian and Shu
demonstrated a multi-block WENO scheme that utilized Lagrange interpolation at subdomain interfaces.13
Costa and Don developed a hybrid spectral-WENO scheme for multi-block domains.14 Recently, Chao et
al. demonstrated a multi-block hybrid compact-WENO scheme that utilized fixed stencil finite difference
schemes at subdomain boundaries and WENO stencil-biasing within the interior.15 To my knowledge, no
literature exists for ESWENO schemes on multi-block domains.

In this work, I develop and demonstrate a multi-block ESWENO scheme and demonstrate its ability
to capture strong shocks. The globally fourth-order finite-domain ESWENO 3-4-3 scheme is used. Each
subdomain is mapped with an independent curvilinear mesh; the only requirement is that neighboring
subdomains have collocated grid points along the interface surface. Stencil-biasing is preserved at all possible
points; however, it is truncated near the subdomain boundaries where only collocated interface points are
communicated between neighboring subdomains. Only points lying directly on an interface must be passed to
the neighboring processor; no finite difference stencils overlap the interface. The simultaneous approximation
term (SAT) interface closure is used to close interface and global domain boundaries.16 Each subdomain is
self-contained, in that at the beginning of each time-step, it contains all the information necessary to move
the governing equations forward in time. Interface conditions are then applied a posteriori as an SAT penalty
source term. This method allows for the subdomains to be loosely coupled. The independence afforded by
the scheme makes it attractive for application in massively-parallel, distributed-memory simulations where
the low communication overhead and loose coupling are expected to provide strong scalability. The scheme
is shown to be stable for linear conservation laws with continuous solutions. One- and two-dimensional
numerical examples are presented for systems of linear and nonlinear hyperbolic equations on multi-block
domains.
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2 Background

2.1 Energy Estimates
2.1.1 The Continuous Problem

Consider the linear scalar hyperbolic wave equation on a finite (non-periodic) domain

∂v

∂t
+
∂f

∂x
= 0, f = av, x ∈ Ω, Ω = [A,B], (1)

v(x, 0) = v0(x),

v(A, t) = g(t),

where v is the continuous solution, a is a positive constant, and v0(x) and g(t) are bounded continuous
functions. To obtain an energy estimate, Eq. (1) is multiplied by v and integrated over the domain, which
yields the continuous energy estimate

d

dt
‖v‖2L2

= −a
[
v2(B, t)− g2(t)

]
(2)

where ‖ · ‖L2 is the L2 norm. Equation (2) admits a solution that is stable in time ( ddt‖v‖
2
L2
≤ 0). Note that

Eq. (2) is obtained by assuming that ∂f
∂x satisfies integration by parts (IBP).

2.1.2 The Discrete Problem

Our goal is to obtain a pth-order accurate finite difference approximation for the continuous spatial derivative
in Eq. (1),

∂f

∂x
= D · f +O(∆xp), (3)

such that an energy estimate analogous to Eq. (2) can be obtained. In Eq. (3), f represents a projection of
v onto a uniform N -point discretization of the domain Ω, D denotes a discrete derivative operator, and ∆x
denotes the constant grid-spacing of the discretization. Herein, bold variables (e.g. D) represent discrete
multicomponent arrays (vectors, matrices, etc.) and non-bold variables (e.g. x, xi, t, etc.) represent scalars
or continuous variables. It is well-established that in order to facilitate an energy estimate, D must satisfy
summation by parts (SBP),7,8 the discrete analog to IBP. SBP is embodied by the constraints

D = P−1(Q+R) ; Q+QT = Diag[−1, 0, ..., 0, 1], (4)
R = RT ; vTRv ≥ 0, v 6= 0, (5)
P = P T ; vTPv > 0, v 6= 0, (6)

that is, Q almost skew-symmetric, R symmetric positive semidefinite (SPS), and P symmetric positive
definite (SPD). To facilitate construction of an SPS matrix, define the dissipation matrix, R, as

R = Λ0 + ∆Λ1 [∆]
T

+ ∆ [∆]
T
Λ2∆ [∆]

T
+ ∆ [∆]

T
∆Λ3 [∆]

T
∆ [∆]

T (7)

where the Λi are diagonal SPS matrices of appropriate size

Λe = Diag [λ1, ..., λN ] ; λj ≥ 0, j = 1, N ; e = 2p, p = 0, 1 (8)
Λo = Diag [λ1, ..., λN ] ; λj ≥ 0, j = 0, N ; o = 2p+ 1, p = 0, 1 (9)
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and ∆ is the N + 1×N differencing matrix

∆ =


−1 1 0 0 0 0
0 −1 1 0 0 0

0 0
. . . . . . 0 0

0 0 0 −1 1 0
0 0 0 0 −1 1

 . (10)

These forms result in a semi-discrete energy equation that yields stability.12

3 Non-Oscillatory Finite Difference Schemes

3.1 Discretization
Discretize the domain of Eq. (1) with two interdigitated grids:

x = [x1 = A, x2, . . . , xN = B] (11)
x̄ = [x̄0 = A, x̄1, . . . , x̄N = B] . (12)

The finite difference grid-points x are denoted solution-points because they carry the solution data. Each
solution-point, xi, lies in a control volume bounded on the left and right by flux-points x̄i−1 and x̄i, respec-
tively. The flux-points, x̄ are denoted as such because a numerical flux will be calculated at each of these
points to facilitate conservative calculation of the derivative. Herein, data located at flux-points will carry
the overbar notation (e.g. f̄) while data located at solution-points will be represented by variables without
an overbar (e.g.f). The flux- and solution-points are collocated at domain boundaries. The solution-points
are equally-spaced (at least in computational space), while the flux-points may be unevenly-spaced between
solution points.

3.2 WENO
The conventional fourth-order WENO finite difference scheme17,18 for Eq. (1) is written in semi-discrete
form as

∂ui
∂t

+
f i − f i−1

∆x
= 0 (13)

where f̄i is the WENO flux given by
f̄ =

∑
r

w̄(r)f̄
(r) (14)

where f̄ (r)
= I(r)f , r ∈ {L,C,R} are second-order fluxes obtained by interpolating data from the solution-

points to the flux-points for the three candidate stencils SL, SC , and SR (Left, Center, Right). As described
in Ref. [12], the interpolation operators I(r) are N+1×N matrices that interpolate data from solution-points
to flux-points.

The nonlinear weight functions, w̄(r), embody the stencil-biasing mechanics of the WENO scheme. The
classical weight functions of Jiang and Shu are defined

w̄(r) =
ᾱ(r)∑
r ᾱ

(r)
, ᾱ(r) =

d̄(r)

(ε+ β̄(r))2
(15)

where d̄(r) are the target weights that force the WENO scheme to asymptote to a target central difference
scheme in smooth regions of the flow. The smoothness indicators, β̄(r), are given by

β̄Li = (fi − fi−1)2, β̄Ci = (fi+1 − fi)2, β̄Ri = (fi+2 − fi+1)2 (16)

and the parameter ε is usually set to 10−6 to prevent a zero denominator as recommended in Ref. [17]. The
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WENO scheme using the nonlinear weights of Jiang and Shu does not follow SBP convention, thus an energy
estimate is not straightforward.

3.3 ESWENO 3-4-3
As shown in Ref. [9], the traditional WENO scheme of Jiang and Shu does not satisfy SBP; therefore, a general
energy estimate is not readily obtainable for the scheme. The ESWENO scheme involves a modification of the
WENO weight functions such that the derivative operator satisfies SBP and an energy estimate is possible.
Furthermore an artifical dissipation term is added to the derivative operator to maintain stability. In this
work, we consider the finite-domain ESWENO 3-4-3 scheme, which uses a fourth-order approximation in the
domain interior and inward-biased-third order approximation near boundaries. As discussed in Refs. [12,19,
20], this scheme is globally fourth-order.

The finite-domain ESWENO 3-4-3 scheme is formed by constructing a derivative operator that permits
the WENO stencil-biasing framework of Eq. (36) and satisfies the SBP requirements of Eqs. (4)-(6).

The grid-points are uniformly distributed with grid spacing δx = xi − xi−1, while the flux-points are
nonuniformly distributed with grid-spacing δ̄x = x̄i − x̄i−1. In this work the grid suggested in Ref. [12] is
used:

x̄ =

[
A,

(
A+

43δx

144

)
,

(
A+

61δx

36

)
,

(
A+

349δx

144

)
,

(
A+

7δx

2

)
, . . . , (17)(

B − 7δx

2

)
,

(
B − 349δx

144

)
,

(
B − 61δx

36

)
,

(
B − 43δx

144

)
, B

]
The ESWENO differentiation operator has the form

D = P−1∆
∑
r

w̄(r)I(r) (18)

where r = L,C,R are the three candidate stencils. Enacting the differentiation operator on the flux, f yields

Df = P−1∆
∑
r

w̄(r)f̄
(r)

= P−1∆
∑
r

w̄(r)I(r)f . (19)

The weight functions are defined

w̄(r) =
ᾱ(r)∑
r ᾱ

(r)
, ᾱ(r) = d(r)

(
1 +

τ̄

(ε+ β̄(r))2

)
(20)

with stencil biasing parameters

τ̄i = (−fi−1 + 3fi − 3fi+1 + fi+2)2, 2 ≤ i ≤ N − 2 (21)

τ̄i = (−fi + 3fi+1 − 3fi+2 + fi+3)
2
, i = 1 (22)

τ̄i = (−fi + 3fi−1 − 3fi−2 + fi−3)
2
, i = N − 1. (23)

The smoothness indicators β̄(r) remain the same as in WENO; however, extra stencils (SLL and SRR) and
subsequent smoothness indicators

β̄LLi = (fi−1 − fi−2)2, β̄RRi = (fi+3 − fi+2)2 (24)

are needed to facilitate 3rd order stencil-biasing mechanics near the boundaries. We ensure that the downwind
(DW) stencil weight does not overtake the central or upwind weights by applying the modification

β̄DWi =

(
1

3

∑
r

[
β̄

(r)
i

]4) 1
4

(25)
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to the downwind smoothness indicator. A block-norm P of the form

P = δx

 P 0 0 0
0 I 0

0 0 P PT
0

 , P 0 =


p11 p12 p13 p14

p12 p22 p23 p24

p13 p23 p33 p34

p14 p24 p34 p44

 (26)

is used and the derivative operator takes the form

Q =

 Q0 Qd 0
−QTd Ql Qd

0 −QTd −(Q0)PT

 , Q0 =


− 1

2 q12 q13 q14

−q12 0 q23 q24

−q13 −q23 0 q34

−q14 −q24 −q34 0

 , Qd =


0 . . .
0 . . .
− 1

12 0 . . .
8
12 − 1

12 0 . . .


(27)

where PT denotes the per-symmetric transpose, Pij = P[N−(i−1)][N−(j−1)]. The matrix P and target operator
D can be found in Ref. [12].

The distinction of the ESWENO scheme is its energy-stabilization term that ensures energy-stability in
an L2 sense. The baseline WENO scheme

Dweno = P−1 (Q+Rweno) (28)

does not guarantee energy-stability: elements of Rweno may take negative values such that Rweno is not SPS.
Stability is achieved by adding a dissipative operator, Res, to ensure that the total dissipation operator,
R = Rweno +Res, is SPS. The ESWENO scheme is specified

D = P−1 (Q+Rweno +Res) . (29)

The stabilization operator Res is determined by enforcing the condition that the total dissipation operator
R is SPS and the entire scheme remains design-order. Expand Rweno as9

P−1Rweno = Λ0 + ∆Λ1 [∆]
T

+ ∆ [∆]
T
Λ2∆ [∆]

T
+ ∆ [∆]

T
∆Λ3 [∆]

T
∆ [∆]

T (30)

and assume a similar form for Res

P−1Res = Λ̂0 + ∆Λ̂1 [∆]
T

+ ∆ [∆]
T
Λ̂2∆ [∆]

T
+ ∆ [∆]

T
∆Λ̂3 [∆]

T
∆ [∆]

T
, (31)

Guarantee that R is SPS by smoothly enforcing positivity

[λj ]i + [λ̂j ]i ≥ 0, ∀ i, j. (32)

Achieve this by constructing the components of Λ̂j as

[λ̂j ]i =
1

2

(√
[λj ]

2
i + δ2

i − [λj ]i

)
. (33)

Design-order accuracy is preserved if the constraint

δ1 ≤ O
(
δx3
)
, δ2 ≤ O

(
δx2
)

(34)

is satisfied. The matrices Λi can be found in Ref. [12]. Specification of the dissipative energy-stabilization
flux

ψ̄ =
[
Λ̂1 [∆]

T
+ [∆]

T
Λ̂2∆ [∆]

T
+ [∆]

T
∆Λ̂3 [∆]

T
∆ [∆]

T
]
f (35)

allows the energy-stabilization operator to be combined with the WENO operator, yielding the combined
flux form:

fx = Df = P−1∆
(
f̄ + ψ̄

)
. (36)
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4 SAT Penalty Procedure
The SAT penalty procedure was first introduced by Carpenter et al. for boundary closures.21 It was later
extended to interface closures.16 Since that work, it has been successfully used for boundary and interface
closures in a myriad of high-order numerical schemes.22–25 Both boundary and interface conditions are
imposed using SAT in this work. Henceforth, the term interface shall generally refer to both subdomain
interfaces and domain boundaries, as their SAT treatment is identical. A boundary is simply treated as a
neighboring subdomain whose data on ∂Ω (domain boundary) is known and whose interior data is unknown.

The SAT methodology is a weak penalty procedure in that instead of strictly enforcing interface data by
requiring the values of the solution at the interface xi to be identical in the two neighboring subdomains,
the values of the solution at these interfaces are penalized to pull the respective interface values together
weakly. The advantage of such a weak imposition of the interface condition is that it allows the global finite
difference scheme to maintain SBP and, consequently, stability. Design-order accuracy is also assured.

We begin by requiring that neighboring subdomains have collocated interface points. Denoting by uL
and uR discrete solutions to Eq. (1) on the left and right subdomains, respectively, the semi-discrete form
of Eq. (1) using the SAT interface penalty is

∂uL
∂t

+ aP−1
L QLuL = σ1P

−1
L eL [uL|x=xi − uR|x=xi ] (37a)

∂uR
∂t

+ aP−1
R QRuR = σ3P

−1
R eR [uR|x=xi − uL|x=xi ] (37b)

where xi is the spatial location of the interface, eL = [0, ..., 0, 1]T , and eR = [1, 0, ..., 0]T . As described in
Ref. [16], Eq. (37) is stable and preserves design-order accuracy if

σ1 ≤ a

2
(38)

σ3 = σ1 − a. (39)

The SAT interface penalty provides subdomain connectivity for the multi-block formulation described in the
next section.

5 Multi-Block Formulation

5.1 One-Dimensional Baseline Formulation
The formulation is first presented in the context of the continuous, one-dimensional linear scalar wave
equation on the global domain x ∈ [A,B]:

∂v

∂t
+
∂F

∂x
= 0, F = av, x ∈ Ω, Ω = [A,B] (40)

v(x, 0) = v0(x),

v(A, t) = gL(t), if a > 0,

v(B, t) = gR(t), if a < 0

where a is the constant wave speed and gL and gR denote boundary conditions on the left and right sides of
the global domain, respectively. The domain is partitioned intoK subdomains. Subdomain k ∈ {1, 2, . . . ,K}
is discretized with Nk grid-points on the local domain Ωk = [xL, xR] ⊂ Ω and x ∈ Ωk,

x = [x1 = xL, x2, . . . , xNk = xR] , (41)

and we seek the discrete solution
u = [u1, u2, . . . , uNk ] . (42)

The first and last points in each subdomain lie on the subdomain boundary, such that there are two collocated
points at each subdomain interface. Each subdomain utilizes an SBP-satisfying differentiation scheme D =
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P−1Q, which may be different on each subdomain. This leads to the following semi-discrete form:

ut + aP−1Qu = (σ − 1

2
)aP−1 [Ia>0 (uL,k − uL,nL) e1 − (1− Ia>0) (uR,k − uR,nR) eNk ] (43)

where the RHS represents the SAT interface penalty to account for interface conditions. In Eq. (43), the left
and right interface values on subdomain k are denoted uL,k and uR,k, respectively; corresponding interface
values on its neighbors with partition numbers nL and nR are denoted uL,nL and uR,nR . The vectors

e1 = [1, 0, . . . , 0]
T

eNk = [0, . . . , 0, 1]
T (44)

have length Nk and are used to restrict the penalty term to only the collocated interface points, although
a non-diagonal ESWENO 3-4-3 P -matrix will effectively smear the effect of the boundary penalty across
multiple points near the interface. The indicator function

Ia>0 =

{
0 : a ≤ 0
1 : a > 0

(45)

is used to require that interface information always travels downwind. The SAT parameter σ controls the
tightness of coupling between subdomains.1 The discretization of Eq. (43) has been previously shown to be
stable and accurate for σ ≤ 0. Reducing the value of σ represents additional artificial dissipation at the
interface. Herein, a value of σ = − 1

2 is used for most results. Extra dissipation is added in same cases to
maintain stability near subdomain interfaces because WENO stencil-biasing is not possible. In general, the
second term on the LHS of Eq. (43) can be any SBP-satisfying differentiation scheme and need not be the
same for each subdomain. In this work, the fourth-order accurate ESWENO 3-4-3 scheme is used for all
subdomains.

Theorem 1. Equation (43) is both stable and accurate to the design-order of Q. Stability and accuracy
of the multi-block scheme follows trivially by combining the proofs in Refs. [12, 16]. These hold due to the
combination of stable and accurate derivative operators and boundary closures.

5.2 Hyperbolic Systems
The multi-block formulation is developed in the context of a linear hyperbolic equation. Systems of hyperbolic
equations are accommodated by via a characteristic decomposition that forms a set of uncoupled, frozen,
linear hyperbolic equations that each fit the form of Eq. (40). The linear differentiation and penalty scheme
is applied on each of the characteristic equations. The resultant characteristic quantities are transformed
back into physical space prior to time integration. This methodology is described below.

5.2.1 One-Dimensional Systems

Consider the general one-dimensional hyperbolic system of M differential equations

∂U

∂t
+
∂F

∂x
= 0, F = F (U) (46)

where U (x, t) = [U1 (x, t) , U2 (x, t) , . . . , UM (x, t)] is a vector of M conserved variables and
F (x, t) = [F1 (x, t) , F2 (x, t) , . . . , FM (x, t)] is the flux vector. Applying the chain rule to the second term
on the LHS of Eq. (47) yields

∂U

∂t
+A

∂U

∂x
= 0 (47)

where the tensor A = ∂F
∂U is the Jacobian matrix. Search for a characteristic eigendecomposition of the form

A = SΛS−1 (48)
1The notation of the constant σ is presented in a slightly different notation than that of Eq. (37); however, the two forms

are equivalent.
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with eigenvalue matrix Λ = Diag [λ1, λ2, . . . , λM ] and left eigenvector matrix S. Note that the eigen-
decomposition in Eq. (48) is not guaranteed, in general, for all hyperbolic systems. Freeze S and Λ at
a single point in time and space, substitute Eq. (48) into Eq. (47), and premultiply by S−1 to find the
characteristic form:

∂U c

∂t
+ Λ

∂U c

∂x
= 0, (49)

where U c = S−1U and F c = ΛU c are the characteristic variables formed by transforming the physical
variables U into characteristic space via S−1. Equation (49) is a set of uncoupled hyperbolic equations in
characteristic space. The SAT penalty is applied in the linearized characteristic space:

∂U c

∂t
+ Λ

∂U c

∂x
= (σ − 1

2
)P−1Λ

[
IΛ>0

(
[U c]L,k − [U c]L,nL

)
e1 − (1− IΛ>0)

(
[U c]R,k − [U c]R,nR

)
eNk

]
.

Characteristic implementation for the new ESWENO-SAT scheme is as follows. The multi-block dis-
cretization, Eq. (43) is applied in characteristic space and rotated back into physical space before time-
integration. The semidiscrete form is

∂U

∂t
+DF = P−1S(σ − 1

2 )Λ
[
IΛ>0

(
[U c]L,k − [U c]L,nL

)
e1 (50)

− (1− IΛ>0)
(

[U c]R,k − [U c]R,nR

)
eNk

]
, (51)

where D represents the ESWENO differentiation operator. Expand D by applying the flux-differencing
form of Eq. (36),

DF = P−1∆
(
F̄ + ψ̄

)
. (52)

Expand F̄ using the interpolation matrices as in Eq. (19) as

DF = P−1∆

(∑
r

w̄(r)I(r)F + ψ̄

)
. (53)

Expand F using the characteristic decomposition in Eq. (48),

DF = P−1∆

(∑
r

w̄(r)I(r)AU + ψ̄

)
(54)

= P−1∆

(∑
r

w̄(r)I(r)SΛS−1U + ψ̄

)
(55)

= P−1∆S

(∑
r

w̄(r)I(r)ΛU c + S−1ψ̄

)
. (56)

To facilitate upwinding, introduce the Lax-Friedrichs flux splitting

F±c =
1

2
(ΛU c ±ΛmaxU c) (57)

where Λmax is the lengthM vector of maximum eigenvalues on subdomain k. The final form of the derivative
operator is

DF = P−1∆S

(∑
r

w̄(r)I(r)F+
c +

∑
r

w̄(r)I(r)F−c + S−1ψ̄

)
. (58)
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The final semidiscrete form is

∂U

∂t
+ P−1∆S

(∑
r

w̄(r)I(r)F+
c +

∑
r

w̄(r)I(r)F−c + S−1ψ̄

)
= (59)

P−1S(σ − 1

2
)Λ
[
IΛ>0

(
[U c]L,k − [U c]L,nL

)
e1 − (1− IΛ>0)

(
[U c]R,k − [U c]R,nR

)
eNk

]
.

This yields an effective multi-block ESWENO numerical approximation of the derivative,

DeffF = P−1∆S

(∑
r

w̄(r)I(r)F+
c +

∑
r

w̄(r)I(r)F−c + S−1ψ̄

)
(60)

− P−1S(σ − 1

2
)Λ
[
IΛ>0

(
[U c]L,k − [U c]L,nL

)
e1 − (1− IΛ>0)

(
[U c]R,k − [U c]R,nR

)
eNk

]
.

5.2.2 Multi-Dimensional Systems

For illustration, consider the two-dimensional system of m coupled hyperbolic equations

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0, F = F (U) , G = G (U) (61)

where U = [U1, U2, . . . , UM ]. Use chain rule to expand the last two terms on the RHS of Eq. (61)

∂U

∂t
+Ax

∂U

∂x
+Ay

∂U

∂y
= 0 (62)

where the Jacobians Ax = ∂F
∂U and Ay = ∂G

∂U are assumed to have the eigen-decomposition

Ax = SxΛxS
−1
x (63a)

Ay = SyΛyS
−1
y . (63b)

Substitute Eq. (63) into Eq. (62):
∂U

∂t
+ Sx

∂F c
∂x

+ Sy
∂Gc

∂y
= 0. (64)

Solve Eq. (64) by independently applying Eq. (60) on ∂F
∂x and ∂G

∂y , then integrating in time.
For example, the characteristic decomposition of the two-dimensional Euler equations,

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0, (65)

U =


ρ
ρu
ρv
ρE

 F =


ρu

ρu2 + p
ρuv

(ρE + p)u

 G =


ρv
ρuv

ρv2 + p
(ρE + p)v

 (66)

is accomplished via the characteristic decomposition of Pulliam and Chaussee,26

Sh =


1 0 α α
ū ρ̄ (1− Ih=‘x’) α(ū+ Ih=‘x’c) α(ū− Ih=‘x’c)
v̄ −ρ̄Ih=‘x’ α [v̄ + (1− Ih=‘x’) c] α [v̄ − (1− Ih=‘x’) c]
φ2

γ−1 ρ̄ [(1− Ih=‘x’) ū− Ih=‘x’v̄] α(φ
2+c2

γ−1 + cθ) α(φ
2+c2

γ−1 − cθ)

 (67)
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S−1
h =


1− φ2

c2 (γ − 1) ūc2 (γ − 1) v̄c2 −γ−1
c2

Ih=‘x’v̄−(1−Ih=‘x’)ū
ρ̄

1−Ih=‘x’
ρ̄ − Ih=‘x’

ρ̄ 0

β(φ2 − cθ) β [Ih=‘x’c− (γ − 1)ū] β [(1− Ih=‘x’) c− (γ − 1)v̄] β(γ − 1)
β(φ2 + cθ) −β [Ih=‘x’c+ (γ − 1)ū] −β [(1− Ih=‘x’) c+ (γ − 1)v̄] β(γ − 1)

 (68)

where

α =
ρ√
2c

(69)

β =
1√
2ρc

(70)

θ = Ih=‘x’u+ (1− Ih=‘x’) v (71)

φ2 =
1

2
(γ − 1)u2 + v2 (72)

and the matrices Sx and Sy are presented in combined the combined form Sh, h ∈ {‘x’, ‘y’}. The operator
Ih=‘x’ is an indicator function for h = ‘x’.

5.3 Computational Implementation
The problem geometry is defined and the domain is mapped with a set of independent subdomains. If
curvilinear meshes are used, the shape of the subdomains is flexible and the domain decomposition may be
entirely unstructured with each block having an arbitrary shape.2 Such flexibility allows blocks surrounding
complex geometry to exactly match the body locally, instead of fitting the entire body with one mesh. The
only requirement is that for each subdomain-to-subdomain interface, the sets of points lying on the interface
owned by the left and right subdomains must be identical. That is, all points on the interface must be
collocated.3 No restriction is placed on similarity of grid topology or grid-spacing.

In our implementation, each subdomain is sent to a single processor on a distributed-memory computing
architecture. The multi-block ESWENO scheme, Eq. (60), is carried out separately on each subdomain, in
each dimension, with message-passing of collocated interface points between neighboring subdomains for
calculation of the SAT penalty. Time integration is via an explicit fourth-order Runge-Kutta scheme.29

6 Numerical Results
Numerical tests are presented to show the stability and accuracy of the multi-block scheme. Design-order
accuracy on smooth problems is shown and the ability of the scheme to accurately capture strong shocks
without significant oscillation or diffusion is exemplified. A highlight of the results is the lack of interference
of subdomain interfaces on the problem physics. Both delicate physical phenomena (such as a weak vortex)
and strong shocks pass through interfaces without noticeable diffusion or dispersion, even in the presence of
large jumps in grid-spacing across the interface.

Additionally, simulations using strongly-imposed interface conditions are contrasted with those of the new
multi-block scheme, which utilizes weak SAT penalties. Strong interface condition imposition is the practice
of overwriting collocated interface data with interface data calculated on the upwind subdomain. This strong
interface condition upwinding is performed on the local Runge-Kutta substep variables before each Runge-
Kutta substep and again on the global variable after each global time integration. Unless otherwise noted,
simulations default to weak SAT interface conditions.

Results are presented for one- and two-dimensional test problems for both linear and nonlinear systems
of hyperbolic equations. One- and two-dimensional calculations are presented for a linear scalar hyperbolic

2In this work, only Cartesian meshes are used; extension to curvilinear grids is reserved for a future work.
3It seems feasible that this requirement could be relaxed by repurposing ideas from adaptive mesh refinement (AMR).27,28

Development for non-collocated interface points is reserved for a future work.
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Table 1: L2 error and convergence rates for one-dimensional sine wave advection problem. Results from
single-domain ESWENO are compared with results from simulations on four equally-spaced subdomains
using the new methodology. Error is calculated after ten flow-through times.

Number of points Single domain Four subdomains
Log L2 error Rate Log L2 error Rate

21 -0.2998 0.1996
49 -1.7806 3.89 -1.7819 5.21
101 -3.0587 4.01 -3.0589 4.01
201 -4.2638 4.00 -4.2640 4.00
401 -5.4682 4.00 -5.4683 4.00
801 -6.6723 4.00 -6.6724 4.00
1601 -7.8700 3.98 -7.8628 3.95

wave equation. For convergence results, the L2 error,

‖E‖L2
=

√√√√ M∑
m=1

∫
Ω

(um − vm)
2
dxdy, (73)

is integrated numerically using the midpoint rectangle rule.

6.1 One-dimensional Linear Scalar Wave Equation
The one-dimensional linear scalar hyperbolic wave equation

∂ρ

∂t
+
∂ρ

∂x
= 0 (74)

is solved for the conserved scalar ρ(x, t). Numerical results are presented comparing strong versus weak
boundary and interface conditions. Equation (74) is solved for both smooth and discontinuous initial condi-
tions.

6.1.1 Sine-Wave Advection

Equation (74) is solved numerically using the smooth initial condition

ρ(x, 0) = sin(x), x ∈ [−π, π] (75)

after ten flow-through times. Calculations are performed on a single subdomain and 4 equally-spaced subdo-
mains. L2 error and convergence rates are shown in Table 1. Both single- and multi-domain results converge
to design-order. Moreover, the difference in L2 error between the two configurations is negligible.

Calculations are also performed on 4 unequally-spaced subdomains using the initial condition

ρ(x, 0) = sin(2πfx), x ∈ [0, 1] (76)

for frequency f = 3.0 on the domain 0 ≤ x ≤ 1 with periodic boundary conditions for one flow-through time
(t = 1.0). Both strong and weak interface conditions are shown in Fig. 1. The maximum grid compression
ratio between neighboring subdomains is 4. No noticeable oscillations appear for either interface condition
scheme.
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Figure 1: One-dimensional sine-wave advection problem after one flow-through time (t = 1.0) on 4 unequally-
spaced subdomains for strong and weak (SAT) boundary and interface conditions. Each subdomain has 101
grid-points resulting in 404 total grid points and a maximum grid compression ratio of 4. X’s on the horizontal
axis denote interface locations.

6.1.2 Square-Wave Advection

Equation (74) is solved for discontinuous initial condition

ρ(x, 0) =

{
1 : x ∈ (0.3, 0.6)
0 : x 6∈ (0.3, 0.6)

, x ∈ [0, 1] (77)

with periodic boundary conditions for one flow-through time (t = 1.0). Calculations are performed on 4
unequally-spaced subdomains using strong and weak boundary and interface conditions shown in Fig. 2.
The maximum grid compression jump between neighboring subdomains is 4. Strong imposition of the
interface conditions results in significant oscillations, while weak conditions eliminate these oscillations.

6.2 Two-dimensional Linear Scalar Wave Equation
The two-dimensional linear scalar wave equation (hyperbolic)

∂ρ

∂t
+ a

∂ρ

∂x
+ b

∂ρ

∂y
= 0 (78)

is solved for the conserved scalar ρ(x, y, t). The constants a and b are horizontal and vertical wave speeds,
respectively.

6.2.1 Circle-Shaped Square-Wave Advection

Equation (78) is solved for the discontinuous initial condition shown in Fig. 3. The circle is advected diag-
onally towards the top-right of the domain at speed 1. Results for a complete flow through the domain are
presented in Fig. 4. Calculations are performed on 4 equally-spaced subdomains using weak (SAT) boundary
and interface conditions. Each subdomain has 101× 101 grid-points and the entire grid is 202× 202.
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Figure 2: One-dimensional square-wave advection problem after one flow-through time (t = 1.0) on 4
unequally-spaced subdomains using strong and weak (SAT) boundary and interface conditions. Each sub-
domain has 26 grid-points resulting in 104 total grid-points and a maximum grid compression ratio of 4
between neighboring subdomains. X’s on the horizontal axis denote interface locations.

Figure 3: Initial condition (ρ) for two-dimensional square-wave advection problem.
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Figure 4: Two-dimensional square-wave advection problem for one flow-through time on 4 equally-spaced
subdomains using weak (SAT) boundary and interface conditions. Each subdomain has 101×101 grid-points
and the entire grid is 202 × 202. Dashed lines denote interface locations. In (a), solid lines denote exact
solution and color contours are the numerical solution at various times. In (b), solid blue lines denote exact
solution and solid black lines represent contours ρ = 0.01 and ρ = 0.99 of the numerical solution to magnify
shock smearing.

6.3 Euler Equations
6.3.1 One-Dimensional Sod’s Shock Tube Problem

The one-dimensional Euler equations,
∂U

∂t
+
∂F

∂x
= 0,

U =

 ρ
ρu
ρE

 , F =

 ρu
ρu2 + p
(ρE + p)u

 , (79)

are solved for Sod’s shock tube problem.30 Results for strong and weak boundary and interface conditions
for 4 equally-spaced subdomains are shown in Fig. 5. Results for strong and weak boundary and interface
conditions for 4 unequally-spaced subdomains with a maximum grid compression ratio of 4.0 are shown in
Figs. 6. Noticeable oscillations develop for strongly imposed conditions. Weak conditions prevent oscillations
in density and velocity; however, the some perturbation of the energy remains.

6.3.2 Two-Dimensional Inviscid Vortex

The two-dimensional Euler equations are solved for an inviscid vortex convection problem with exact solution

f(x, y, t) = 1− ((x− x0 − U∞t)2 + (y − y0)2), (80)

ρ(x, y, t) =

(
1− ε2 γ − 1

8π2
exp(f(x, y, t))

) 1
γ−1

, p =
ρ

γ
, (81)

u(x, y, t) = U∞ − ε
y − y0

2π
exp

(
f(x, y, t)

2

)
, (82)

v(x, y, t) = ε
x− x0 − U∞t

2π
exp

(
f(x, y, t)

2

)
, (83)

U∞ = M∞c∞, M∞ = 0.5, x ∈ [0, 10], y ∈ [−5, 5], (x0, y0) = (5, 0), t ≥ 0. (84)
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Figure 5: Sods one-dimensional shock tube problem at t = 0.2 on 4 equally-spaced subdomains. Left
column: strong interface conditions. Right column: weak SAT interface conditions. Each subdomain has
101 grid-points resulting in 404 total grid-points. X’s on horizontal axis denote interface locations.
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Figure 6: Sods one-dimensional shock tube problem at t = 0.2 on 4 unequally-spaced subdomains using.
Left column: strong interface conditions. Right column: weak SAT interface conditions. Each subdomain
has 101 grid-points resulting in 404 total grid-points and a maximum grid compression ratio of 4 between
neighboring subdomains. X’s on horizontal axis denote interface locations.
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Table 2: Total L2 error and convergence rates for weak (SAT) boundary conditions for two-dimensional
inviscid vortex convection problem on single domain and multiple domains. Error is calculated at t = 10s.

Grid Single domain Four subdomains
Log L2 error Rate Log L2 error Rate

21× 21 -0.73 -0.74
41× 41 -1.81 3.60 -1.82 3.58
81× 81 -3.00 3.95 -2.98 3.86
161× 161 -3.98 3.25 -3.91 3.08
321× 321 -4.68 2.32 -4.61 2.33
641× 641 -5.30 2.05 -5.24 2.09

(a) t = 0. (b) t = 5. (c) t = 10.

Figure 7: Exact density solution for the inviscid vortex advection problem at various times.

The exact density solution is shown in Fig. 7. Calculations are performed on 4 equally-spaced subdomains
using weak SAT boundary and interface conditions. L2 error and convergence rates are shown in Table 2.
Both single- and multi-domain results converge to design-order. Moreover, the difference in L2 error between
the two configurations is small. Example results are shown in Fig. 8, left column, where each subdomain has
101×101 grid-points, thus the entire grid is 202×202. Calculations are also performed on 4 unequally-spaced
subdomains using weak SAT boundary and interface conditions as shown in Fig. 10, left column. Subdomain
grid-spacing is shown in Table 3. The entire grid is 292 × 292 and the maximum grid compression ratio
across neighboring subdomains is 2.22.

Table 3: Number of grid-points in each subdomain for inviscid vortex convection problem with unequally-
spaced subdomain grids, Fig. 10.

Subdomain Nx Ny
bottom left 201 91
bottom right 91 91
top left 201 201
top right 91 201

6.3.3 Two-dimensional Mach 3 Flow Over a Forward-Facing Step

Results are presented for compressible inviscid flow over a forward-facing step atMa = 3.18,31 The computed
density at t = 4.0 seconds on 3 equally-spaced subdomains using weak SAT boundary and interface conditions
is shown in Fig. 8. Subdomain partitions are shown. The entire grid is 241 × 81 and is compared to the
fifth-order WENO result of Shu18 on a 242× 79 mesh. For demonstration, calculations were also performed
on 3 subdomains with nonuniform grid-spacing. Results for t = 3.0 are shown in Fig. 10. The entire grid is
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Figure 8: Left column: computed density contours for the inviscid vortex advection problem on 4 equally-
spaced subdomains using weak (SAT) boundary and interface conditions. Each subdomain has 101 × 101
grid-points and the entire grid is 202 × 202. Solid lines denote interface locations. Right column: analytic
solution for comparison.
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(a) t = 5

Figure 9: Computed density for the inviscid vortex advection problem on 4 unequally-spaced subdomains
using weak (SAT) boundary and interface conditions. Subdomain grid sizes are shown in Table 3. The entire
grid is 292× 292 and maximum grid compression ratio is 2.22. Solid lines denote interface locations.

Table 4: Grid spacing for Mach 3 flow over front-facing step, Fig. 12.
Subdomain ∆x ∆y
bottom left 0.0125 0.0125
top left 0.0125 0.025
top right 0.025 0.025

145×49 and subdomain grid-spacing is shown in Table 4. Maximum grid compression ratio across neighboring
subdomains is 2. Interference from the interface conditions is slight. For these results, dissipation was added
at interfaces via the SAT parameter, σ, to maintain stability.

7 Conclusions and Future Work
A methodology has been devised and demonstrated that allows smooth solutions and discontinuities to be
captured and accurately passed across subdomain boundaries even when jumps in grid-spacing exist. The
closed-domain ESWENO 3-4-3 differentiation scheme and SAT penalty method are married to produce a
robust solver for hyperbolic-dominated problems. The presented numerical examples show the flexibility,
stability, and accuracy of the scheme. Aside from producing a reliable multi-block scheme, there are three
potential uses for the scheme that warrant its further development:

High-order accuracy on complex geometries. Use the scheme to facilitate high-order accurate
simulations on complex geometries. Implementation of a curvilinear grid transformation on each subdomain
would accept geometries of arbitrary complexity. Map the domain with a very coarse unstructured quadri-
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Figure 10: Left column: computed density for the inviscid vortex advection problem on 4 unequally-spaced
subdomains using weak (SAT) boundary and interface conditions. Subdomain grid sizes are shown in Table
3. The entire grid is 292 × 292 and maximum grid compression ratio is 2.22. Solid lines denote interface
locations. Right column: analytic solution for comparison.

lateral or hexahedral mesh. Treat each mesh volume as a subdomain and map each with a boundary-fitted
curvilinear mesh.

Low-overhead parallelization. Use the multi-block scheme solely for efficient parallelization. Map
the domain with a traditional finite-difference mesh. Partition the domain to achieve load-balancing and
use the new multi-block scheme to minimize message-passing cost as an alternative to message-passing all
overlapping stencils. The new multi-block scheme seems to sacrifice neither stability nor accuracy; there
would be little downside to such a parallelization scheme, if any.

Local grid refinement. Use the scheme to refine the mesh in areas of local interest without worrying
about mesh smoothing.

Each of these uses by itself represents a significant advantage; however, a combination of all three is an
exciting proposition. The demonstrated methodology is extremely promising for such high-order accurate
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Figure 11: (a,b) Computed density for two-dimensional Mach 3 flow over a front-facing step at t = 4.0
seconds on 3 equally-spaced subdomains using weak (SAT) boundary and interface conditions. In (a), bold
solid lines denote interface locations. The entire grid is 241× 81. (c) Result of Shu for 5th-order WENO on
a 242× 79 mesh.

22



(a) Density with mesh overlaid

x

y

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

(b) Density

Figure 12: (a,b) Computed density for two-dimensional Mach 3 flow over a front-facing step at t = 3.0 seconds
on 3 unequally-spaced subdomains using weak (SAT) boundary and interface conditions. Subdomain grid-
spacing is shown in Table 4 . Maximum grid compression ratio across neighboring subdomains is 2. Bold
solid lines denote interface locations. The entire grid is 145× 49.
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simulations in complex configurations, including high-performance parallel computing environments and
complicated geometries.
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