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Abstract: The multidisciplinary nature of rotary-wing aeromechanics poses a 

daunting challenge for the design of practical modeling and simulation software 

that is accurate, efficient, and maintainable. This paper describes the design 

strategy for the US Army’s Helios software, which features a lightweight Python-

language integration framework combined with well-defined interfaces to link 

together various multidisciplinary software components. This design facilitates the 

use of alternative component software within Helios, the addition of new 

component software into Helios, and the rapid introduction of new computational 

fluid dynamics technology within Helios. This paper also presents examples of 

Helios rotary-wing aeromechanics simulations that include simultaneous solutions 

for rotor dynamics and aerodynamics plus high resolution of the rotor wake system.   
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1     Introduction 

As Figure 1 shows, helicopter flight involves many multidisciplinary physics problems that are 

difficult to predict with today’s engineering modeling and simulation tools. Rotor aerodynamic 

systems involve complex interactions among the rotor blades, rotor wakes, and fuselage, and they 

create challenges such as 

 simultaneous modeling of rotating and nonrotating components; 

 retreating-blade low-speed dynamic stall; 

 advancing-blade transonic flow; 

 rotor “trim” requirements to balance aerodynamic and dynamic forces for particular control 

settings; and 

 a strong coupling between rotor-blade aerodynamics and rotor blade dynamics (both rigid and 

elastic blade motion).  

A successful rotorcraft aeromechanics simulation must accurately represent all these physical 

phenomena. These software models typically require substantial engineering expertise, powerful 

computer systems, and must couple computational fluid dynamics (CFD), computational structural 

dynamics (CSD), and vehicle flight controls. 

This multidisciplinary nature for rotorcraft poses a daunting task for designing practical modeling and 

simulation software that is accurate, efficient, and maintainable. Traditional rotary-wing modeling and 

simulation software tends to be monolithic, combining all of the multidisciplinary physics models into 
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a single code infrastructure. Experience has shown that such monolithic software is fraught with 

problems, both in the software development cycle and in later maintenance and support phases. Errors 

abound when there are too many “cooks” developing the same piece of monolithic computer code. 

Also, to implement code changes in future software upgrades requires an intimate knowledge of the 

entire package, which limits upgrades to only a few highly qualified personnel.  

 

Figure 1: Rotary-wing vehicles present a number of challenges for multidisciplinary fluid and 

structural dynamics modeling. 

With an aim to solving these problems, the US Army Aeroflightdynamics Directorate has developed a 

software product called, “Helios” for multi-disciplinary rotary-wing aeromechanics modeling. The 

Helios infrastructure links both new and existing software modules with little need for extensive code 

modifications. Data exchanges between software modules occur through a Python-based integration 

framework. This Python software framework is both object-oriented and scalable on large parallel 

computer systems. This paper describes the Helios Python-based software architecture and also 

summarizes the functionality of various Helios component modules. It also presents several recent 

examples of Helios software upgrades that demonstrate the flexibility and extensibility of this 

software design strategy. 

2     Helios Software Design Strategy 

A desirable alternative to traditional monolithic software development consists of a lightweight 

computational infrastructure that links together independent multidisciplinary software modules. This 

concept is not new, and a number of such infrastructures currently exist. They can generally be 

classified into two categories; high-level execution managers that coordinate the execution of 

standalone legacy codes, and low-level frameworks that provide a common data format and 

communication protocol from which the higher-level executable may be built. Examples of the former 

include FD-CADRE [1] and MDICE [2] which manage execution of multidisciplinary software 

modules for overset moving-body problems. Each code typically runs as an independent, standalone 

computer program, maintaining its own parallel partitioning and execution. Information typically 

passes between the different modules by reading and writing files to disk.  

Examples of the latter include SIERRA [3] and “Overture” [4], which includes grid generation, 

numerical flowfield solution, and MPI-based communications across parallel computer processors. 

For these cases, the flow solver components do not run directly as standalone modules. Rather, they 

use the data structures and communication support provided within the overall software framework. 

The overall software architecture may use an object-oriented paridigm, but all of the data structures 

and parallel communication infrastructure that resides within the software framework.  
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Both the low and high-level approaches have their advantages and disadvantages. The high-level 

approach has the advantage that it requires little change to existing legacy codes. However, the cost of 

the file-based data exchange typically limits the efficiency and parallel scalability of the coupled 

codes during execution. Also, these high-level coupling approaches typically lack granularity in their 

standalone legacy software components, which tends to limit software changes in these legacy 

components to only a few highly qualified personnel who are familiar with that legacy software 

package.  

The low-level approach circumvents this problem by exchanging information between modules 

within the framework itself. Additionally, it encourages the use of common algorithms and load 

balancing strategies across multiple codes. However, the addition of low-level multidisciplinary 

functionality to the existing solver typically requires substantial rewrites of these new software 

modules in order to implement the data structures and communication protocols that are supported by 

the framework. Also, low-level coupling approaches may be less flexible than their high-level 

counterparts due to predetermined requirements for data structures and/or computational meshing 

strategies. More importantly, it is hard to coordinate teams of software developers to work on these 

integrated software packages since these software developers have a limited ability to work 

independently.  

Helios uses an intermediate-level software infrastructure described in Refs. [5-7] that uses 

characteristics from both of the approaches described above. Like the high-level execution managers, 

it links existing software modules with little need for extensive code modifications. However, instead 

of using file transfers for data exchanges between modules, data exchanges between software modules 

take place through a top-layer Python-language integration framework that is both object-oriented and 

scalable. The Python top layer facilitates data exchanges between individual multidisciplinary 

component software modules and these data exchanges occur through direct memory access rather 

than file input and output (I/O). As such, the Helios Python framework provides simple data transfers 

among software component modules with sufficient granularity to ensure that groups of programmers 

can work independently on each of many multi-disciplinary software component modules and then 

easily use Python to tie them together in order to create the final software product.  

Python-language programming for multidisciplinary scientific computing is well suited for integrating 

legacy and newly-developed software, software written in multiple languages, and for implementing 

multidisciplinary component software modules in an object-oriented manner. Python’s advantages are 

well documented in Ref. [8], which is part of an entire journal issue devoted to Python programming. 

In this paper, the author states that, “Python is an excellent “steering” language for scientific codes 

written in other languages.” The author also makes the point that, “You can embed Python into an 

existing application, which means you can instantly add an easy-to-use veneer on top of an older, 

trusted application.” 

Other researchers have shown success with similar approaches. For example, Alonso et al. [9] have 

previously used such a Python-based infrastructure for multi-disciplinary design optimization. They 

also developed this Python framework for the prediction of helicopter noise and the Python 

integration framework from this effort served as an initial template for the current Helios approach. In 

addition, Schluter et al. [10] demonstrated a coupled large-eddy simulation and Reynolds-Averaged 

Navier-Stokes (RANS) fluid dynamics simulations on large-scale parallel computer systems with a 

similar infrastructure. Finally, Gopalan et al. [11] have used this paradigm for multi-disciplinary 

simulations consisting of CFD, CSD, and acoustic codes applied to helicopter aeromechanics and 

noise.  

The Python-language-based approach has the desirable feature that allows each software module to be 

treated as an object, providing a convenient way to assemble a complex multidisciplinary simulation 

in an object-oriented fashion. This ability to effectively use legacy software modules results in 

reduced development time with reduced software maintenance. In addition, it provides flexibility by 
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allowing for the use of multiple interchangeable software modules. As a result, Helios software 

developers can readily extend their own software and leverage the work of others by allowing new 

components to “plug in” in place of others. 

The Python infrastructure orchestrates specific operations in the solvers by making calls through a 

socket-like interface layer, which also manages the translation of data between Python and the native 

language (e.g. C or FORTRAN) of the component solvers. Data exchanges can be done without 

memory copies or file I/O, and the infrastructure can be run in parallel on large multi-processor 

computer systems. The Python interfaces are only used only at a high-level; primarily for exchanging 

data and not for numerical computing. This practice ensures that the Python layer introduces minimal 

computational overhead, thus retaining the original computational efficiency of each of the building-

block software modules.  

The HI-ARMS multi-code Python infrastructure, shown in Fig. 2, consists of two parts: 1) a general 

high-level Python script or execution interface that controls the execution of different modules, and 2) 

a set of module-specific interfaces called by the Python script. The Python infrastructure maximizes 

the throughput of data transfers between each software module with minimal computational memory 

overhead. Each software modules allocates its own memory and data pointers and these memory 

pointers are used to access data across the different modules; a much more computationally-efficient 

process than packing and unpacking data-exchange buffers. The object-oriented module interfaces 

standardize the data exchanges between the different flow-solvers, which facilitates the replacement 

and/or addition of new solvers. As a result, the design and implementation of these Helios Python 

component module interfaces plays a major role in the success of the overall software architecture.  

 

Figure 2: The Helios software integration framework for multidisciplinary analysis of rotary-wing 

flowfields. The multi-code Python infrastructure consists of an execution manager that controls each 

module and a set of well-defined module-specific interfaces. 

3     Multiple-Grid Decomposition of the Aerodynamic Flowfield 

The Helios modeling approach solves the Reynolds-averaged Navier-Stokes (RANS) equations to 

discretize the aerodynamic flowfield around a rotorcraft as shown in Figure 3. These equations 

capture both the fluid dynamic forces on the vehicle plus the vortical rotor wake behavior beneath the 

rotor system. Larger concentrations of computational mesh points typically lead to more accurate 

flowfield solutions.  

Helios uses two types of grid systems to capture these rotary-wing aerodynamic effects. The “near-

body” grids use body-fitted, triangular surface meshes to represent the solid surfaces on the rotor and 

fuselage. Such unstructured triangular grid systems are typically generated directly from digital 

computer aided design (CAD) models that represent the vehicle component surfaces. The lack of 
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ordered structure for these triangular grids provides a high degree of generality and flexibility to 

resolve complicated surface geometries.  

These surface triangles are then used to generate mixed-element volume grids that surround the rotor 

and fuselage. A cross-sectional cut of one of these volume grids is shown on the left-hand-side of 

Figure 3. The resulting unstructured grid system does a good job of representing the flowfield locally 

around the solid surfaces. However, it is not as efficient or accurate at representing the flowfield 

physics away from solid surfaces as is the simpler Cartesian “off-body” grid system shown on the 

right-hand-side of Figure 3. For this reason, the near-body unstructured grid only extends about one 

rotor blade chord length from the solid surfaces. At that point, we cover the remainder of the volume 

in space with a series of overlapping Cartesian structured grids that provide for highly-efficient and 

accurate discretizations of the flowfield aerodynamics.  

The Helios near-body solver, NSU3D, consists of an unstructured mesh multi-grid unsteady 

Reynolds-averaged Navier-Stokes (RANS) flow solver developed for high-Reynolds number external 

aerodynamic applications [12,13]. The NSU3D discretization scheme employs a second-order 

accurate vertex-based approach, which stores the unknown fluid and turbulence variables at the 

vertices of the unstructured mesh. The NSU3D flow solver then uses these vertex-based flowfield 

quantities to compute numerical fluxes of fluid mass, momentum, and energy into and out of each 

small discretized dual control volume that surrounds each vertex. Each face of these dual control 

volumes is associated with an edge of the unstructured mesh.  

 

Figure 3: Two-level grid decomposition to model the aerodynamic flowfield around a helicopter 

fuselage and rotor system. 

The NSU3D discretization scheme operates on hybrid mixed-element meshes, generally employing 

prismatic elements in highly-stretched boundary layer regions, and tetrahedral elements in regions 

with more uniform flowfield quantities. An edge-based data structure links these various element 

types and allows for efficient computational solution of the RANS flowfield equations for the mixed-

mesh discretization.   

Accurate flowfield solutions also require a model for the viscous fluid boundary layers near the solid 

surfaces of the rotors and fuselage. The NSU3D flow solver provides two options for such modeling 

of boundary-layer turbulence. The first is a single-equation Spalart-Allmaras turbulence model [14] 

and the second uses a standard k-epsilon two-equation turbulence model [15]. 
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The off-body Cartesian flow solver is built from the Structured Adaptive Mesh Refinement 

Applications Infrastructure (SAMRAI) library originally developed at Lawrence Livermore National 

Laboratory [16–19]. It uses Cartesian block structured grids, which lead to a substantially more 

efficient computational execution compared to the unstructured near-body flow solver described 

above. The disadvantage to the Cartesian solver is that it cannot easily represent the viscous flowfield 

around complex surfaces geometries. However, Helios only uses the Cartesian flow solver away from 

solid surfaces so that conformance to complicated geometries is not an issue. The Cartesian grid 

generation, load balancing, and parallel adaptive data exchanges between blocks in the off-body 

solver are all performed by the basic SAMRAI infrastructure.  A dedicated Cartesian flow solver 

derived from the ARC3D code [20] computes the solution on each Cartesian grid block. It uses an 

explicit 3rd order Runge-Kutta time-integration scheme and has spatial differencing options ranging 

from second- to fifth-order order accurate. In this sense, the core ARC3DC flow solver functions as a 

module library within the SAMRAI infrastructure. The resulting combination of SAMRAI mesh 

management and ARC3D flow solver is referred to as SAMARC.  

The near-body and off-body grid systems overlap in space and communication between the two grid 

systems takes place within this overlap region. A software module called PUNDIT [21] coordinates 

the data transfer between different solvers applied in different parts of the computational domain. The 

body-fitted unstructured solver captures the viscous near-wall effects, and the Cartesian solvers with 

high-order accurate differencing scheme captures the rotor wake regions in the off-body meshes. The 

PUNDIT module provides a new domain connectivity capability for performing the interpolation and 

data exchange between these overlapping grid systems. The PUNDIT domain-connectivity module is 

fully parallel and performs all its operations (identification of holes and fringe points, donor cell 

searches and data interpolation) on the partitioned-grid data. In addition, the connectivity procedures 

are completely automated using an implicit hole-cutting methodology that requires no user 

intervention to match the overlap regions between adjacent grid systems. 

4     Coupling between Rotor Aerodynamics and Rotor Dynamics 

Rotor blades typically move in response to a number of different forces including: 

1) The torque to the rotor system from the engine 

2) The rotor control system inputs set by the pilot. 

3) Structural dynamic body forces such as centrifugal accelerations 

4) Aerodynamic lift, drag and pitching moment forces on the rotor 

The above forces on the rotor result in both rigid and elastic rotor motions that are tightly coupled to 

the aerodynamic forces on the rotor system. For and articulated rotor, rigid rotor motions include 

blade flap, lead-lag, and pitch. Elastic motions include rotor-blade bending and torsion. Accurate 

modeling of all these rotor motions is crucial to the successful aeromechanic performance-prediction 

for helicopter systems.  For a helicopter to fly straight and level, all of the above forces on the rotor 

must be balanced and this state is known as helicopter trim. Computational modeling of a trimmed 

rotor state requires the simultaneous coupled modeling of the rotor aerodynamic forces and rotor 

structural dynamic response.  

Rotor structural dynamics and trim modeling is handled by the Rotorcraft Comprehensive Analysis 

System (RCAS) [22]. The RCAS rotorcraft comprehensive analysis model has been developed and 

maintained by US Army Aeroflightdynamics Directorate in partnership with Advanced Rotorcraft 

Technology Inc. (ART) over the past 20 years. RCAS supplies the rotor structural dynamics model, 

the rotor trim model, and the coupling model between the fluid and structural dynamics.  

Figure 4 illustrates the iterative coupling process for this integrated fluid dynamics and rotor 

dynamics modeling. The Python-based software integration framework sends the rotor motions to the 

computational fluid dynamics solvers and then brings the corresponding rotor aerodynamics forces 
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back to the computational structural dynamics model. At the end of a trimmed rotor computation, the 

aerodynamic forces on the rotor are consistent with the rotor dynamic motions and also with the pilot 

control inputs.  

The rotor fluid structure interface model takes the three-dimensional surface patch forces from the 

near-body computational fluid dynamics solver (NSU3D) and imposes these forces on the RCAS 

model for the rotor structural dynamics. The fluid-structure interface ensures that these imposed 

forces conserve energy for the RCAS one-dimensional, non-linear beam structural dynamics model 

while also preserving the total airloads forces. The fluid-structure interface is generic to structured or 

unstructured grids for the computational fluid dynamics (CFD) flow solver and there is no 

requirement for sectional airloads to be calculated as an intermediate step in the CFD. Each and every 

surface patch force is imposed directly on the structure consistent with the high-fidelity CFD solution.  

The fluid-structure interface also ensures consistency of the geometry and reference frames between 

the CFD and CSD solvers. Wissink et al. [23] present more detailed descriptions of both these and 

other features in the most recent Helios version 3 software release.  

 

Figure 4: Iterative coupling cycle between rotor computational structural and rotor computational 

fluid dynamics. The dynamics module provides the rotor motions and the aerodynamic model 

provides the rotor aerodynamic forces. 

5     Rotary-Wing Aeromechanics Modeling for the HART-II Rotor 

System 

The HART II rotor is a 40% Mach and dynamically scaled model of Bo105 hingeless rotor that was 

experimentally tested in the DNW wind tunnel in 2001 as part of an international cooperative research 

effort [24]. Figure 5(a) shows a photograph of the HART-II rotor and wind tunnel test stand. 

Lim et al. [25] recently performed Helios simulations for a number of the HART-II experimental test 

conditions and their results highlight many of the new features in Helios version 3. These Helios 

computations for this test used a total of 12.6 million nodes for the HART-II near-body grid system 

around the rotor and test stand shown in Figure 5(b). 

The Helios Cartesian off-body meshes grids used adaptive mesh refinement to identify and 

dynamically refine the computational grid around the rotor tip vortices with a maximum of about 200 

million mesh points in the final computation. Figure 6 shows a snapshot of the “Q” isosurfaces for 

two of these off-body meshes, where “Q” is a scaled measure of the rotational component of the 

vorticity vector. Figure 6(a) shows a solution for a fixed off-body grid with a uniform spacing equal to 

0.1 rotor blade chord lengths. Figure 6(b) shows a dynamically-adapted grid where the finest mesh 

spacing is equal to 0.025 rotor blade chord lengths. The adaptive mesh solution for the HART-II rotor 

wake shows much improved resolution of the rotor vortex wake system, which is important for 

computing the aerodynamic effects of vortex interactions with the rotor and fuselage in realistic 
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rotorcraft. Lim et al. [25] applied their mesh adaption procedure every 25 time steps in the 

computational solution where each time step corresponded to 0.1 degree of rotor azimuthal angle.  

  

   (a)      (b) 

Figure 5: (a) HART-II rotor and test stand in the DNW wind tunnel, (b) Helios near-body meshes for 

HART-II rotor simulations. 

Computational overhead for the mesh adaption logic only required a few percent of the overall 

solution time for this problem. In addition, Lim et al. [25] found that the off-body mesh adaption 

reduces the problem size by a little over a factor of three compared to a uniform off-body mesh with 

the same off-body cell size. Additional levels of off-body mesh refinement will provide even larger 

mesh size reductions compared to uniform Cartesian grids. 

 

Figure 6: Helios meshes and Q isosurfaces for (a) fixed off-body grid and (b) solution-adapted off-

body grid to capture the rotor wake vortices. 

Figure 7 shows a more detailed view of the Q-isosurfaces in the HART-II rotor wake system, 

including the interactions between the rotor tip vortices and the rotor blade. In addition to these flow 

visualization images, Ref. [25] also presents quantitative comparisons between the computed and 

experimentally-measured rotor wake velocities and rotor airloads, including blade sectional lift and 

pitching moment. These Helios-computed airloads show good agreement with the experimental data. 

Many of the discrepancies between the computations and experimental data specifically point to the 

need for increased accuracy and speed in the Helios near-body flow solver which is second-order 

accurate in space. 
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Figure 7: Helios computed isosurfaces for Q, showing the HART-II rotor vortex wake system in 

descending forward flight. 

6     Extensibility, Component Module Interchange, and New Technology 

Implementation in Helios  

This next section describes three recent examples of how the Python software framework in Helios 

has facilitated software extensibility, component software interchange, and new technology 

development.  

6.1     Co-visualization 

The first example involves the addition of a new Helios component software module for the “co-

visualization” of computational fluid dynamics solutions. Co-visualization involves the extraction of 

flow features from the flow solver at run time where they can be easily viewed and downloaded to 

remote computer workstations. These flow visualization features are typically two-dimensional 

cutting planes or isosurfaces which are much smaller than the complete unsteady three-dimensional 

meshes and solution files.  

For unsteady rotor problems, animation of flow features such as rotor wakes requires temporal 

snapshots with rotor azimuthal angle resolutions of one degree or less. If Helios users wish to perform 

flow visualization as a general post-processing step, then they must save complete computational 

mesh and solution files for at least 360 snapshots in order to cover a full rotor revolution for cases 

with periodic, straight, and level forward flight. For a typical 300 million point grid system, this flow-

visualization database can easily amount to over 2TB of data, which, in practice, is simply too large to 

move across most computational networks.  

In order to remedy this problem, personnel from Kitware Inc. working under a US Army Small 

Business Innovative Research (SBIR) grant have created a co-visualization component module for 

Helios that is derived from the open-source flow visualization software package called ParaView [26]. 

This ParaView plug-in component module allows Helios users to create a ParaView input file to 

specify cutting planes and isosurfaces for on-the-fly extraction during the execution of Helios. These 

cutting planes and isosurface extracts are small enough to be downloaded to local computer 

workstations for subsequent visualization by either ParaView or by other commercial flow 

visualization software. Figure 8 shows a snapshot example of Helios vorticity iso-surface and cutting 

plane co-visualization extracts for a HART-II rotor simulation.  

As mentioned earlier, the Helios Python-based software architecture greatly facilitated this 

implementation of co-visualization within Helios. Once the Python interface between Helios and the 

ParaView plug-in module was set, then the Kitware engineers were quickly able to independently 
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develop their ParaView plug-in module. This process required minimal interactions between Helios 

and Kitware software developers during implementation and testing.  

 

Figure 8: Vorticity isosurfaces and a cutting plane for the HART-II rotor. This image was created 

with Kitware’s ParaView co-visualization module for Helios. 

6.2     Software Component Module Interchange 

As stated earlier, the design and implementation of the Helios Python component module interfaces 

plays a major role in both the success of the existing software, and also in the success at which Helios 

developers can replace or supplement the existing component modules in Figure 2 with new modules. 

These new component modules can be used to both leverage previously-developed legacy software 

and to quickly introduce new technology into Helios. Both of these advantages facilitate collaboration 

and innovation under the Helios software framework.  

An example of the leveraged use of legacy software within Helios has been recently demonstrated by 

an effort to create a Helios near-body flow solver module from NASA’s OVERFLOW [27] 

structured-grid flow solver (personal communication from Dr. Rohit Jain, June 15, 2012).  This work 

involved extracting the near-body overset-grid flow solver from the OVERFLOW code and 

“wrapping” it with Python in order to expose the FORTRAN data structures to the Helios component 

module interface. As shown in Figure 9, OVERFLOW computes the overset-grid communications on 

its own overlapping near-body structured grids and the Helios PUNDIT module computes the overset-

grid communications at the outer boundaries of the OVERFLOW meshes where they overlap the 

outer Helios Cartesian grids.  

This addition of an OVERFLOW near-body flow solver option gives Helios users access to a 

substantial amount of existing OVERFLOW technology including high-accuracy solution algorithms, 

turbulence, and transition models. It also speeds up computations since the structured-grid near-body 

flow solver in OVERFLOW is substantially faster for a given grid than any comparable unstructured-

grid flow solver, including NSU3D. The downside to using OVERFLOW with Helios is that it 

introduces the additional difficulties of grid generation and mesh connectivity for complex 

geometries. Fully unstructured grids are typically much easier and faster to generate from CAD 

surface geometry. The main point here is that the Helios Python software makes it possible to bring in 

new legacy component software modules with much less effort than would be expected with 

alternative software architectures. 
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Figure 9: Combined OVERFLOW near-body mesh and Helios off-body Cartesian meshes for a UH-

60 Blackhawk rotor blade 

6.3     Development and Implementation of New Technology  

 In addition to facilitating the use of interchangeable legacy software components, the Helios Python 

software infrastructure also facilitates the rapid introduction and use of new technology within Helios. 

A good example of this rapid introduction of new technology was recently presented in papers by 

Wissink et al. [28] and by Katz and Wissink [29]. The idea is to discretize the near-body CFD surface 

with a triangular mesh and then to generate the subsequent volume grid from straight lines, or strands, 

that extend out from the surface. These straight lines are nominally pointed along surface normals and 

all of these lines use the same viscous grid spacing as shown in Figure 10.  

This strand grid meshing system has several advantages compared to fully unstructured grids. First, it 

greatly simplifies the volume mesh generation and also allows for a very compact representation of 

the complete near-body grid system since only the surface mesh, the uniform strand mesh spacing, 

and the strand pointing vectors need to be stored in memory. This feature facilitates mesh connectivity 

for parallel computations since the entire near-body grid system can typically be stored on every 

processor in a parallel computing implementation, resulting in simplified searches for interpolation 

stencils between the near-body and off-body grids.  

 

Figure 10: Surface triangle and strands that form the volume grid 

Figure 11 shows a triangular surface mesh and a cross sectional view of the strand and Cartesian 

volume grids for a typical aircraft nose section. The off-body grids in Helios automatically refine in 

order to match the mesh spacing at the outer boundary of the near-body strand mesh. Of course, the 

example shown in Figure 11 is fairly easy to grid with a strand mesh since it doesn’t have any regions 
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of high surface curvature such as sharp convex or concave corners. Wissink et al. [28] address these 

more difficult cases in their paper by using smoothing techniques and also by “clipping” the strand 

meshes where they overlap in the volume grid.  

 

Figure 11: Triangular surface mesh and cross sectional view of strand and Cartesian volume grids for 

an aircraft nose section 

Katz and Wissink [29] describe the flow solver for these near-body strand meshes that takes 

advantage of the semi-structured nature of the strand meshes. In particular, they separate the “meshing 

components” from the flow solver in their Helios implementation. As a result, the actual strand mesh 

flow solver computes the solution for a single-block strand mesh and all mesh generation, mesh 

connectivity, and parallel partitioning are contained in a separate meshing layer that they call 

PICASSO. The advantage of separating the meshing layer from the flow solver results from the fact 

that that they can modify and improve the flow solver without having to re-code all of the meshing 

layer. Also, they can change the meshing layer without having to re-code the flow solver. For 

instance, they could re-write their meshing layer to use CUDA instead of MPI for parallel computing 

communications so that their flow solver will run on GPU computer architectures. The actual flow 

solver will not require modification in such a switch from MPI to CUDA.  

This new strand flow solver technology will continue to develop and mature for future Helios 

applications. The key point here is that it was possible to develop this new strand-mesh near-body 

flow solver from scratch and then to quickly implement and test it within the Helios framework. The 

Helios Python software architecture was instrumental in facilitating this rapid implementation and 

testing of new technology.  

7     Summary and Conclusions 

The overall Helios software development program aims to produce high-quality, easy-to-use 

modeling and simulation software to help minimize development cost and risk within the Department 

of Defense procurement cycle for rotary-wing vehicles. As part of this goal, Helios version 3 has 

delivered on its initial promise to create a new software framework for rotary-wing aeromechanics 

applications. The Helios code uses a Python-based object oriented architecture that provides for the 

effective use of multidisciplinary software object modules, efficient implementation on large-scale 

parallel computers, plus a maintainable and extensible software design.  

The recent Helios version 3 software release [23] has successfully delivered a general aerodynamic 

modeling capability for arbitrary rotor and fuselage combinations. Additional software tests and 

validations are planned in future work. Basic capabilities have been demonstrated for both isolated 
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rotors and rotor/fuselage combinations with multidisciplinary coupling between fluid and structural 

dynamics.  

The success of the Helios software development effort is heavily dependent on the use of its 

lightweight Python infrastructure that connects individual component software modules using well-

defined interfaces for each component software module.  This paper points to several examples of 

how this approach has facilitated the rapid addition of new component software modules within 

Helios, the rapid addition of alternate legacy software components within Helios, and the rapid 

implementation and testing of new technology within Helios. Hopefully, this flexible software design 

will continue to facilitate collaborations with others, the leveraging of existing technology, and the 

rapid implementation and testing of new technology within Helios. 
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