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Abstract: We investigated the continuum surface force (CSF) model to include the surface tension
within a projection method combined with a split-advection, mass-conserving, wisps-free volume
of fluid (VoF) method that we recently developed to perform DNS of fully-resolved droplet-laden
incompressible turbulence. The interface curvature is computed accurately using a variable-stencil
height-function technique. We tested different implementations of the surface tension and pressure
gradient terms within a projection method, and analyzed their stability and the magnitude of
the spurious currents for a static drop in both two and three dimensions. We have modified the
sequence of the advection sweeps, and show that, in the case of non-zero Weber number, the
algorithm is stable, and the spurious currents maximum magnitude is about 1% of the droplet
velocity. Finally, we present DNS results of fully-resolved droplet-laden incompressible isotropic
turbulence at Reλ = 75 using a computational mesh of 10243 grid points and 7000 droplets of Weber
number We = 0.5, and initial droplet diameter equal to the Taylor lenght-scale of turbulence.

Keywords: droplet-laden flow, isotropic turbulence, volume of fluid method, continuum surface
force.

1 Introduction

In [1], we have recently developed a mass-conserving wisps-free volume of fluid (VoF) method to track volumes
in incompressible turbulent flows. The VoF advection is performed through a spatially split approach, the
Eulerian implicit - Eulerian algebraic - Lagrangian explicit (EI-EA-LE) algorithm originally proposed by
Scardovelli et al. [2]. The original EI-EA-LE algorithm is globally mass-conserving but generates wisps and
does not conserve the mass of the individual volumes tracked in the flow. Mass conservation properties are
guaranteed, and we have improved this method with the addition of a redistribution and a wisps suppression
algorithms. Our method is wisps-free and thus conserves mass both globally and locally within each volume
tracked.

This paper presents a numerical methodology to perform DNS of uniform-density droplet-laden incom-
pressible turbulent flows. We present and analyze the numerical treatment of the surface tension force within
a projection method combined with our VoF method described in [1]. The surface tension effects are treated
with the continuum surface force (CSF) approach proposed by Brackbill et al. [3] and adapted to the VoF
method by Francois et al. [4]. We present results for the coupled droplet/fluid flow for a static droplet in
2D and 3D, translating spherical droplet in a uniform flow, 2D droplet in Taylor-Green vortex flow, and
droplet-laden isotropic turbulence.
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2 Mathematical formulation

2.1 Governing equations

The governing equations for a uniform-density droplet-laden incompressible flow written in non-dimensional
form are the continuity,

∇ · u = 0, (1)

and momentum equation,
∂tu +∇ · (uu) = −∇p + ν∇2u + fσ, (2)

where fσ is the force per unit mass due to the droplet surface tension, σ, and the non-dimensional density
is omitted because equal to one (ρd = ρ = 1).

2.2 Numerical method

2.2.1 Projection method

We now present the projection method to solve the governing equations (1) and (2). Time integration of (2)
is performed using the second-order Adams-Bashforth scheme,

u∗ − un

∆t
=

3
2
RUn − 1

2
RUn−1, (3)

to compute u∗ that is a non-divergence free approximate fluid velocity, and where

RUn = −∇ · (unun) + ν∇2un + fn+1
σ . (4)

The divergence-free condition on the updated fluid velocity is imposed by solving the Poisson equation for
pressure,

∇2pn+1 =
1

∆t
∇ · u∗, (5)

and by updating the fluid velocity as
un+1 = u∗ −∆t∇pn+1. (6)

Equations (4), (5) and (6) are discretized in space on a uniform staggered mesh using second-order central
difference schemes. The Poisson equation (5) in finite-difference form is solved using a combination of a
two-dimensional fast Fourier transform (FFT) in the x− y plane, and Gauss elimination in the z direction.
Periodic boundary conditions are imposed in the three directions. In Eq. (3), the surface tension term, fσ,
is computed using the continuous surface force (CSF) approach by Brackbill et al. [3] as

fσ = σκn, (7)

where σ is the droplet surface tension, κ is the local curvature of the interface between droplet and surround-
ing fluid, and n is the local unit normal to the droplet/fluid interface. Francois et al. [4] reformulated the
CSF by replacing n with the gradient of the volume fraction or VoF function, C. Such to satisfy a consistent
coupling of the surface tension force with pressure gradient force within the flow solver, fσ is computed at
the cell faces as [4]

fσ = σκ∇C. (8)

Thus, the computation of fσ requires the computation of κ and C. The next two sections are dedicated to
the descriptions for computing C, using the volume of fluid method by [1], and κ, using the height-function
technique by [5].

2.2.2 Volume of fluid method

We developed a novel volume of fluid (VoF) method [1] that is mass-conserving and wisps-free. The complete
details of the VoF method are given by Ferrante & Baraldi [1]. A brief description is here reported.
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In the volume of fluid (VoF) method, the sharp interface between the two phases (e.g. liquid and gas)
is determined using the VoF function, C, that represents the volume fraction of the reference phase in each
computational cell, e.g. C = 0 in the surrounding fluid, and C = 1 inside the droplet (0 ≤ C ≤ 1).

The VoF method is characterized by a sharp representation of the interface. In the present VoF method,
the interface between the two phases is reconstructed using a piecewise linear interface calculation (PLIC)
[6]. The reconstruction of the interface in each computational cell consists of two steps: the computation of
the interface normal, n = (nx, ny, nz), and the computation of the interface location. The algorithm that
we use to evaluate the interface normal is a combination of the centered-columns method [7] and Youngs’
method known as the mixed-Youngs-centered (MYC) method [8].

Considering a characteristic function χ that has value 1 inside the droplet and 0 in the surrounding fluid,
the phase of interest moves obeying the following advection equation:

∂χ

∂t
+ u · ∇χ = 0. (9)

The volume fraction Ci,j,k of grid cell i, j, k is related to the characteristic function χ by the integral relation

Ci,j,k(t) =
1
V0

∫
V0

χ(x, t)dx, (10)

where V0 is the volume of the i, j, k cell.
The VoF advection step to advance C in time is performed with the Eulerian implicit - Eulerian algebraic

- Lagrangian explicit (EI-EA-LE) algorithm originally proposed by Scardovelli et al. [2]. The original EI-
EA-LE algorithm is globally mass-conserving but generates wisps and does not conserve the mass of the
individual volumes tracked in the flow. We have improved this method with the addition of a redistribution
and a wisp suppression algorithms. The redistribution algorithm is needed since small inconsistencies in the
VoF values (i.e. C < 0 and C > 1) can arise in the Eulerian algebraic (EA) step of the advection. A wisp
suppression algorithm has also been developed in order to correct the solution from small errors arising from
the finite machine precision (Fig. 1). Our method is wisps-free and thus conserves mass both globally and
locally within each droplet. The advection of C is performed using a staggered mesh discretization of the
velocity field with respect to C. The method displays second-order spatial accuracy and almost second-order
overall accuracy for typical values of the CFL number used in the test-case simulations as shown in Fig. 2.
A geometrical error smaller than 1% is obtained with a droplet resolution of 30 grid cells or more across the
diameter.

2.2.3 Curvature computation

In order to compute the interface curvature from the VoF function, C, the height function technique by
Cummins et al. [5] has been adopted and investigated. A correction based on the local orientation of the
interface normal is performed to minimize the error on a spherical interface. The technique is second-order
accurate with respect to the mesh size and is computationally efficient. The height function is constructed
by integrating the C along the axis direction for which the normal to the interface has the largest component.
The method relies solely on the discrete values of C, and is mostly independent from the interface normal
computation, which only influences the orientation of the curvature computational stencil, thus, making
the method robust. The interface normal is computed using the mixed-Youngs-Centered (MYC) method
on a uniform Cartesian mesh. For example, consider the case with the interface normal with the largest
component in the z-direction. Then, the local height function H in the (i, j, k) cell containing the interface
(because 0 < Ci,j,k < 1) is computed along z on a 3× 3 computational stencil in the x− y plane for a fixed
κ value as

Hr,s =
tup∑

t=tdown

C∗i+r,j+s,k+t∆x with r = [−1, 0, 1] and s = [−1, 0, 1] (11)

where tup and tdown are adjusted adaptively based on the local C distribution (tup can vary from 0 to 3, and
tdown can vary from -3 to 0), and C∗ is a modified distribution of the volume fraction C, which is rendered
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monotonic along the z-direction [9]. The stencil for computing H in the i, j, k cell is therefore of variable size
and ranges from 3× 3× 1 to 3× 3× 7. The interface curvature is then computed using the height function
H as

κ =
nz

|nz|
Hxx + Hyy + HxxH2

y + HyyH2
x − 2HxyHxHy

(1 + H2
x + H2

y )3/2
, (12)

where the partial derivatives of H are computed using the finite difference formula of [9]. These formulas
introduce extra staggered terms weighed by a parameter γ which improves the accuracy in three dimensions.
The discretized first derivative of H is written as

Hx =
[γ(H1,1 −H−1,1) + H1,0 −H−1,0 + γ(H1,−1 −H−1,−1)]

2∆x(1 + 2γ)
, (13)

and the discretized second derivative of H as

Hxx =
[γ(H1,1 − 2H0,1 + H−1,1) + H1,0 − 2H0,0 + H−1,0 + γ(H1,−1 − 2H0,−1 + H−1,−1)]

∆x2(1 + 2γ)
. (14)

Lopez and Hernandez [9] define the parameter γ as

γ = 0.2 if arccos(max(|nx|),max(|ny|),max(|nz|)) > 0.8 (15)
γ = 0 if arccos(max(|nx|),max(|ny|),max(|nz|)) ≤ 0.8. (16)

The cross derivative Hxy is calculated as

Hxy =
H1,1 −H1,−1 −H−1,1 + H−1,−1

4∆x2
. (17)

Note that the condition arccos(max(|nx|),max(|ny|),max(|nz|)) > 0.8 occurs when the interface normal is not
aligned predominantly to any of the three directions, causing a loss of accuracy in the height function method.
We found that the accuracy of the computed κ can be further improved where arccos(max(|nx|),max(|ny|),max(|nz|)) >
0.95 by computing three height functions, one for each direction, by computing three curvatures associated
with each height function (12), and by taking the mean value of the three computed curvatures.

3 Results

In this section, we report the results of the performed simulations for the following uniform-density coupled
droplet/fluid flows: static droplet (2D and 3D), spherical droplet translating in a uniform flow, droplet in a
Taylor-Green vortex flow, and droplet-laden isotropic turbulence.

3.1 Static droplet

3.1.1 2D static droplet

We tested the numerical method described in Sec. 2.2 to compute the coupled fluid/droplet flow for the case
of a viscous droplet at rest in a quiescent fluid, i.e. static droplet. The droplet-at-rest case proves to be
a very good test in order to assess the characteristics of the two-phase flow solver, in particular its ability
to obtain a balance between pressure gradient and surface tension across the interface. This test-case is
relevant because the numerical solution should stay constant in time, however the so-called spurious currents
are generated in the flow field as shown in Fig. 4. For that case with a droplet resolution of 32 cells across
the diameter and ∆t/∆x = 0.01, Table 1 reports the values of the maximum spurious currents averaged over
1000 time steps as a function of the non-dimensional surface tension coefficient σ.
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σ cylinder |u|max sphere |u|max

5 7.15e-4 2.46e-3
0.5 2.46e-4 1.02e-3
0.05 7.59e-5 3.30e-4

Table 1: Time-averaged maximum spurious currents for a viscous droplet at rest for different values of the
non-dimensional surface tension coefficient, σ.

These results are consistent with those reported in the literature by [4] and [9]. Also, the magnitude of
these currents is negligible if the analytical curvature was imposed at the interface cells for computing fσ

in (8) as shown in Fig. 5.This proves that the method is consistent and a balance between pressure gradient
and surface tension holds if the curvature is exact. However, in addition to the findings of [4] and [9], we
have noted that by running the simulation for several thousands of time steps, the flow field velocities can
suddenly grow to higher values and then keep oscillating around a higher mean value. Figure 6 shows the
time history of spurious currents and pressure for the case of a 2D viscous static droplet of diameter D = 0.5
and σ = 5 at rest in a 1× 1 square domain with a 64x64 mesh resolution (circular droplet). Figure 6 shows
also the time history of the sum of the 2D velocity components U and W in the field, which is expected to
be zero if the resulting flow field was 4-fold symmetric. Since these sums are non-zero and grow in time, the
flow field is not 4-fold symmetric. In order to investigate the source of these asymmetries in the flow field
and if they were caused by the split VoF advection algorithm, we repeated the test case, this time enforcing
a 4-fold symmetry only to the VoF function, C. The results show that no asymmetries develop in the flow
field, and the spurious currents magnitude decreases in time, see Fig. 7. This proves that the magnitude of
the spurious currents grows in time in Fig. 6 because of the asymmetry in the flow that develops within the
split VoF method in the C field.

3.1.2 3D static droplet

Similar results to those described for the 2D static droplet were obtained for the 3D static (spherical) droplet.
Figures 8 and 9 show, respectively, the magnitude of the spurious currents of the solver without and with
imposed symmetry of the VoF function. In the 3D case, the symmetry was enforced by mirroring C onto the
8 different quadrants of the mesh centered at the spherical drop center (8-fold symmetry). When symmetry
is enforced on the VoF function, the spurious currents magnitude decreases in time.

Based on what we learned from the static droplet numerical tests, we modified the VoF advection al-
gorithm, trying the reduce the directionality of the 1D advection steps. Initially, the EI-EA-LE advection
steps were cycled amongst the three spatial directions in a simple way, by assigning the first EI sweep to
a different direction at each time step. We tried more complex combinations for this assignment, and this
resulted to be beneficial in delaying the growth of the spurious currents in the static drop case. This is
because the advection algorithm becomes more and more ‘isotropic’.

3.2 Spherical droplet translating in a uniform flow

In this test case, we prescribed a uniform velocity throughout the computational domain including the
interior of the droplet initially placed at the center of the computational domain. No symmetry in the VoF
distribution was enforced for this case. The results show that there are no instabilities in the case of non-zero
Weber number, e.g. when a mean droplet velocity is present. The algorithm proves to be stable, and the
spurious currents are of the order of 1% of the translating velocity, as shown in Fig. 10.

3.3 2D circular droplet in Taylor-Green vortex flow

We have then tested the numerical method with a 2D droplet in a Taylor-Green vortex flow. Figure 11 shows
the instantaneous pressure contours, streamlines and droplet/fluid interface (C = 0.5 isoline) in the coupled
droplet/Taylor-Green vortex flow at four different times. The solution is stable after several thousands of
time steps, the droplet interface remains smooth in time, and spurious velocities are undetectable in the flow
field.
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Figure 1: Total number of wisps vs number of time steps for a sphere of radius 0.15 advected in a time
reversed single-vortex field [10] with period T=2 using a mesh of 1283 grid points.

3.4 Droplet-laden isotropic turbulence

In Fig. 12, we present DNS results of fully-resolved droplet-laden incompressible decaying isotropic turbulence
at an initial Reynolds number based on Taylor length-scale of turbulence Reλ = 75 using a computational
mesh of 10243 grid points and 7000 droplets. The droplet Weber number based on the r.m.s. velocity
fluctuation of turbulence is We = 0.5, the initial droplet diameter is equal to the Taylor lenght-scale of
turbulence, and the droplet volume fraction is φ = 0.1. The curvature contours in Fig. 12 show that the
droplets curvature variations can reach and exceed 10% of the initial curvature (red and blue regions).

4 Conclusions

We have developed a projection method including a mass-conserving, wisps-free VoF method that we recently
developed [1] and the continuous surface force (CSF) model [3] according to [4] to simulate uniform-density
droplet-laden incompressible flows. We have tested the numerical method in several test cases such as the
static droplet. Such tests have helped us to improve the accuracy of the methodology by performing the EI
step of the split advection algorithm not in a standard fashion, and to evaluate the average curvature of three
computed when the arccos(max(|nx|),max(|ny|),max(|nz|)) > 0.95. Finally, we have applied the method to
a complex flow such as droplet-laden isotropic turbulence. Next, we will extend this method to variable-
density droplet-laden flows within our parallel DNS computational framework for simulating droplet-laden
isotropic turbulence.

This work was supported by the National Science Foundation CAREER Award (OCI-1054591). The
simulations were performed in part on a high-performance computer cluster called Hyak at the University of
Washington, Seattle. This research was supported in part by the National Science Foundation through the
XSEDE computational resources provided by the National Institute for Computational Sciences (NICS) at
the Oak Ridge National Laboratory, under XSEDE grant number TG-CTS100024. We specifically acknowl-
edge the assistance of the XSEDE ECSS team members, Jay Alameda and Darren Adams, of the National
Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign.
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Figure 2: Geometrical error, Eg, of the advection and reconstruction algorithm for a sphere as a function of
mesh resolution at CFL=0.1. Translation along the box diagonal, rotation and time-reversed single-vortex
flow (SVF) with period T=2 for a sphere of radius 0.15. Time-reversed Taylor-Green vortex flow (TGV)
with period T=2 for a sphere of radius 0.12. Time-reversed isotropic turbulence flow at Reλ0 = 75 (isoT)
with period T=1.
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Figure 3: L1 and L∞ curvature error norms averaged over 100 randomly placed spheres as a function of the
number of grid points per sphere diameter.

7



X Y

Z

Figure 4: Spurious currents for the viscous 2D static droplet test with WeD = 1, N = 64, D = 0.5: C = 0.5
isoline and fluid velocity vectors after 640 time steps.
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Figure 5: 2D viscous static droplet test at σ = 5, N = 64, D = 0.5 using the analytical curvature for
computing fσ in (8).
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Figure 6: 2D viscous static droplet test at σ = 5, N = 64, D = 0.5.
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Figure 7: 2D viscous static droplet test at σ = 5, N = 64, D = 0.5. 4-fold symmetry is enforced at each
time step to the VoF function, C.

9



Figure 8: 3D viscous static droplet test at σ = 5, N = 64, D = 0.5.
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Figure 9: 3D viscous static droplet test at σ = 5, N = 64, D = 0.5. 8-fold symmetry enforced to the VoF
function, C.
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Figure 10: Velocity oscillations (spurious currents) for a translating sphere along the box diagonal, as a
function of time.
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Figure 11: Instantaneous pressure contours, streamlines and droplet/fluid interface (C = 0.5 isoline) for a
droplet in the Taylor-Green vortex flow (WeD = 0.1, N = 128, D = 0.15) at four different times.
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Figure 12: Fully coupled droplet-laden decaying isotropic turbulence (Reλ = 75) laden with 7000 droplets.
C = 0.5 iso-surface with normalized curvature color contours (k/k0 where k0 is the initial curvature of
the spherical droplets) and vorticity magnitude contours (gray scale). The Weber number based on r.m.s
velocity and droplet diameter is 0.5, the volume fraction is φ = 0.1, and the droplet resolution is 32 cells
across the initial diameter. The plotted region is a 512th of the entire cubic box simulated using a mesh of
10243 grid points.
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