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∗ Cornell University, Ithaa, NY, USA.Abstrat: In this paper we present a HIghly Parallel Partile-laden �ow Solver for TurbuleneResearh (HIPPSTR). HIPPSTR is designed to perform three-dimensional diret numerial simu-lations of homogeneous turbulent �ows with inertial partiles on massively parallel arhitetures,and is the most general and e�ient multiphase �ow solver of its kind. We disuss the governingequations, parallelization strategies, time integration tehniques, and interpolation methods. Byquantifying the errors in the numerial solution, we obtain optimal parameters for a given do-main size and �ow Reynolds number. We onlude by disussing upoming large-sale parallelruns at new national superomputing enters and important impliations for the multiphase �owommunity.Keywords: Computational Fluid Dynamis, Diret Numerial Simulation, Inertial Partiles,Isotropi Turbulene.1 IntrodutionTurbulent �ows laden with inertial partiles (that is, partiles denser than the arrier �uid) are ubiquitousin both industry and the environment. Natural phenomena suh as atmospheri loud formation [1, 2, 3℄,plankton distributions in the sea [4℄, and planetesimal formation in the early universe [5, 6℄ are all in�uenedby partile-turbulene interations. Inertial partile dynamis also impat engineered systems suh as sprayombustors [7℄ and aerosol drug delivery systems [8℄. Despite extensive researh, however, open questionsremain about the distribution of these partiles in the �ow, their settling speed due to gravity, and theirollision rates, due in part to the huge separation of sales at intermediate or high Reynolds numbers.Sine inertial partile dynamis are strongly sensitive to the smallest sales in the �ow [9℄, large-eddysimulation, whih its assoiated small-sale modeling, has di�ulties representing sub-�lter partile dynam-is aurately, inluding partile lustering, whih is driven by the Kolmogorov sales. Consequently, ourinvestigations rely on the full, diret numerial simulation (DNS) of the three-dimensional Navier-Stokesequations and the Maxey & Riley equation [10℄. DNS has proven to be an extremely e�etive tool for in-vestigating inertial partile dynamis, albeit at modest values of the Reynolds number, due to the stringentomputational demands of resolving all relevant temporal and spatial sales.To enable higher resolution simulations at even higher Reynolds numbers, we have developed a HIghlyParallel, Partile-laden �ow Solver for Turbulene Researh (HIPPSTR). HIPPSTR is apable of simulatinginertial partile motion in homogeneous turbulent �ows on tens, or even hundreds of thousands of proessors.This paper is organized as follows. In �2, we show the equations governing �uid and partile motion andthe underlying assumptions of the �ow solver. We disuss the time integration and interpolation tehniquesin �3 and �4, respetively, omplete with an error analysis for optimizing ode performane. �5 then desribesthe parallelization strategy. We introdue upoming simulations with HIPPSTR in �6, and onlude in �7by disussing researh opportunities enabled by this ode and future investigations we are planning.
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2 Governing equations2.1 Fluid updateThe underlying �ow solver is based on the algorithm presented in Ref. [11℄ and summarized below. Sine ourpresent investigations are limited to the ase of isotropi turbulene, we present the solution methodologyfor this ase only.The governing equations for the �ow of an inompressible �uid are the ontinuity and Navier-Stokesequations, here presented in rotational form
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, (2)where ui is the veloity vetor (with magnitude u), ǫijk is the alternating unit symbol, ωi is the vortiityvetor, p is the pressure, ρ is the density, and ν is the kinemati visosity. This form of Navier-Stokesequations has only six nonlinear terms, as ompared to nine in the traditional Navier-Stokes equation, whihredues the expense of omputation and renders the solution method more stable.As a model for homogeneous isotropi turbulene, we onsider fully periodi �ows; that is, we assumethat the veloity �eld and the pressure are periodi in all three spatial diretions. This allows us to expressa variable φ(x, t) in terms of a Fourier series,
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φ̂(k, t) exp (Ikixi) , (3)where k denotes the wavenumber vetor, N1, N2, and N3 the number of grid points in the three Cartesiandiretions, and I the imaginary unit. φ̂(k, t) is the Fourier transform of φ(x, t), denoted as F {φ(x, t)}. Wedetermine φ̂(k, t) using the disrete forward Fourier transform
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ǫmjnF {ωjun} , (6)where k2 = kiki. Note that we have used the inompressibility of the �ow, as spei�ed by (5), to projet thepressure out of (6) (refer to Ref. [11℄ for a detailed derivation).Exat evaluation of the non-linear onvolution sum F {ωjun} with a spetral method is prohibitively ex-pensive omputationally. These sums are therefore evaluated using a pseudospetral algorithm [12℄, wherebythe veloity and vortiity are transformed from Fourier spae to physial spae, their produt is omputedin physial spae, and then the result is transformed bak into Fourier spae. This transformation betweenphysial and Fourier spae takes plae using three-dimensional fast Fourier transforms (FFT), the parallelimplementation of whih are desribed in �5. The nonlinear produts in the pseudospetral method intro-due aliasing errors whih we eliminate by means of both spherial trunation and phase-shifting (refer toAppendix A of Ref. [13℄).2.2 Low-wavenumber foringWithout external foring, the turbulent kineti energy would dissipate with time. To ahieve statistiallystationary turbulene, we introdue two di�erent forms of low-wavenumber foring that mimi turbulenegeneration in more realisti �ows with mean veloity gradients.2



2.2.1 Deterministi foring shemeThe deterministi foring sheme [14℄ �rst omputes the amount of turbulent kineti energy dissipated in agiven time step ∆t, ∆Etot(∆t). This energy is restored at the end of eah time step by reintroduing it intothe foring range between kf,min and kf,max
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, (7)where E(k, t+∆t) represents the turbulent kineti energy in a wavenumber shell with magnitude k at time
t+∆t. We typially hoose kf,min and kf,max to be in the low-wavenumber region of the spetrum, so thatour foring sheme does not ontaminate the small-sale statistis, essential for simulating sub-Kolmogorovpartiles.2.2.2 Stohasti foring shemeThe alternative foring sheme is based on a stohasti foring funtion [15℄. In this sheme, stationarity isahieved by introduing an arti�ial foring funtion, fi(k, t), into the Navier-Stokes equation. This funtionis non-zero only over the foring range between kf,min and kf,max. fi(k, t) evolves by a vetor-valued omplexOrnstein-Uhlenbek proess [15℄ as shown below
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f denotes the strength of the foring, and Wi(k, t) is the Wienerproess whose inrement dWi is joint-normal, with zero mean, and ovariane given by
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√
∆t, where αi and βj are twoindependent N (0, 1) random numbers.2.3 Partile updateThe Maxey & Riley equation [10℄ is used for simulating spherial, non-deforming partiles in the �ow. Wetake the partiles to be small (i.e., d/η ≪ 1, where d is the partile diameter, η ≡ ν3/4/ǫ1/4 is the Kolmogorovlength sale, and ǫ is the average turbulent kineti energy dissipation rate) and heavy (i.e., ρp/ρ ≫ 1, where

ρp and ρ are the densities of the partiles and �uid, respetively). We also assume that the partiles aresubjeted to only linear drag fores, whih is valid when the partile Reynolds number Rep ≡ ||u(X)−v||d
ν < 1.Here, u(X) denotes the undisturbed �uid veloity u of a partile with enter position X, and v denotes thepartile veloity. Under these assumptions, the Maxey & Riley equation simpli�es to a system of ordinarydi�erential equations for the position and veloity of a given partile
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18ν is the partile response time and g is the gravitational aeleration vetor. Note thatthe numerial solution of (10) and (11) requires an interpolation of grid values of the �uid veloity to theloation at the enter of eah partile. The interpolation methods used are disussed in �4.3



The in�uene of partiles on the ontinuity and momentum equations is negleted due to the low volume(O(10−6)) and mass (O(10−3)) loadings [16, 17℄, and therefore we onsider only one-way oupling between the�ow �eld and the partiles. All partiles are represented as point-partiles, and ollisions are negleted [18℄.3 Time integration3.1 Fluid updateTo alulate the temporal evolution of the �uid, we introdue the integrating fator eνk2t to re-express (6)as
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. (15)To avoid onvetive instabilities, the time step ∆t is hosen to be su�iently small to satisfy the Courantondition [19℄,
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. 0.5, (16)where umax is the maximum veloity magnitude in the domain, and ∆xi is the grid spaing in the ithoordinate diretion.3.2 Partile updateInertial partiles introdue another time sale into the simulation, namely the partile response time τp,whih is independent of the �uid time step ∆t. For the ase where τp ≪ ∆t, the system de�ned by(10) and (11) is sti�, and traditional expliit Runge-Kutta shemes require an extremely small time step fornumerial auray and stability. Note that updating the partile equations impliitly would be prohibitivelyexpensive, sine it is neessarily an iterative proess involving multiple interpolations of the �uid veloity tothe urrent partile loation. The standard expliit Runge-Kutta method, under these irumstanes, wouldrequire using a smaller time step for the partiles than for the �uid, inreasing the omputational expenseof the simulation. Additionally, inertial partile simulations may involve a spetrum of τp, whih vary fromproessor to proessor, ausing the system to run at the speed of the slowest proessor (i.e., the proessorwith the highest load).We have overome these limitations by formulating an alternate seond-order sheme that works wellover the whole range of τp (partiularly for τp ≪ ∆t), while still using the �uid time step. The numerialsheme is based on `exponential integrators' [20℄. Exponential integrators are a broad lass of methods thattreat the linear term in (11) exatly and the inhomogeneous part using an exponential quadrature. Based4



on the results in Ref. [20℄, we pattern a seond-order update of (11) as follows:
v(t0 +∆t) = e−∆t/τpv(t0) + w1u[X(t0)] + w2u[X(t0) + v(t0)∆t] + (1− e−∆t/τp)τpg, (17)where the weights w1 and w2 are given by
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. (19)It is important to note that as τp → 0, this expliit sheme reovers the orret limit for inertialess passivetraers. Over the range of τp and ∆t generally onsidered in our simulations, we have found the seond-orderexponential integrator method to be more aurate than the standard RK2 and up to an order of magnitudefaster. We disuss the errors inurred by the exponential integrator method below in �4.4 InterpolationAs disussed in �2.3, the solution of (10) and (11) requires an interpolation of grid values of the �uid veloityto the partile enters. In priniple, this interpolation ould be done exatly (provided that the grid issu�iently �ne to apture all sales of motion) using a spetral interpolation [21℄. For a typial simulationinvolving at least a million partiles, however, suh an interpolation tehnique is prohibitively expensive.To ompute the �uid veloities at the partile enters, we have introdued several di�erent interpolationmethods into our ode. They inlude linear, Lagrangian [22℄, Hermite [23℄, shape funtion [21℄, and B-spline interpolation [24℄. The B-spline interpolation sheme, whih is optimized for spetral simulations [24℄,provided the best trade-o� between omputational expense and auray.The number of points used to onstrut the B-spline interpolant was varied between 4 and 10, andthe RMS errors of the interpolated veloities were omputed. The error analysis was performed on tworepresentative grid sizes, 1283 and 5123. The small-sale resolution of the grids is spei�ed by kmaxη [25℄,where kmax = N

√
2/3 is the maximum resolved wavenumbermagnitude. For eah grid size, we vary the small-sale resolution, from kmaxη = 1 (marginal small-sale resolution) to kmaxη = 2 (good small-sale resolution).In all ases, we determined the `exat' values of the partile veloities from a spetral interpolation, andde�ned the veloity error as the RMS di�erene between the veloities obtained from spetral and B-splineinterpolations at a given time.To determine the optimal number of spline points, we ompare the interpolation error to the loal time-stepping error. Sine we antiipate that the time-stepping error will be a funtion of the ratio ∆t/τp (refer to�3.2), we hoose two di�erent values of τp for a �xed value of ∆t: τp = 0.1τη and τp = τη, where τη ≡

√

ν/ǫ isthe Kolmogorov time sale. (Note that the ratio τp/τη is usually alled the Stokes number St of a partile.)To estimate the time-stepping error, we take the `exat' result to be the partile veloities after ten veloitysteps (using spetral interpolation) with a Courant number of 0.05. The `approximate' result is the partileveloities after single time step (again using spetral interpolation) with a Courant number of 0.5.The errors for eah ase are presented in �gure 1, normalized by the RMS �uid veloity, u′. From theseresults, for a given run, we hoose the number of spline points so that the interpolation and time-steppingerrors are of the same order of magnitude, thereby de�ning an optimal interpolation sheme for a given gridsize and resolution.5 Parallelization5.1 Domain deompositionThe solution domain is deomposed using two-dimensional (`penil') domain deomposition. Fast Fouriertransforms (FFTs), required to advane the �uid veloity, are performed using the P3DFFT library [26℄.P3DFFT uses standard FFT libraries (suh as FFTW [27℄ and ESSL [28℄) to ompute the three-dimensional5
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τp/τη = 1Figure 1: Interpolation error and time-stepping error for di�erent numbers of spline points (4 to 10), partileresponse times (τp/τη = 0.1, 1), small-sale resolution (kmaxη = 1, 1.5, 2), and grid points (1283, 5123). Allerrors are normalized by the RMS �uid veloity, u′.

Figure 2: A representative two-dimensional deomposition. The domain (shown on the left) is deomposedinto a series of `penils' (shown on the right) for parallelization over four proessors.FFT of the veloity or pressure distributed over the two-dimensional array of proessors. A representativetwo-dimensional deomposition on four proessors is shown in �gure 2. HIPPSTR uses a distributed memorysetup, and all neessary data are exhanged between proessors using the Message Passing Interfae (MPI).A previous version of our ode utilized one-dimensional (`plane') parallel domain deomposition. Usingthis parallelization strategy, a domain with N3 grid points an be parallelized on at most N proessors. Forlarge values of N , memory restritions limited the grid sizes (and hene the Reynolds numbers) we wereable to simulate. With one-dimensional domain deomposition, the largest simulation we ould ahieve was
10243 grid points, yielding only modest Reynolds numbers Rλ . 400, where Rλ ≡ 2Etot

√

5/(3νǫ) and Etotis the turbulent kineti energy.Two-dimensional domain deomposition allows up to N2 proessors for a simulation with N3 grid points.This new parallelization strategy essentially eliminates the memory limitations and inreases the range ofReynolds numbers we an ahieve. We disuss upoming high-Reynolds-number simulations using HIPPSTRin �6.1.5.2 Parallel salingIn �gure 3, we show timing data for simulations with a total of N3 grid points and (N/4)3 partiles asa funtion of the number of proessors M . The wall-lok time per step t is normalized by N3log2N , theexpeted saling for a three-dimensional FFT. The ideal saling ase (slope −1 line) is shown for omparison.All timings were performed on the omputing luster `Jaguar' at Oak Ridge National Laboratory (ORNL).We ahieve good saling on ORNL Jaguar for the largest problem sizes. For a domain with 20483 gridpoints, for example, we observe 85% strong saling when moving from 1024 proessors to 4096 proessors,6
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Rλ 650Cores 16,384Core-hours 19 millionDuration 49 daysand nearly 60% strong saling on up to 16, 384 proessors.6 Future workOur primary goals for HIPPSTR are twofold: to perform massively parallel simulations at national super-omputing enters, and to make these simulation results publily available.6.1 Upoming massively parallel simulationsAs early users on the superomputer `Yellowstone' at the National Center for Atmospheri Researh (NCAR),we will perform a 20483 simulation with over two billion inertial partiles on 16, 384 proessors. This will bethe largest suh simulation ever performed in the United States and will provide unpreedented informationabout partile-turbulene interations in atmospheri louds. From the simulation results, we hope to bet-ter understand droplet dynamis in high-Reynolds-number turbulene and thereby answer open questionsregarding loud evolution and preipitation [1, 2, 3℄. The omputing requirements for this simulation aresummarized in table 1.6.2 Dissemination of simulation resultsSine the simulation desribed in �6.1 is unfeasible for most researhers, we will make the results of ourstudy publily aessible via an internet database. Two possible options are to make the data available for7
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