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t: In this paper we present a HIghly Parallel Parti
le-laden �ow Solver for Turbulen
eResear
h (HIPPSTR). HIPPSTR is designed to perform three-dimensional dire
t numeri
al simu-lations of homogeneous turbulent �ows with inertial parti
les on massively parallel ar
hite
tures,and is the most general and e�
ient multiphase �ow solver of its kind. We dis
uss the governingequations, parallelization strategies, time integration te
hniques, and interpolation methods. Byquantifying the errors in the numeri
al solution, we obtain optimal parameters for a given do-main size and �ow Reynolds number. We 
on
lude by dis
ussing up
oming large-s
ale parallelruns at new national super
omputing 
enters and important impli
ations for the multiphase �ow
ommunity.Keywords: Computational Fluid Dynami
s, Dire
t Numeri
al Simulation, Inertial Parti
les,Isotropi
 Turbulen
e.1 Introdu
tionTurbulent �ows laden with inertial parti
les (that is, parti
les denser than the 
arrier �uid) are ubiquitousin both industry and the environment. Natural phenomena su
h as atmospheri
 
loud formation [1, 2, 3℄,plankton distributions in the sea [4℄, and planetesimal formation in the early universe [5, 6℄ are all in�uen
edby parti
le-turbulen
e intera
tions. Inertial parti
le dynami
s also impa
t engineered systems su
h as spray
ombustors [7℄ and aerosol drug delivery systems [8℄. Despite extensive resear
h, however, open questionsremain about the distribution of these parti
les in the �ow, their settling speed due to gravity, and their
ollision rates, due in part to the huge separation of s
ales at intermediate or high Reynolds numbers.Sin
e inertial parti
le dynami
s are strongly sensitive to the smallest s
ales in the �ow [9℄, large-eddysimulation, whi
h its asso
iated small-s
ale modeling, has di�
ulties representing sub-�lter parti
le dynam-i
s a

urately, in
luding parti
le 
lustering, whi
h is driven by the Kolmogorov s
ales. Consequently, ourinvestigations rely on the full, dire
t numeri
al simulation (DNS) of the three-dimensional Navier-Stokesequations and the Maxey & Riley equation [10℄. DNS has proven to be an extremely e�e
tive tool for in-vestigating inertial parti
le dynami
s, albeit at modest values of the Reynolds number, due to the stringent
omputational demands of resolving all relevant temporal and spatial s
ales.To enable higher resolution simulations at even higher Reynolds numbers, we have developed a HIghlyParallel, Parti
le-laden �ow Solver for Turbulen
e Resear
h (HIPPSTR). HIPPSTR is 
apable of simulatinginertial parti
le motion in homogeneous turbulent �ows on tens, or even hundreds of thousands of pro
essors.This paper is organized as follows. In �2, we show the equations governing �uid and parti
le motion andthe underlying assumptions of the �ow solver. We dis
uss the time integration and interpolation te
hniquesin �3 and �4, respe
tively, 
omplete with an error analysis for optimizing 
ode performan
e. �5 then des
ribesthe parallelization strategy. We introdu
e up
oming simulations with HIPPSTR in �6, and 
on
lude in �7by dis
ussing resear
h opportunities enabled by this 
ode and future investigations we are planning.
1
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2 Governing equations2.1 Fluid updateThe underlying �ow solver is based on the algorithm presented in Ref. [11℄ and summarized below. Sin
e ourpresent investigations are limited to the 
ase of isotropi
 turbulen
e, we present the solution methodologyfor this 
ase only.The governing equations for the �ow of an in
ompressible �uid are the 
ontinuity and Navier-Stokesequations, here presented in rotational form
∂ui

∂xi
= 0, (1)

∂ui

∂t
+ ǫijkωjuk = −∂

(

p/ρ+ 1
2u

2
)

∂xi
+ ν

∂2ui

∂xj∂xj
, (2)where ui is the velo
ity ve
tor (with magnitude u), ǫijk is the alternating unit symbol, ωi is the vorti
ityve
tor, p is the pressure, ρ is the density, and ν is the kinemati
 vis
osity. This form of Navier-Stokesequations has only six nonlinear terms, as 
ompared to nine in the traditional Navier-Stokes equation, whi
hredu
es the expense of 
omputation and renders the solution method more stable.As a model for homogeneous isotropi
 turbulen
e, we 
onsider fully periodi
 �ows; that is, we assumethat the velo
ity �eld and the pressure are periodi
 in all three spatial dire
tions. This allows us to expressa variable φ(x, t) in terms of a Fourier series,

φ(x, t) =
1

N1N2N3

∑

k

φ̂(k, t) exp (Ikixi) , (3)where k denotes the wavenumber ve
tor, N1, N2, and N3 the number of grid points in the three Cartesiandire
tions, and I the imaginary unit. φ̂(k, t) is the Fourier transform of φ(x, t), denoted as F {φ(x, t)}. Wedetermine φ̂(k, t) using the dis
rete forward Fourier transform
φ̂(k, t) =

∑

x

φ(x, t) exp (−Ikixi) . (4)Applying this transform to (1) and (2), we obtain
kiûi = 0, (5)

[

∂

∂t
+ νk2

]

ûi =

(

−δim +
kikm
k2

)

ǫmjnF {ωjun} , (6)where k2 = kiki. Note that we have used the in
ompressibility of the �ow, as spe
i�ed by (5), to proje
t thepressure out of (6) (refer to Ref. [11℄ for a detailed derivation).Exa
t evaluation of the non-linear 
onvolution sum F {ωjun} with a spe
tral method is prohibitively ex-pensive 
omputationally. These sums are therefore evaluated using a pseudospe
tral algorithm [12℄, wherebythe velo
ity and vorti
ity are transformed from Fourier spa
e to physi
al spa
e, their produ
t is 
omputedin physi
al spa
e, and then the result is transformed ba
k into Fourier spa
e. This transformation betweenphysi
al and Fourier spa
e takes pla
e using three-dimensional fast Fourier transforms (FFT), the parallelimplementation of whi
h are des
ribed in �5. The nonlinear produ
ts in the pseudospe
tral method intro-du
e aliasing errors whi
h we eliminate by means of both spheri
al trun
ation and phase-shifting (refer toAppendix A of Ref. [13℄).2.2 Low-wavenumber for
ingWithout external for
ing, the turbulent kineti
 energy would dissipate with time. To a
hieve statisti
allystationary turbulen
e, we introdu
e two di�erent forms of low-wavenumber for
ing that mimi
 turbulen
egeneration in more realisti
 �ows with mean velo
ity gradients.2



2.2.1 Deterministi
 for
ing s
hemeThe deterministi
 for
ing s
heme [14℄ �rst 
omputes the amount of turbulent kineti
 energy dissipated in agiven time step ∆t, ∆Etot(∆t). This energy is restored at the end of ea
h time step by reintrodu
ing it intothe for
ing range between kf,min and kf,max

û(k, t+∆t) = û(k, t+∆t)

√

√

√

√

√

√

1 +
∆Etot(∆t)

∫ kf,max

kf,min

E(k, t+∆t)dk

, (7)where E(k, t+∆t) represents the turbulent kineti
 energy in a wavenumber shell with magnitude k at time
t+∆t. We typi
ally 
hoose kf,min and kf,max to be in the low-wavenumber region of the spe
trum, so thatour for
ing s
heme does not 
ontaminate the small-s
ale statisti
s, essential for simulating sub-Kolmogorovparti
les.2.2.2 Sto
hasti
 for
ing s
hemeThe alternative for
ing s
heme is based on a sto
hasti
 for
ing fun
tion [15℄. In this s
heme, stationarity isa
hieved by introdu
ing an arti�
ial for
ing fun
tion, fi(k, t), into the Navier-Stokes equation. This fun
tionis non-zero only over the for
ing range between kf,min and kf,max. fi(k, t) evolves by a ve
tor-valued 
omplexOrnstein-Uhlenbe
k pro
ess [15℄ as shown below

dfi(k, t) = −fi(k, t)

Tf
dt+

√

2σ2
f

Tf
dWi(k, t), ∀k � kf,min < k ≤ kf,max (8)where Tf is the time-s
ale of for
ing, σ2

f denotes the strength of the for
ing, and Wi(k, t) is the Wienerpro
ess whose in
rement dWi is joint-normal, with zero mean, and 
ovarian
e given by
〈dWidW

∗
j 〉 = ∆tδij . (9)While implementing on a 
omputer, we set the in
rement dWi = (αi + Iβi)

√
∆t, where αi and βj are twoindependent N (0, 1) random numbers.2.3 Parti
le updateThe Maxey & Riley equation [10℄ is used for simulating spheri
al, non-deforming parti
les in the �ow. Wetake the parti
les to be small (i.e., d/η ≪ 1, where d is the parti
le diameter, η ≡ ν3/4/ǫ1/4 is the Kolmogorovlength s
ale, and ǫ is the average turbulent kineti
 energy dissipation rate) and heavy (i.e., ρp/ρ ≫ 1, where

ρp and ρ are the densities of the parti
les and �uid, respe
tively). We also assume that the parti
les aresubje
ted to only linear drag for
es, whi
h is valid when the parti
le Reynolds number Rep ≡ ||u(X)−v||d
ν < 1.Here, u(X) denotes the undisturbed �uid velo
ity u of a parti
le with 
enter position X, and v denotes theparti
le velo
ity. Under these assumptions, the Maxey & Riley equation simpli�es to a system of ordinarydi�erential equations for the position and velo
ity of a given parti
le

dX

dt
= v, (10)

dv

dt
=

u(X) − v

τp
+ g, (11)where τp ≡ ρp

ρ
d2

18ν is the parti
le response time and g is the gravitational a

eleration ve
tor. Note thatthe numeri
al solution of (10) and (11) requires an interpolation of grid values of the �uid velo
ity to thelo
ation at the 
enter of ea
h parti
le. The interpolation methods used are dis
ussed in �4.3



The in�uen
e of parti
les on the 
ontinuity and momentum equations is negle
ted due to the low volume(O(10−6)) and mass (O(10−3)) loadings [16, 17℄, and therefore we 
onsider only one-way 
oupling between the�ow �eld and the parti
les. All parti
les are represented as point-parti
les, and 
ollisions are negle
ted [18℄.3 Time integration3.1 Fluid updateTo 
al
ulate the temporal evolution of the �uid, we introdu
e the integrating fa
tor eνk2t to re-express (6)as
∂

∂t

[

ûie
νk2t

]

= eνk
2t

(

−δim +
kikm
k2

)

ǫmjnF {ωjun} . (12)Integrating (12) from time t0 to time t0 +∆t, we obtain
ûi(t0 +∆t) = ûi(t0)e

−νk2∆t + e−(t0+∆t)νk2

(

−δim +
kikm
k2

)

ǫmjn

∫ t0+∆t

t0

eνk
2tF {ωjun} dt. (13)A se
ond-order Runge-Kutta method (RK2) is used to approximate the integral in (13), yielding

∫ t0+∆t

t0

eνk
2tF {ωjun} dt ≈

∆t

2

[

eνk
2t0F {ωj(t0)un(t0)} + eνk

2(t0+∆t)F {ωj(t0 +∆t)un(t0 +∆t)}
]

. (14)Therefore, we simplify (13) and obtain
ûi(t0 +∆t) = ûi(t0)e

−νk2∆t +
∆t

2

(

−δim +
kikm
k2

)

ǫmjn

×
[

e−νk2∆tF {ωj(t0)un(t0)}+ F {ωj(t0 +∆t)un(t0 +∆t)}
]

. (15)To avoid 
onve
tive instabilities, the time step ∆t is 
hosen to be su�
iently small to satisfy the Courant
ondition [19℄,
umax∆t

√
3

min(∆x1,∆x2,∆x3)
. 0.5, (16)where umax is the maximum velo
ity magnitude in the domain, and ∆xi is the grid spa
ing in the ith
oordinate dire
tion.3.2 Parti
le updateInertial parti
les introdu
e another time s
ale into the simulation, namely the parti
le response time τp,whi
h is independent of the �uid time step ∆t. For the 
ase where τp ≪ ∆t, the system de�ned by(10) and (11) is sti�, and traditional expli
it Runge-Kutta s
hemes require an extremely small time step fornumeri
al a

ura
y and stability. Note that updating the parti
le equations impli
itly would be prohibitivelyexpensive, sin
e it is ne
essarily an iterative pro
ess involving multiple interpolations of the �uid velo
ity tothe 
urrent parti
le lo
ation. The standard expli
it Runge-Kutta method, under these 
ir
umstan
es, wouldrequire using a smaller time step for the parti
les than for the �uid, in
reasing the 
omputational expenseof the simulation. Additionally, inertial parti
le simulations may involve a spe
trum of τp, whi
h vary frompro
essor to pro
essor, 
ausing the system to run at the speed of the slowest pro
essor (i.e., the pro
essorwith the highest load).We have over
ome these limitations by formulating an alternate se
ond-order s
heme that works wellover the whole range of τp (parti
ularly for τp ≪ ∆t), while still using the �uid time step. The numeri
als
heme is based on `exponential integrators' [20℄. Exponential integrators are a broad 
lass of methods thattreat the linear term in (11) exa
tly and the inhomogeneous part using an exponential quadrature. Based4



on the results in Ref. [20℄, we pattern a se
ond-order update of (11) as follows:
v(t0 +∆t) = e−∆t/τpv(t0) + w1u[X(t0)] + w2u[X(t0) + v(t0)∆t] + (1− e−∆t/τp)τpg, (17)where the weights w1 and w2 are given by

w1 ≡
(

∆t

τp

)[

ϕ1

(

−∆t

τp

)

− ϕ2

(

−∆t

τp

)]

, w2 ≡
(

∆t

τp

)

ϕ2

(

−∆t

τp

)

, (18)and
ϕ1(z) ≡

ez − 1

z
, ϕ2(z) ≡

ez − z − 1

z2
. (19)It is important to note that as τp → 0, this expli
it s
heme re
overs the 
orre
t limit for inertialess passivetra
ers. Over the range of τp and ∆t generally 
onsidered in our simulations, we have found the se
ond-orderexponential integrator method to be more a

urate than the standard RK2 and up to an order of magnitudefaster. We dis
uss the errors in
urred by the exponential integrator method below in �4.4 InterpolationAs dis
ussed in �2.3, the solution of (10) and (11) requires an interpolation of grid values of the �uid velo
ityto the parti
le 
enters. In prin
iple, this interpolation 
ould be done exa
tly (provided that the grid issu�
iently �ne to 
apture all s
ales of motion) using a spe
tral interpolation [21℄. For a typi
al simulationinvolving at least a million parti
les, however, su
h an interpolation te
hnique is prohibitively expensive.To 
ompute the �uid velo
ities at the parti
le 
enters, we have introdu
ed several di�erent interpolationmethods into our 
ode. They in
lude linear, Lagrangian [22℄, Hermite [23℄, shape fun
tion [21℄, and B-spline interpolation [24℄. The B-spline interpolation s
heme, whi
h is optimized for spe
tral simulations [24℄,provided the best trade-o� between 
omputational expense and a

ura
y.The number of points used to 
onstru
t the B-spline interpolant was varied between 4 and 10, andthe RMS errors of the interpolated velo
ities were 
omputed. The error analysis was performed on tworepresentative grid sizes, 1283 and 5123. The small-s
ale resolution of the grids is spe
i�ed by kmaxη [25℄,where kmax = N

√
2/3 is the maximum resolved wavenumbermagnitude. For ea
h grid size, we vary the small-s
ale resolution, from kmaxη = 1 (marginal small-s
ale resolution) to kmaxη = 2 (good small-s
ale resolution).In all 
ases, we determined the `exa
t' values of the parti
le velo
ities from a spe
tral interpolation, andde�ned the velo
ity error as the RMS di�eren
e between the velo
ities obtained from spe
tral and B-splineinterpolations at a given time.To determine the optimal number of spline points, we 
ompare the interpolation error to the lo
al time-stepping error. Sin
e we anti
ipate that the time-stepping error will be a fun
tion of the ratio ∆t/τp (refer to�3.2), we 
hoose two di�erent values of τp for a �xed value of ∆t: τp = 0.1τη and τp = τη, where τη ≡

√

ν/ǫ isthe Kolmogorov time s
ale. (Note that the ratio τp/τη is usually 
alled the Stokes number St of a parti
le.)To estimate the time-stepping error, we take the `exa
t' result to be the parti
le velo
ities after ten velo
itysteps (using spe
tral interpolation) with a Courant number of 0.05. The `approximate' result is the parti
levelo
ities after single time step (again using spe
tral interpolation) with a Courant number of 0.5.The errors for ea
h 
ase are presented in �gure 1, normalized by the RMS �uid velo
ity, u′. From theseresults, for a given run, we 
hoose the number of spline points so that the interpolation and time-steppingerrors are of the same order of magnitude, thereby de�ning an optimal interpolation s
heme for a given gridsize and resolution.5 Parallelization5.1 Domain de
ompositionThe solution domain is de
omposed using two-dimensional (`pen
il') domain de
omposition. Fast Fouriertransforms (FFTs), required to advan
e the �uid velo
ity, are performed using the P3DFFT library [26℄.P3DFFT uses standard FFT libraries (su
h as FFTW [27℄ and ESSL [28℄) to 
ompute the three-dimensional5
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τp/τη = 1Figure 1: Interpolation error and time-stepping error for di�erent numbers of spline points (4 to 10), parti
leresponse times (τp/τη = 0.1, 1), small-s
ale resolution (kmaxη = 1, 1.5, 2), and grid points (1283, 5123). Allerrors are normalized by the RMS �uid velo
ity, u′.

Figure 2: A representative two-dimensional de
omposition. The domain (shown on the left) is de
omposedinto a series of `pen
ils' (shown on the right) for parallelization over four pro
essors.FFT of the velo
ity or pressure distributed over the two-dimensional array of pro
essors. A representativetwo-dimensional de
omposition on four pro
essors is shown in �gure 2. HIPPSTR uses a distributed memorysetup, and all ne
essary data are ex
hanged between pro
essors using the Message Passing Interfa
e (MPI).A previous version of our 
ode utilized one-dimensional (`plane') parallel domain de
omposition. Usingthis parallelization strategy, a domain with N3 grid points 
an be parallelized on at most N pro
essors. Forlarge values of N , memory restri
tions limited the grid sizes (and hen
e the Reynolds numbers) we wereable to simulate. With one-dimensional domain de
omposition, the largest simulation we 
ould a
hieve was
10243 grid points, yielding only modest Reynolds numbers Rλ . 400, where Rλ ≡ 2Etot

√

5/(3νǫ) and Etotis the turbulent kineti
 energy.Two-dimensional domain de
omposition allows up to N2 pro
essors for a simulation with N3 grid points.This new parallelization strategy essentially eliminates the memory limitations and in
reases the range ofReynolds numbers we 
an a
hieve. We dis
uss up
oming high-Reynolds-number simulations using HIPPSTRin �6.1.5.2 Parallel s
alingIn �gure 3, we show timing data for simulations with a total of N3 grid points and (N/4)3 parti
les asa fun
tion of the number of pro
essors M . The wall-
lo
k time per step t is normalized by N3log2N , theexpe
ted s
aling for a three-dimensional FFT. The ideal s
aling 
ase (slope −1 line) is shown for 
omparison.All timings were performed on the 
omputing 
luster `Jaguar' at Oak Ridge National Laboratory (ORNL).We a
hieve good s
aling on ORNL Jaguar for the largest problem sizes. For a domain with 20483 gridpoints, for example, we observe 85% strong s
aling when moving from 1024 pro
essors to 4096 pro
essors,6



10
1

10
2

10
3

10
4

10
5

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

M

t
(s

)
N

3
lo

g
2
N

 

 

N = 256
N = 512
N = 1024
N = 2048
N = 4096
Slope − 1 LineFigure 3: Parallel s
aling on ORNL Jaguar for grids of size N3 with (N/4)3 parti
les on M pro
essors. Thewall-
lo
k time per step t is normalized by N3log2N , the expe
ted s
aling for a three-dimensional FFT.Table 1: Computing requirements for an up
oming simulation on NCAR Yellowstone using HIPPSTR.Grid Points 20483Parti
les 2.5 billion

Rλ 650Cores 16,384Core-hours 19 millionDuration 49 daysand nearly 60% strong s
aling on up to 16, 384 pro
essors.6 Future workOur primary goals for HIPPSTR are twofold: to perform massively parallel simulations at national super-
omputing 
enters, and to make these simulation results publi
ly available.6.1 Up
oming massively parallel simulationsAs early users on the super
omputer `Yellowstone' at the National Center for Atmospheri
 Resear
h (NCAR),we will perform a 20483 simulation with over two billion inertial parti
les on 16, 384 pro
essors. This will bethe largest su
h simulation ever performed in the United States and will provide unpre
edented informationabout parti
le-turbulen
e intera
tions in atmospheri
 
louds. From the simulation results, we hope to bet-ter understand droplet dynami
s in high-Reynolds-number turbulen
e and thereby answer open questionsregarding 
loud evolution and pre
ipitation [1, 2, 3℄. The 
omputing requirements for this simulation aresummarized in table 1.6.2 Dissemination of simulation resultsSin
e the simulation des
ribed in �6.1 is unfeasible for most resear
hers, we will make the results of ourstudy publi
ly a

essible via an internet database. Two possible options are to make the data available for7



dire
t download (analagous to the iCFDdatabase [29℄), or for remote analysis through user-
reated s
ripts(analagous to the JHU turbulen
e database 
luster [30, 31℄).7 Con
lusionWe have presented a highly parallel, pseudospe
tral 
ode ideally suited for the dire
t numeri
al simulation ofparti
le-laden turbulen
e. HIPPSTR, the most e�
ient and general multiphase �ow 
ode of its kind, utilizestwo-dimensional parallel domain de
omposition, Runge-Kutta and exponential-integral time-stepping, anda

urate and e�
ient B-spline velo
ity interpolation methods. All of these methods are sele
ted and tunedfor optimal performan
e on massively parallel ar
hite
tures. HIPPSTR thus a
hieves good parallel s
alingon O(105) 
ores, making it ideal for high-Reynolds-number simulations of parti
le-laden turbulen
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