Seventh International Conference on ICCFD7-1505
Computational Fluid Dynamics (ICCFDT),
Big Island, Hawaii, July 9-13, 2012

Massively parallel simulations of inertial particles in
high-Reynolds-number turbulence

Peter J. Ireland*, T. Vaithianathan* and Lance R. Collins*
Corresponding author: pji22@cornell.edu

* Cornell University, [thaca, NY, USA.

Abstract: In this paper we present a Hlghly Parallel Particle-laden flow Solver for Turbulence
Research (HIPPSTR). HIPPSTR is designed to perform three-dimensional direct numerical simu-
lations of homogeneous turbulent flows with inertial particles on massively parallel architectures,
and is the most general and efficient multiphase flow solver of its kind. We discuss the governing
equations, parallelization strategies, time integration techniques, and interpolation methods. By
quantifying the errors in the numerical solution, we obtain optimal parameters for a given do-
main size and flow Reynolds number. We conclude by discussing upcoming large-scale parallel
runs at new national supercomputing centers and important implications for the multiphase flow
community.

Keywords: Computational Fluid Dynamics, Direct Numerical Simulation, Inertial Particles,
Isotropic Turbulence.

1 Introduction

Turbulent flows laden with inertial particles (that is, particles denser than the carrier fluid) are ubiquitous
in both industry and the environment. Natural phenomena such as atmospheric cloud formation [1, 2, 3],
plankton distributions in the sea [4], and planetesimal formation in the early universe [5, 6] are all influenced
by particle-turbulence interactions. Inertial particle dynamics also impact engineered systems such as spray
combustors [7] and aerosol drug delivery systems [8]. Despite extensive research, however, open questions
remain about the distribution of these particles in the flow, their settling speed due to gravity, and their
collision rates, due in part to the huge separation of scales at intermediate or high Reynolds numbers.

Since inertial particle dynamics are strongly sensitive to the smallest scales in the flow [9], large-eddy
simulation, which its associated small-scale modeling, has difficulties representing sub-filter particle dynam-
ics accurately, including particle clustering, which is driven by the Kolmogorov scales. Consequently, our
investigations rely on the full, direct numerical simulation (DNS) of the three-dimensional Navier-Stokes
equations and the Maxey & Riley equation [10]. DNS has proven to be an extremely effective tool for in-
vestigating inertial particle dynamics, albeit at modest values of the Reynolds number, due to the stringent
computational demands of resolving all relevant temporal and spatial scales.

To enable higher resolution simulations at even higher Reynolds numbers, we have developed a HIghly
Parallel, Particle-laden flow Solver for Turbulence Research (HIPPSTR). HIPPSTR is capable of simulating
inertial particle motion in homogeneous turbulent flows on tens, or even hundreds of thousands of processors.

This paper is organized as follows. In §2, we show the equations governing fluid and particle motion and
the underlying assumptions of the flow solver. We discuss the time integration and interpolation techniques
in §3 and §4, respectively, complete with an error analysis for optimizing code performance. §5 then describes
the parallelization strategy. We introduce upcoming simulations with HIPPSTR in §6, and conclude in §7
by discussing research opportunities enabled by this code and future investigations we are planning.

2 Governing equations

2.1 Fluid update

The underlying flow solver is based on the algorithm presented in Ref. [11] and summarized below. Since our
present investigations are limited to the case of isotropic turbulence, we present the solution methodology
for this case only.

The governing equations for the flow of an incompressible fluid are the continuity and Navier-Stokes
equations, here presented in rotational form

8’U,i -
=0, &)
_ 9 1,2 2,
%‘Feijkwjuk:— (p/p+ U) +u 0“u; (2)

ot 6:101- al'j al'j ’

where u; is the velocity vector (with magnitude u), €55 is the alternating unit symbol, w; is the vorticity
vector, p is the pressure, p is the density, and v is the kinematic viscosity. This form of Navier-Stokes
equations has only six nonlinear terms, as compared to nine in the traditional Navier-Stokes equation, which
reduces the expense of computation and renders the solution method more stable.

As a model for homogeneous isotropic turbulence, we consider fully periodic flows; that is, we assume
that the velocity field and the pressure are periodic in all three spatial directions. This allows us to express
a variable ¢(x,t) in terms of a Fourier series,

1

o = v N, > ok, t) exp (Tkii), (3)
k

where k denotes the wavenumber vector, N1, N2, and N3 the number of grid points in the three Cartesian
directions, and I the imaginary unit. ¢(k,¢) is the Fourier transform of ¢(x,t), denoted as F {¢(x,t)}. We
determine ¢(k,t) using the discrete forward Fourier transform

bk, t) = Z o(x,t) exp (—Tk;z;) . (4)
Applying this transform to (1) and (2), we obtain
kit = 0, (5)
0 ~ kzkm
|:a =+ Vk2:| U; = (_5im + ?> ijn]: {Wjun}a (6)

where k% = k;k;. Note that we have used the incompressibility of the flow, as specified by (5), to project the
pressure out of (6) (refer to Ref. [11] for a detailed derivation).

Exact evaluation of the non-linear convolution sum F {w;uy,} with a spectral method is prohibitively ex-
pensive computationally. These sums are therefore evaluated using a pseudospectral algorithm [12], whereby
the velocity and vorticity are transformed from Fourier space to physical space, their product is computed
in physical space, and then the result is transformed back into Fourier space. This transformation between
physical and Fourier space takes place using three-dimensional fast Fourier transforms (FFT), the parallel
implementation of which are described in §5. The nonlinear products in the pseudospectral method intro-
duce aliasing errors which we eliminate by means of both spherical truncation and phase-shifting (refer to
Appendix A of Ref. [13]).

2.2 Low-wavenumber forcing

Without external forcing, the turbulent kinetic energy would dissipate with time. To achieve statistically
stationary turbulence, we introduce two different forms of low-wavenumber forcing that mimic turbulence
generation in more realistic flows with mean velocity gradients.

2.2.1 Deterministic forcing scheme

The deterministic forcing scheme [14] first computes the amount of turbulent kinetic energy dissipated in a
given time step At, AF;(At). This energy is restored at the end of each time step by reintroducing it into
the forcing range between kf min and kf max

AEqoi (At)

(k,t + At) = a(k,t + At) |1+ : (7)

kf,max
/ E(k,t + At)dk

kf,min

where E(k,t + At) represents the turbulent kinetic energy in a wavenumber shell with magnitude & at time
t + At. We typically choose kf min and kf max to be in the low-wavenumber region of the spectrum, so that
our forcing scheme does not contaminate the small-scale statistics, essential for simulating sub-Kolmogorov
particles.

2.2.2 Stochastic forcing scheme

The alternative forcing scheme is based on a stochastic forcing function [15]. In this scheme, stationarity is
achieved by introducing an artificial forcing function, f;(k,t), into the Navier-Stokes equation. This function
is non-zero only over the forcing range between k¢ min and kf max. fi(k,t) evolves by a vector-valued complex
Ornstein-Uhlenbeck process [15] as shown below

(k. t [20%
dfi(k,t) = —Mdt + —dei(k,t), VEk 3kt min < k < kf max (8)
Ty Ty

where T% is the time-scale of forcing, UJ% denotes the strength of the forcing, and W;(k,t) is the Wiener
process whose increment dW; is joint-normal, with zero mean, and covariance given by

(AW dW}) = Atdy;. (9)

While implementing on a computer, we set the increment dW; = (o; + 15;)V At, where «; and 3; are two
independent A(0, 1) random numbers.

2.3 Particle update

The Maxey & Riley equation [10] is used for simulating spherical, non-deforming particles in the flow. We
take the particles to be small (i.e., d/n < 1, where d is the particle diameter, n = v3/*/e'/* is the Kolmogorov
length scale, and e is the average turbulent kinetic energy dissipation rate) and heavy (i.e., pp/p > 1, where
pp and p are the densities of the particles and fluid, respectively). We also assume that the particles are
subjected to only linear drag forces, which is valid when the particle Reynolds number Re, = M < 1.
Here, u(X) denotes the undisturbed fluid velocity u of a particle with center position X, and v denotes the
particle velocity. Under these assumptions, the Maxey & Riley equation simplifies to a system of ordinary
differential equations for the position and velocity of a given particle

dX

— =, 10
o (10)
dv. uX)-v
— =" g 11
dt Tp & (11)
where 7, = %1%_2:/ is the particle response time and g is the gravitational acceleration vector. Note that

the numerical solution of (10) and (11) requires an interpolation of grid values of the fluid velocity to the
location at the center of each particle. The interpolation methods used are discussed in §4.

The influence of particles on the continuity and momentum equations is neglected due to the low volume
(O(1075)) and mass (O(1073)) loadings [16, 17], and therefore we consider only one-way coupling between the
flow field and the particles. All particles are represented as point-particles, and collisions are neglected [18].

3 Time integration

3.1 Fluid update

To calculate the temporal evolution of the fluid, we introduce the integrating factor "Rt to re-express (6)
as

g [ﬂieuk2ti| = 6Vk2t (-(Lm + 7) emj'n,‘/—" {wjun} . (]‘2)
Integrating (12) from time to to time to + At, we obtain
2 2 kik to+At 2
ﬁi(to + At) _ ’&i(to)e_Uk At 4 e—(to-l-At)uk (_5im + %) Emjn/t euk t]_- {wjun}dt. (13)
9

A second-order Runge-Kutta method (RK2) is used to approximate the integral in (13), yielding

totAt 2 2 2
/ et E {wjun }dt = % e’k to]—'{wj(to)un(to)} +evk (t°+At).7:{wj (to + At)un(to + At)}| . (14)

to

Therefore, we simplify (13) and obtain

2 k2
X [T A fu (to)un(to)} + F {w;(to + At)ua(to + AD)}] (15)

At kikm
’&i(to + At) = ’&i(to)e_ukZAt + — (_5im +) €Emjn

To avoid convective instabilities, the time step At is chosen to be sufficiently small to satisfy the Courant
condition [19],
umaxAt\/g
min(Azy, Azg, Axs)

<0.5, (16)

where Uy, is the maximum velocity magnitude in the domain, and Az; is the grid spacing in the qth
coordinate direction.

3.2 Particle update

Inertial particles introduce another time scale into the simulation, namely the particle response time 7,
which is independent of the fluid time step At. For the case where 7, < At, the system defined by
(10) and (11) is stiff, and traditional explicit Runge-Kutta schemes require an extremely small time step for
numerical accuracy and stability. Note that updating the particle equations implicitly would be prohibitively
expensive, since it is necessarily an iterative process involving multiple interpolations of the fluid velocity to
the current particle location. The standard explicit Runge-Kutta method, under these circumstances, would
require using a smaller time step for the particles than for the fluid, increasing the computational expense
of the simulation. Additionally, inertial particle simulations may involve a spectrum of 7,, which vary from
processor to processor, causing the system to run at the speed of the slowest processor (i.e., the processor
with the highest load).

We have overcome these limitations by formulating an alternate second-order scheme that works well
over the whole range of 7, (particularly for 7, < At), while still using the fluid time step. The numerical
scheme is based on ‘exponential integrators’ [20]. Exponential integrators are a broad class of methods that
treat the linear term in (11) exactly and the inhomogeneous part using an exponential quadrature. Based

on the results in Ref. [20], we pattern a second-order update of (11) as follows:
v(to + At) = e A v (tg) + wiu[X(to)] + wau[X(to) + v(to)At] + (1 — e 2 7)1 g, (17)

where the weights w; and ws are given by

G (2) (e () e

e?—1 eF—z—1
s p2(2) = ———

and

o1(2) = - (19)

It is important to note that as 7, — 0, this explicit scheme recovers the correct limit for inertialess passive
tracers. Over the range of 7, and At generally considered in our simulations, we have found the second-order
exponential integrator method to be more accurate than the standard RK2 and up to an order of magnitude
faster. We discuss the errors incurred by the exponential integrator method below in §4.

4 Interpolation

As discussed in §2.3, the solution of (10) and (11) requires an interpolation of grid values of the fluid velocity
to the particle centers. In principle, this interpolation could be done exactly (provided that the grid is
sufficiently fine to capture all scales of motion) using a spectral interpolation [21]. For a typical simulation
involving at least a million particles, however, such an interpolation technique is prohibitively expensive.

To compute the fluid velocities at the particle centers, we have introduced several different interpolation
methods into our code. They include linear, Lagrangian [22|, Hermite [23], shape function [21], and B-
spline interpolation [24]. The B-spline interpolation scheme, which is optimized for spectral simulations [24],
provided the best trade-off between computational expense and accuracy.

The number of points used to construct the B-spline interpolant was varied between 4 and 10, and
the RMS errors of the interpolated velocities were computed. The error analysis was performed on two
representative grid sizes, 128 and 5123. The small-scale resolution of the grids is specified by kmaxn [25],
where kpax = NvV2 /3 is the maximum resolved wavenumber magnitude. For each grid size, we vary the small-
scale resolution, from kyaxn = 1 (marginal small-scale resolution) to kmaxn = 2 (good small-scale resolution).
In all cases, we determined the ‘exact’ values of the particle velocities from a spectral interpolation, and
defined the velocity error as the RMS difference between the velocities obtained from spectral and B-spline
interpolations at a given time.

To determine the optimal number of spline points, we compare the interpolation error to the local time-
stepping error. Since we anticipate that the time-stepping error will be a function of the ratio At/7, (refer to
§3.2), we choose two different values of 7, for a fixed value of At: 7, = 0.17, and 7, = 7,,, where 7, = \/v//e is
the Kolmogorov time scale. (Note that the ratio 7,/7, is usually called the Stokes number St of a particle.)
To estimate the time-stepping error, we take the ‘exact’ result to be the particle velocities after ten velocity
steps (using spectral interpolation) with a Courant number of 0.05. The ‘approximate’ result is the particle
velocities after single time step (again using spectral interpolation) with a Courant number of 0.5.

The errors for each case are presented in figure 1, normalized by the RMS fluid velocity, «’. From these
results, for a given run, we choose the number of spline points so that the interpolation and time-stepping
errors are of the same order of magnitude, thereby defining an optimal interpolation scheme for a given grid
size and resolution.

5 Parallelization

5.1 Domain decomposition

The solution domain is decomposed using two-dimensional (‘pencil’) domain decomposition. Fast Fourier
transforms (FFTs), required to advance the fluid velocity, are performed using the P3DFFT library [26].
P3DFFT uses standard FET libraries (such as FFTW [27] and ESSL [28]) to compute the three-dimensional

- 1283 Grid S 5123 Grid
10 T 10 T
. 4] ®
- 10 ¢
- 107 . - . *
3 . 3
= = 6
o o 10 "
5 = g —_— @
E10°F T 5 I
n e BSpline4 | T TTTTTTmeeese----- w2 10° [o BSplined | T TTTTummmmmmeeeeel
E « BSpline6 E « BSpline6 R
-8 BSpline8 BSpline8
10 p _ p.
4 BSplinel0 R 10"°} 4 BSplinel0
—7/Ty =0.1 —7,/7y =0.1
0|7 “Tp/Ty =1 Py “Tp/Ty =1
10 T L lo T L
1 15 2 1 1.5 2
kmaxn kmaxn

Figure 1: Interpolation error and time-stepping error for different numbers of spline points (4 to 10), particle
response times (7,/7, = 0.1,1), small-scale resolution (kmaxn = 1,1.5,2), and grid points (1283,5123). All
errors are normalized by the RMS fluid velocity, v’

N\ N\

]]

Figure 2: A representative two-dimensional decomposition. The domain (shown on the left) is decomposed
into a series of ‘pencils’ (shown on the right) for parallelization over four processors.

FFT of the velocity or pressure distributed over the two-dimensional array of processors. A representative
two-dimensional decomposition on four processors is shown in figure 2. HIPPSTR uses a distributed memory
setup, and all necessary data are exchanged between processors using the Message Passing Interface (MPI).

A previous version of our code utilized one-dimensional (‘plane’) parallel domain decomposition. Using
this parallelization strategy, a domain with N? grid points can be parallelized on at most N processors. For
large values of N, memory restrictions limited the grid sizes (and hence the Reynolds numbers) we were
able to simulate. With one-dimensional domain decomposition, the largest simulation we could achieve was
10243 grid points, yielding only modest Reynolds numbers R < 400, where Ry = 2E;ot+/5/(3ve) and Eiot
is the turbulent kinetic energy.

Two-dimensional domain decomposition allows up to N? processors for a simulation with N3 grid points.
This new parallelization strategy essentially eliminates the memory limitations and increases the range of
Reynolds numbers we can achieve. We discuss upcoming high-Reynolds-number simulations using HIPPSTR
in §6.1.

5.2 Parallel scaling

In figure 3, we show timing data for simulations with a total of N3 grid points and (N/4)% particles as
a function of the number of processors M. The wall-clock time per step t is normalized by N3log,N, the
expected scaling for a three-dimensional FFT. The ideal scaling case (slope —1 line) is shown for comparison.
All timings were performed on the computing cluster ‘Jaguar’ at Oak Ridge National Laboratory (ORNL).

We achieve good scaling on ORNL Jaguar for the largest problem sizes. For a domain with 20482 grid
points, for example, we observe 85% strong scaling when moving from 1024 processors to 4096 processors,

107}
210
O
Pl o
z 10 e N =256
i N =512
o A N = 1024
10 5 » N = 2048
| e N =4096 _
oul=>Slope —1lLine] = 7
10" 10° 10° 10° 10

M

Figure 3: Parallel scaling on ORNL Jaguar for grids of size N3 with (N/4)3 particles on M processors. The
wall-clock time per step ¢ is normalized by N3logs N, the expected scaling for a three-dimensional FFT.

Table 1: Computing requirements for an upcoming simulation on NCAR Yellowstone using HIPPSTR.
Grid Points | 20483
Particles 2.5 billion
Ry 650

Cores 16,384
Core-hours | 19 million
Duration 49 days

and nearly 60% strong scaling on up to 16,384 processors.

6 Future work

Our primary goals for HIPPSTR are twofold: to perform massively parallel simulations at national super-
computing centers, and to make these simulation results publicly available.

6.1 Upcoming massively parallel simulations

As early users on the supercomputer ‘Yellowstone’ at the National Center for Atmospheric Research (NCAR),
we will perform a 20483 simulation with over two billion inertial particles on 16, 384 processors. This will be
the largest such simulation ever performed in the United States and will provide unprecedented information
about particle-turbulence interactions in atmospheric clouds. From the simulation results, we hope to bet-
ter understand droplet dynamics in high-Reynolds-number turbulence and thereby answer open questions
regarding cloud evolution and precipitation [1, 2, 3]. The computing requirements for this simulation are
summarized in table 1.

6.2 Dissemination of simulation results

Since the simulation described in §6.1 is unfeasible for most researchers, we will make the results of our
study publicly accessible via an internet database. Two possible options are to make the data available for

direct download (analagous to the iCFDdatabase [29]), or for remote analysis through user-created scripts
(analagous to the JHU turbulence database cluster [30, 31]).

7 Conclusion

We have presented a highly parallel, pseudospectral code ideally suited for the direct numerical simulation of
particle-laden turbulence. HIPPSTR, the most efficient and general multiphase flow code of its kind, utilizes
two-dimensional parallel domain decomposition, Runge-Kutta and exponential-integral time-stepping, and
accurate and efficient B-spline velocity interpolation methods. All of these methods are selected and tuned
for optimal performance on massively parallel architectures. HIPPSTR thus achieves good parallel scaling
on O(10%) cores, making it ideal for high-Reynolds-number simulations of particle-laden turbulence.

References

[1] G. Falkovich, A. Fouxon, and M. G. Stepanov. Acceleration of rain initiation by cloud turbulence.
Nature, 419:151-154, 2002.

[2] R. A. Shaw. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35:183-227,
2003.

[3] Z. Warhaft. Laboratory studies of droplets in turbulence: towards understanding the formation of
clouds. Fluid Dyn. Res., 41:011201, 2009.

[4] E. Malkiel, J. N. Abras, E. A. Widder, and J. Katz. On the spatial distribution and nearest neighbor
distance between particles in the water column determined from in situ holographic measurements.
Journal of Plankton Research, 28(2):149-170, 2006.

[5] J.N. Cuzzi and R. C. Hogan. Blowing in the wind I. Velocities of chondrule-sized particles in a turbulent
protoplanetary nebula. Icarus, 164:127-138, 2003.

[6] J. N. Cuzzi, S. S. Davis, and A. R. Dobrovolskis. Blowing in the wind II. Creation and redistribution
of refractory inclusions in a turbulent protoplanetary nebula. Icarus, 166:385-402, 2003.

[7] G. M. Faeth. Spray combustion phenomena. Int. Combust. Symp., 26(1):1593-1612, 1996.

[8] W.I. Li, M. Perzl, J. Heyder, R. Langer, J. D. Brain, K. H. Englemeier, R. W. Niven, and D. A. Edwards.
Aerodynamics and aerosol particle deaggregation phenomena in model oral-pharyngeal cavities. Journal
of Aerosol Science, 27(8):1269-1286, 1996.

[9] S. Balachandar and J. K. Eaton. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech., 42:111—
133, 2010.

[10] M. R. Maxey and J. J. Riley. Equation of motion for a small rigid sphere in a nonuniform flow. Phys.
Fluids, 26:883-889, 1983.

[11] K. A. Brucker, J. C. Isaza, T. Vaithianathan, and L. R. Collins. Efficient algorithm for simulating
homogeneous turbulent shear flow without remeshing. J. Comp. Phys., 225:20-32, 2007.

[12] S. A. Orszag and G. S. Patterson. Numerical simulation of turbulence. Springer-Verlag, New York,
1972.

[13] R. W. Johnson. The Handbook of Fluid Dynamics. CRC Press, 1998.

[14] A. Witkowska, J. G. Brasseur, and D. Juvé. Numerical study of noise from isotropic turbulence. J.
Comput. Acoust., 5:317-336, 1997.

[15] V. Eswaran and S. B. Pope. An examination of forcing in direct numerical simulations of turbulence.
Comput. Fluids, 16:257-278, 1988.

[16] S. E. Elghobashi and G. C. Truesdell. On the two-way interaction between homogeneous turbulence
and dispersed particles. i: Turbulence modification. Phys. Fluids A, 5:1790-1801, 1993.

[17] S. Sundaram and L. R. Collins. A numerical study of the modulation of isotropic turbulence by sus-
pended particles. J. Fluid Mech., 379:105-143, 1999.

[18] W. C. Reade and L. R. Collins. Effect of preferential concentration on turbulent collision rates. Phys.
Fluids, 12:2530-2540, 2000.

[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipies in Fortran.
Cambridge University Press, Cambridge, 1999.

[20] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numerica, 19:209-286, 2010.

[21] S. Balachandar and M. R. Maxey. Methods for evaluating fluid velocities in spectral simulations of
turbulence. J. Comput. Phys., 83:96, 1989.

[22] J. P. Berrut and L. N. Trefethen. Barycentric Lagrange interpolation. Siam Rev., 46:501-517, 2004.

[23] F. Lekien and J. Marsden. Tricubic interpolation in three dimensions. International Journal for Nu-
merical Methods in Engineering, 63(3):455-471, 2005.

[24] M. A. T. van Hinsberg, J. H. M. ten Thije Boonkkamp, F. Toschi, and H. J. H. Clercx. On the efficiency
and accuracy of interpolation methods for spectral codes. SIAM J. Sci. Comput., 2012. in press.

[25] S. B. Pope. Turbulent Flows. Cambridge University Press, New York, 2000.

[26] http://code.google.com/p/p3dift/.

[27] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of the IEEE,
93(2):216-231, February 2005.

[28] http://www 03.ibm.com/systems/software/essl/.

[29] http://mp0806.cineca.it/icfd.php.

[30] E. Perlman, R. Burns, Y. Li, and C. Meneveau. Data exploration of turbulence simulations using a
database cluster. Supercomputing SC07, ACM, IEEE, 2007.

[31] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink. A
public turbulence database cluster and applications to study Lagrangian evolution of velocity increments
in turbulence. Journal of Turbulence, 9:31, 2008.

