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Abstract: The complex interaction of turbulent mixing and aerosol growth processes in a canonical tur-

bulent �ow con�guration is investigated by means of direct numerical simulation. A cold gaseous stream

mixes with a hot stream of vapor in a developing mixing layer. Nanometer sized particles (droplets) nu-

cleate as vapor becomes supersaturated and subsequently grow as more vapor condenses on their surface.

Aerosol dynamics is solved with the Quadrature Method of Moments [R. McGraw, Aerosol Sci. Technol.,

27:255-265 (1997)]. Aerosol moments advection is solved with a Lagrangian particles scheme. The results

show that the highest nucleation rate region is located on the lean vapor (cool) side across the mixing layer,

while particles experience a high growth rate on the rich vapor (hot) side. The effects of turbulence on

particle dynamics are assessed by comparing the exact mean nucleation and growth rates with the rates

evaluated from mean quantities (temperature and concentration). The nucleation rate evaluated from mean

quantities tends to greatly over-estimate the mean particle number density. The growth rate evaluated from

mean quantities is also higher than the exact mean value, but by a relatively small margin.
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1 Introduction

Generally, the term �aerosol� refers to a colloid suspension of �ne solid particles or liquid droplets 1 in a gas. Aerosols

are ubiquitous both in nature and in industrial products, for example, clouds, air pollution such as smog and smoke, soot

in �ames, cement dust etc. Aerosol dynamics involves various processes: nucleation, condensation, and coagulation.

Aerosol particles evolution is extremely sensitive to the history of temperature and vapor concentration that these

particles undergo. Therefore it is very dif�cult to investigate the complex interaction between turbulence mixing and

aerosol growth processes. Lesniewski and Friedlander [1] measured dibutyl phthalate (DBP) particle nucleation and

growth in a free turbulent jet. Garmory and Mastorakos [2] simulated aerosol evolution in the same turbulent jet

using the stochastic �elds method for aerosol dynamics with the Reynold's stress turbulence model, and compared

the simulation results with the experimental data of Lesniewski and Friedlander [1]. They found that considering

turbulent �uctuations of temperature and concentration led to a nucleation region that was wider but with a reduced

peak nucleation rate. Das and Garrick [3] simulated the formation and growth of titanium dioxide nanoparticles in

incompressible planar jets by combining direct numerical simulation (DNS) for the �ow �eld and a nodal approach

for aerosol dynamics.

Aerosol particles can be described by the particle size density function (PSD), which satis�es the general dynamic

equation (GDE) [4]. The GDE is a generalized convection-diffusion equation with aerosol dynamic processes serving

as source terms. Analytical solutions to the GDE are available only for a few speci�c cases [5, 6]. The most wildly

employed general method and its variants for solving the GDE are based on dividing the particle size domain into

sections as developed by Gelbard et al. [7]. Another method to solve the aerosol PSD evolution problem is the Monte

Carlo simulation, which mimics the evolution of aerosol particles through a stochastic particle system [8�11].

1Droplets and particles are treated as synonyms in this article.
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Other than solving the PSD evolution equation, method of moments solves only a set of moments. The moments

set (usually several low order moments) represents the most important fundamental information about the PSD, such

as total number density, average diameter, volume fraction etc. Solving the moments set is far more economical than

solving the GDE. However, owing to the nonlinearity of the aerosol dynamics, the moments dynamic equations group

has of a cascade structure, i.e., higher order moments are involved in lower order moments dynamic equations. The

system of equations governing a �nite cut-off moments set is not closed. Many closure methods have been developed.

The quadrature method of moments (QMOM) [12, 13] or its variants [14] are found to be the most accurate in general.

However, QMOM requires the moment set to be realizable. A set of moments is realizable if there exists a PSD

which satis�es the moment de�nition. Mathematically, the set of moments must satisfy the Stieltjes conditions to

be realizable [15]. In numerical simulations, it is widely observed [16] that conventional advection schemes can

frequently render the set of moments unrealizable.

In this work, DNS combined with QMOM is used to simulate DBP aerosol evolution in a turbulence mixing

layer. To cure the moments realizability problem presented in conventional advection schemes, a Lagrangian particles

scheme [17] is used to convect the moments set. The layout of this paper is as follows. In section 2, the numerical

simulation settings, Lagrangian particles scheme, physical models for aerosol dynamics and QMOM are introduced.

Simulation results on �ow �eld and aerosol particles are discussed in section 3. Finally we present our conclusions.

2 Models and equations

2.1 Fluid dynamics

The direct numerical simulation presented in this work is performed by solving the unsteady, incompressible Navier-

Stokes equations. The parallel �ow solver �NGA� [18] developed at Stanford University is used to solve the transport

equations. The solver implements a �nite difference method on a spatially and temporally staggered grid with the semi-

implicit fractional step method of Kim and Moin [19]. Velocity is discretized with a second order �nite differences

centered scheme. The time step size is calculated in order to produce a Courant-Friedrichs-Lewy number of unity. A

pressure-correction step involving the solution of a Poisson equation ensures mass conservation. The code decomposes

the computational domain over a number of processors and implements a distributed memory parallelization strategy

using the message passing interface. The solution of the Poisson equation on massively parallel machines is performed

by the library HYPRE [20] using the preconditioned conjugate gradient iterative solver coupled with one iteration of

an algebraic multigrid preconditioner.

At the inlet, velocity is imposed by combining two laminar boundary layers, which have a total thickness H =
0:011 m. The free convective out�ow [21] condition is used at the outlet. The boundary conditions are periodic in

the spanwise direction z and free slip in the crosswise direction y. The free slip condition is applied by imposing a

zero crosswise velocity component at the boundary. The normal derivatives of the streamwise and spanwise velocity

components are set to zero. Consequently, the two velocity components parallel to the wall are free to �oat.

The two streams have velocity u1 and u2, with �U = u1 � u2 = 1:0 m/s, and Uc = (u1 + u2)=2 = 1:0
m/s. White noise with amplitude 0.4 of the velocity is superimposed on the velocity pro�le, resulting in the onset of

Kelvin-Helmholtz instability in a very short distance downstream of the inlet. The crosswise and spanwise velocity

components undergo the same type of disturbance.

The computational domain is 118H � 94H � 39H , in units of the boundary layer thickness H . The size of

the domain in the crosswise direction is large enough to avoid the turbulent �ow �eld being affected by the free slip

boundary conditions in any signi�cant manner. The domain is discretized with 80 million grid points (768�398�256).
The dimensions of the grid cells are the same along the three axes with �x = �y = �z = 0:15H in the region

centered around y = 0 (jyj � 22:5H), then the grid is linearly stretched along y with a ratio 1.05 and then kept

constant again, with an aspect ratio �y=�x = 4. A posteriori analysis shows �x = �y = �z < 3� over the whole
domain, where � = �3=4��1=4 is the Kolmogorov scale, and � and � are the kinematic viscosity and the turbulent

kinetic energy dissipation rate, respectively.

Two passive scalars (temperature T and vapor mass fraction C) are simulated by solving the convection-diffusion
equation using the third order WENO scheme [22]. The effect of aerosol dynamics on the temperature �eld is negligi-

ble (e.g., latent heat of condensation), since the vapor mass fraction is very low (maximum 5000 ppm here). For vapor
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Figure 1: Snapshot of the isocontour of a scalar �eld in the turbulence mixing layer (clipped in y direction). The pink
isocontour corresponds to the highest nucleation rate of aerosol particles, and the yellow isocontour corresponds to the

fastest particle growth rate due to condensation (in the free molecule regime).

concentration, the consumption owing to aerosol dynamics is taken into account, i.e.,

@C

@t
+r � (~uC) = Dr2C + SAerosol; (1)

where ~u is the gas �ow velocity, D is the diffusivity coef�cient, and the source term SAerosol denotes the vapor

consumption due to gas-to-particle conversion. In the simulation, the Lewis number is assumed to be one, i.e., thermal

diffusivity and mass diffusivity have the same value. The Schmidt number (ratio between kinematic viscosity and mass

diffusivity) is also set to one. At the inlet, T = 400 K and C = 5000 ppm are set for the fast stream, and T = 300 K
and C = 0 ppm for the slow stream. For convenience, the mixture fraction � is also de�ned, which is a scalar in the

range from 0 to 1 and is linearly proportional to T , and also to C when SAerosol = 0.
The simulation was performed on an IBM Blue Gene/P supercomputer, �Shaheen�, available at King Abdullah

University of Science and Technology, using more than a half million CPU hours. The total simulation time is 7:1� ,
where � corresponds to the time during which the low-speed steam passes the whole domain. All mean statistics in

this paper are obtained by averaging over different time instants (after a statistically steady state is reached) and the

periodic z direction, with around 10 thousand samples. Figure 1 shows a snapshot of the simulated temperature �eld,
which provides a schematic view of the simulation.

2.2 Aerosol dynamics

2.2.1 Physical models

Aerosol particles are generally described by the particle size distribution function (PSD) n(~x; t; �), where ~x denotes

spatial coordinates and t is the temporal coordinate (usually termed external variables), and � is a parameter to describe
particle morphology (internal variable). Generally, � can also be a vector. Here, all aerosol particles are assumed to be
spherical, therefore one parameter � is enough to describe the particle morphology. The PSD satis�es the GDE [4]

@n

@t
+r � n~u = r �Dprn+

�
@n

@t

�
nucl

+

�
@n

@t

�
growth

+

�
@n

@t

�
coag

; (2)

whereDp is the diffusion coef�cient for aerosol particles, and the last three terms on the right hand denote the aerosol

dynamics. The diffusion term is usually negligible owing to the large Schmidt number for aerosol particles2. Nucle-

ation is the process by which dozens or hundreds of molecules form a stable critical nucleus particle. It is modeled by

the self-consistent correction (SCC) theory [23]

�
@n(d�p)

@t

�
nucl

=
exp[s�=(kBT )]

S

"
Pvxv
kBT

r
2�

�m
exp

�
�

16��3m2

3(kBT )3�2p(lnS)
2

�#
: (3)

The SCC theory differs from the classic Becker-Döring theory [4, 24] only by the additional correction factor SCC =
exp[s�=(kBT )]=S. Various experimental measurements reveal that the classic nucleation theory consistently under-

2Under standard atmospheric conditions, spherical particles with a diameter of 10 nm (resp. 100 nm) have a Schmidt number equal to 290 (resp.

2:2� 10
4) [4, p. 34].
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estimates the nucleation rate for DBP [25, 26], even by a maximum of six orders of magnitude [27]. The SCC theory

provides satisfactory prediction compared to the measurement data [27] within the temperature range of interest (300

to 400 K) for the present simulation. The magnitude of the SCC factor is of order 103 for the present case. In the

above equation, s is the surface area of a DBP molecule, Pv is the vapor pressure, xv is the mole fraction of the vapor,
m is the molecular mass, �p is the particle density, and S = Pv=Psat is the vapor saturation ratio. The saturation

pressure Psat is usually approximated by integrating the Clausius-Clapeyron equation to yield an exponential function
of temperature, with two speci�c constants for a vapor species [28]. kB denotes the Boltzmann constant, and � is the

surface tension. DBP is used as the nucleation and condensation material. Empirical formulas for �p, Psat, and � are

taken from Okuyama et al. [25]. Nucleation only generates particles with the critical diameter d�p, which is [4, Eqn.

(9.56)]

d�p =
4�vm

kBT lnS
; (4)

where vm is the DBP molecular volume.

The particles volume growth rate due to condensation in the free molecule regime (Kn � 1, where Kn is the

Knudsen number, the ratio between the mean free path of the gas and the radius of aerosol particles) is proportional to

the surface area of the particles, and it is proportional to the diameter in the continuum regime (Kn� 1) [4]:�
@n(�)

@t

�
cond

=
(p1 � pd)��

2vm
(2�mkBT )1=2

; (Kn� 1); (5)

and �
@n(�)

@t

�
cond

=
2��D(p1 � pd)vm

kBT
; (Kn� 1): (6)

In the transition regime (0:1 < Kn < 10), the harmonic mean of the above two is used owing to its simplicity. This
harmonic mean produces very similar results to the much more involved generalized Mason's formula [29].

Coagulation is the process of two particles coalescing to form a bigger particle. The coagulation dynamics is

described by the Smoluchowski equation [4]

�
@n(�)

@t

�
coag

=
1

2

Z �

0

�n(~�)n(� � ~�) d~� �

Z
1

0

�n(�)n(~�) d~�: (7)

The collision kernel function �(�; ~�) describes the rate at which particles of size � coagulate with particles of size ~�.
In the free molecule and continuum regimes, � is obtained from well established theories [4]:

�(�; ~�) =

�
6

�

�2=3�
�kBT

2�p

�1=2�
1

�
+

1
~�

�1=2

(�1=3 + ~�1=3)2; (Kn� 1); (8)

and

�(�; ~�) =
2kBT

3�

�
1

�1=3
+

1
~�1=3

�1=2

(�1=3 + ~�1=3); (Kn� 1); (9)

where � is the gas viscosity. As in the treatment of condensation, the harmonic mean is used in the transition regime.

2.2.2 Quadrature method of moments (QMOM)

Other than directly solving the PSD from the GDE Eqn. (2), only a few moments are solved in the QMOM. The kth
(k = 0; 1; 2; : : :) order moment is de�ned as

Mk =

Z
1

0

nLkp dLp; (10)

where Lp denotes the particle size, which can be diameter or volume. Here, diameter is used. Accordingly,M0 means

the particle number density (#=m3),M1 the diameter �density� (m=m
3), 4�M2 the surface area �density� (m

2=m3),

and �M3=6 the volume fraction (m3=m3), etc. Four moments (from M0 to M3) are tracked in this simulation.

The dynamic equations for the moments set are obtained by applying the moment transformation to the GDE, i.e.,
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multiplying by Lkp and integrating over the particle size space to render (The convection term is not included, which is

dealt with by the Lagrangian particles scheme discussed in the next section.)

@Mk

@t
= Snucl(Mi) + Scond(Mi) + Scoag(Mi); (i 2 0; 1; : : : ; k; : : :) (11)

Owing to the nonlinearity in the GDE, the moments equations are not closed. High order moments appear in the

equations for low order moments. QMOM [12] is used to close the equations. The basic idea of QMOM is to use

N point Gaussian quadrature to approximate the integration in transforming the GDE to moments equations, i.e., the

PSD is assumed to be [14]

n =

NX
i=1

Wi�(L� Li); (12)

where �() is the Dirac delta function, Li is the abscissa (diameter here),Wi is the corresponding weight, andN denotes

how many delta functions are used to approximate the PSD (here N = 2). Then all the source terms on the right hand
side of Eqn. (11) can also be expressed in terms of Li and Wi ([14]). However, Li and Wi are not determined yet,

they are required to satisfy

Mk =

Z
1

0

nLkp dLp =

NX
i=1

LkiWi: (13)

Grouping Eqns. (11) and (13) for k = 0; 1; : : : 2N � 1, there are 4N equations and 4N unknowns (2N for Mk , N
for Wi and Li); these differential algebraic equations are then closed. From a set of 2N initial moments Mk(0), the
so-called product difference scheme [12] can be used to �nd the N abscissas and weights according to Eqn. (13). The

abscissas and weights are hen substituted into the moments dynamic Eqns. (11) to integrate for one time step. The

ODE solver DOPRI5 [30] is used to integrate the equations.

To apply the product difference scheme, the moments set must be realizable. A set of moments is realizable

if there exists a PSD which satis�es the moment de�nition Eqn. (10). Mathematically, the set of moments must

satisfy the Stieltjes conditions to be realizable [15]. Returning to the aerosol evolution problem, a moment cannot

evolve independently, and the whole moments set should evolve as a �vector� subject to certain constraints [16]. The

Lagrangian particles scheme used here transports the moments �vector� as a whole, which successfully avoids the

moments realizability problem usually encountered in conventional advection schemes [16].

2.3 Lagrangian particles scheme

The previous section discusses how the aerosol particles evolution is treated by the QMOM. Here, the Lagrangian

particles 3 scheme [17, 31] used to solve the advection of the moments setMk is introduced.

Generally, in particle methods, functions and differential operators are replaced by equivalent integral representa-

tions, discretized using particles [32]. Particles are mathematical objects representing one or more physical properties,

such as temperature, mixture concentration, vorticity, statistical moments of aerosols, etc. The physical properties are

evolved by solving a set of ordinary differential equations for the particles' trajectories (~xp) and property values (~!p):

d~xp

dt
= ~up =

X
N

G(~xp; ~!p; t; :::) p = 1; : : : ; N (14)

d~!p

dt
=
X
N

F (~xp; ~!p; t; :::) p = 1; : : : ; N (15)

where ~xp and ~up denote the location and the velocity of particle p, ~!p represents the property vector, and G and F
describe the system dynamics. The underlying function represented by the particles at discrete, and not regularly

spaced, points can be approximated as a generalized function (smooth in the sense of the measure) using a sum of

3Except where explicitly stated, particles in this subsection refer to mathematical objects, rather than physical aerosol particles as discussed

elsewhere in this paper.
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delta distributions:

~!(~x; t) =

NX
p=1

~!p(t)�(~x� ~xp(t)): (16)

Although the distribution in Eqn. (16) is well de�ned, it is desirable to obtain a regular representation (i.e. a differen-

tiable function) of the underlying Eulerian �eld. Such a representation is obtained via regularization by convolution

with a molli�cation kernel �l of width l:

~!(~x; t) � (~! ? �l)(~x; t) =

NX
p=1

~!p(t)�l(~x� ~xp(t)): (17)

Speci�cally, the advection of aerosol moments is solved with the Lagrangian particle approach:

d~xp

dt
= ~u(~xp) and

dMp
k

dt
= Sp; (18)

where ~u(~xp) is the Eulerian velocity evaluated at the particle position ~xp, Mp
k represents the aerosol moments asso-

ciated with particle p, and Spk is the source term, which is evaluated according to Eqn. (11) for each particle p. Since
the gas phase velocity ~u is known from solving the Navier-Stokes equations at every grid point, ~u(~xp) is obtained by
interpolating on ~u with a tri-linear interpolation scheme.

If required, the solution obtained with the particle method can be projected via the molli�cation kernel on a grid

that may or may not coincide with that used for the velocity and scalar �elds. The projection of the Lagrangian

solution on the Eulerian grid is needed to post process the data and to compute source terms for the Eulerian scalars,

thus enabling a two way coupling between the aerosol and the gas phase. A box average is used as a regularization

kernel:

Mk(~x) =
1

N


X
p2


Mp
k ; (19)

where 
 is the set of particles located inside a cell of size l and N
 the number of such particles.

The accuracy, resolution, and costs of the Lagrangian solver depend strongly on the number of particles used for

the simulation. Due to the interaction between numerical errors in the particles' positions and the topology of the

advecting velocity �eld, the particle density is not spatially homogeneous and regions with a small number of particles

develop. If a grid cell does not contain any particles, the Eulerian �eldMk(~x; t) and two-way coupling source terms
cannot be computed.

The adverse effects associated with regions of low Lagrangian particle density can be mitigated in different ways:

(i) increasing the total number of particles in the domain, (ii) using a molli�cation kernel with a larger width, or

(iii) reinitializing the particle �eld onto a regularized set of particles (remeshing) [32, 33]. Given that the cost of

the Lagrangian method scales linearly with the number of particles, increasing the number of particles may result in

prohibitive computational expense. For aerosol simulations, the overhead can be signi�cant because the source terms

are computationally expensive compared to all other costs (i.e. velocity and scalar transport). Conversely, varying the

kernel width has a negligible effect on computational costs, but increases the numerical diffusion in the reconstructed

Eulerian �eld Mk(~x; t). Particle reinitialization is usually the preferred approach [33, 34], but it is not used in the

present work so as to preserve the realizability of the moment set [16]. A combination of methods (i) and (ii) is used

in this simulation.

3 Results and discussion

3.1 Velocity �eld

It is well known that at a certain distance from the inlet, the mixing layer evolves self similarly. The momentum

thickness �� is used to measure the local layer thickness, which is de�ned as

��(x) =
1

�U2

Z
1

�1

(u1 � u)(u� u2) dy; (20)
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Figure 2: Streamwise evolution of the normalized momentum thickness ��=H . The dashed line is obtained with a

least square �t in the range 60 < x=H < 100; the slope of the line is 0.0206.
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Figure 3: Mean streamwise velocity pro�les at several downstream locations.

where the bar symbol denotes statistical mean. The nondimensionalized crosswise coordinate is de�ned as y+(x) =
y=��(x). Self similarity implies a linear growth for the total turbulent kinetic energyK(x) [35], which is de�ned as

K(x) =

Z
1

�1

k dy =
1

2

Z
1

�1

u0u0 + v0v0 + w0w0 dy; (21)

where, k is the turbulent kinetic energy, u0; v0 and 0w0 are the components of the �uctuation velocity.
Figure 2 shows the streamwise evolution of the normalized momentum thickness ��=H . From x=H = 60 down-

wards, linear growth is observed, except for slight deviation near the outlet, which may be related to the cross domain

size or the outlet boundary condition. The slope of the �tted line is 0.0168 in the simulation [35], but a slightly higher

value 0.0206 is obtained here, which still lies in the measured range between 0.014 and 0.022 [36]. Figure 3 shows

the mean streamwise velocity pro�les at several downstream locations. Pro�les at x=H = 77 and x=H = 107 are

nearly identical, another sign of self similarity. The streamwise evolution of the total turbulent kinetic energy is shown

in Fig. 4. Linear growth is observed for x=H > 60. It is also found thatKx > Kz > Ky in the self similarity region,

which also agrees with the �ndings in the simulation [35].

3.2 Passive scalar

Similar to the velocity �eld, the mean pro�le of a passive scalar exhibits self similarity from a certain distance away

from the inlet. Figure 5 shows the mean mixture fraction pro�les at several downstream locations. The pro�les at

x=H = 77 and 107 are almost identical.
Figure 6 shows the mean total streamwise �ux of vapor concentration. Coupled and uncoupled cases are compared.
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In the coupled case the vapor consumption due to gas-to-particle conversion has been taken into account. As expected,

the mean �ux is constant (except for statistical �uctuation) along the streamwise direction for the uncoupled case,

and decreases for the coupled case. Conservation property of the vapor can be used to check the correctness of the

coupling between vapor transport and aerosol evolution. The consumed vapor due to gas-to-particle conversion can

be evaluated as �M3=6�mDBP=mgas, where �M3=6 is the volume fraction of aerosol particles,mDBP=mgas is the

ratio of DBP and the carrier gas molecular weights. Taking the vapor consumption into account, the total vapor �ux is

conserved (curve �coupled+aerosol consumption�).

The probability density function (pdf) of the mixture fraction (representative for T and C) is vital for the determi-
nation of mean nucleation and condensation rates. Figure 7 shows the pdf at various positions along the streamwise

and crosswise directions. The crosswise positions are chosen according to the mean value of �. Qualitatively the same
behaviors with those found by Attili and Bisetti [35] are observed. They discussed the marching and non-marching

behaviors of the peak of a pdf. A marching pdf always has its peak at its mean value position across the layer, while

a non-marching pdf does not have this property. Thus, in the transition region (x=H = 300) the pdf is non-marching,
since nearly all pdfs peak around � = 0:7. Gradually, the pdf becomes marching as the mixing layer evolves down-

stream, an indication that turbulence is well developed [35]. The pdf corresponding to � = 0:3 has a very high tail

towards � = 0, which becomes smaller as the pdf evolves along the streamwise direction. Towards � = 1, the tail of
the pdf is much smaller compared to that towards � = 0. In the present simulation, � = 1 means the scalar is carried
by the fast stream. This different behavior of the pdf tail may be related to the difference in turbulence intermittency

in the fast and slow stream sides.
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Figure 7: Probability density function of the mixture fraction � at various positions, with streamwise positions x=H =
300, 500, and 700, and crosswise positions corresponding to mean � value of 0.3, 0.5, and 0.7.
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3.3 Aerosol dynamics

An important practical question is whether it is acceptable to estimate the mean aerosol production and growth rate

from the mean quantities (T and C) in turbulence, since the pdfs of T and C are usually too expensive to obtain, while

T and C can be estimated much more easily. It has been found [2, 37�39] that calculating nucleation, growth and

coagulation terms as functions of mean quantities can lead to signi�cant errors compared to correctly including the

effect of turbulence-induced �uctuation. Using DNS, it is possible to quantify the effect of turbulent �uctuations of

temperature and concentration on the mean nucleation and growth rate of aerosol.

For the nucleation rate, it is desirable to compare Inuc(T;C) with Inuc(T ;C), i.e., the exact mean nucleation

rate and the rate evaluated from the mean of T and C. If the vapor consumption due to gas-to-particle conversion

is neglected, the T and C �elds are linearly correlated, and both can be reconstructed from the mixture fraction �
through a simple linear transformation, i.e., T = (Tmax � Tmin)�+ Tmin and C = (Cmax � Cmin)�+ Cmin, where

the subscripts max and min denote the maximum and minimum values set at the inlet. Under these conditions, the

nucleation rate function can be simpli�ed to the form Inuc(�). Figure 8 shows the function Inuc(�) corresponding
to present boundary conditions. The nucleation rate has a sharp peak at T = 317K or equivalently � = 0:17, then
decreases to zero very quickly away from the peak. Figure 8 provides strong clues to understanding the nucleation

process in the �ow.

Figure 9(a) shows the mean nucleation rate pro�les at different cross sections. Inuc(T ;C) has an outstanding peak
at the lean vapor (cool) side across the mixing layer. The curve shape is very similar to that in Fig. 8. Inuc(T;C)
is far more �at, and covers a broader region. The peak of Inuc(T;C) can be one order of magnitude smaller than

that of Inuc(T ;C). This phenomenon can be explained by investigating the pdf (Fig. 7) and the nucleation rate

function (Fig. 8). Recall that [40]

Inuc(T;C) =

ZZ
Inuc(T;C)pdf(T;C) dT dC �

Z
Inuc(�)pdf(�) d�; (22)

and Inuc(�) is similar to a Dirac Delta function. The broad distribution of the pdf makes it impossible to miss the

region where Inuc(�) is extremely high, hence Inuc(T;C) extends broadly across the mixing layer. On the other

hand, Inuc(T;C) cannot reach the maximum of Inuc(T;C), since pdf(T;C) is generally not concentrated in the

maximum nucleation rate region. However, the case is very different for Inuc(T ;C). Actually, it has been derived that
Inuc(T ;C) � Inuc(�). The �nding that Inuc(T;C) has a wider nucleation region but with a reduced peak nucleation
rate compared with Inuc(T ;C), agrees with the analysis [37] and the numerical simulation [2]. In addition, the peak
of Inuc(T;C) is found to shift towards the center of the mixing layer, compared with Inuc(T ;C).

Figure 9(b) shows streamwise evolution of the integrated nucleation rate along the cross direction, which deter-

mines the streamwise evolution of the total number density (i.e., crosswise integrated number density). It is found that

the value corresponding to Inuc(T ;C) is systematically higher than that corresponding to Inuc(T;C), except in the

region very close to the inlet. This suggests that to evaluate number density from Inuc(T ;C) would result in system-
atic overestimation. In this simulation, the vapor concentration is coupled with the consumption from nucleation and

condensation processes. The total nucleation rate in the uncoupled case continues to increase almost linearly along

the streamwise direction. However, the rate in the coupled case �rst increases owing to enhanced turbulence mixing,

then decreases because of decreasing vapor concentration due to gas-to-particle conversion. The difference in the rates

between the uncoupled and coupled cases increases along the streamwise direction. Near the outlet, the total nucle-

ation rate in the uncoupled case is one order higher than that in the coupled case, although the vapor concentration

in the coupled case is at most 10% lower than that in the uncoupled case throughout the whole �ow �eld. To better

understand how nucleation is affected by vapor consumption, Fig. 10 shows the mean vapor consumption in the mix-

ture fraction space. The maximum consumption rate appears at � = 0:65 for x=H = 15, and then the peak rate shifts
to � = 0:55 for x=H = 107. Nucleation mostly happens around the region � = 0:17, but it consumes a negligible
amount of vapor, because the nucleated particles are so small (a few nanometers). Vapor is consumed mainly due to

condensation.

Similar to the analysis for nucleation, the particles growth rate due to condensation can also be simpli�ed to the

function form Gcond(�). However, except for the free molecule regime, the particle growth rate also depends on its

diameter (d). Figure 11(a) shows the growth rate for particles from 1 nm to 10 micron at various temperatures (also

various vapor concentrations). From 1 nm to 0.1 micron (generally in the free molecular regime), the growth rate is

nearly constant. From 0.1 micron onwards the growth rate keeps decreasing as particles become bigger. Growth in the

free molecule regime is of greater interest for its high rate. Since the growth rate is independent of the diameter in the
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Figure 9: Nucleation rate. � corresponds to x=H = 77 in (a); Uncoupled solutions denote that vapor consump-

tion from nucleation and condensation processes has not been taken into account in the control equation for vapor

concentration.
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Figure 11: Functions of particle diameter growth rate due to condensation.
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denote that aerosol consumption of vapor has not been taken into account in the vapor concentration control equation.

free molecule regime, it is possible to give the function curve [Fig 11(b)] as for nucleation. Unlike nucleation which

favors low temperature, the condensation growth rate has a peak towards high temperature at T = 375 K. The growth
rate changes mildly over the whole temperature range, in stark contrast to the spiky nucleation rate function.

Figure 12 compares the exact mean growth rate Gcond(T;C) with Gcond(T ;C) at various cross sections. All

pro�les have a similar shape, and also resemble the growth rate function in the free molecule regime [Fig. 11(b)].

Gcond(T ;C) is found to be always higher than Gcond(T;C), with a ratio of nearly 40% at around y+ = 1 [corre-

sponding to T = 375 K, at which the growth rate obtains the maximum (Fig. 11)(b)]. The peak of Gcond(T;C)
is found to shift towards the center of the mixing layer, compared with Gcond(T ;C). The uncoupled solution over-

estimates the growth rate, but only by a fractional amount at x=H = 46. This overestimation increases along the

streamwise direction, as the accumulated consumption of vapor.

Coagulation is a very complex process, which is determined by the integro-differential Eqn. (7). It is impossible

to analyze coagulation as for nucleation and condensation. Coagulation will reduce particles' number density, and

increase their size. The effect of coagulation on the evolution of the total particle number density [N1 =
R
n(�) d�]

can be modeled as [4, p. 234]
dN1

dt
= �

1

2

Z
1

0

Z
1

0

�(�; ~�)n(�)n(~�) d~� d�: (23)

Then, it is possible to estimate the magnitude of dN1=dt and compare it with the nucleation rate. �(�; ~�) obtains its
maximum value when � is a few nanometers and ~� is a few microns, corresponding to the smallest (�min) and largest
(�max) particles in this simulation, respectively. It is clear that j dN1= dtj reaches its maximum value when the PSD
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Figure 13: Scatter plots forM0.
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Figure 14: Scatter plots forM3.

has a double peaked distribution

n(�) =

�
N1=2; � = �min or �max;
0; otherwise;

(24)

i.e., half the particles have size �min, the other half have size �max. In the simulation, the maximum value of N1 is

around 1012(#=m3). Hence, the estimated maximum rate of jdN1=dtj is of order 10
13(#=m3s), which is compa-

rable to the maximum nucleation rate. However, the occurrence of such an extreme case is almost impossible; the

real coagulation rate should be much smaller. j dN1= dtj, estimated from a mono dispersed PSD of all particles with

the average diameter (a few microns), is three orders smaller than the maximum nucleation rate. Unlike coagulation,

nucleation would reach its maximum rate in a layer throughout the mixing layer (as marked in Fig. 1). Hence, it can be

concluded that coagulation has a much smaller impact on determining the total particle number density than nucleation

in this simulation.

To further investigate the aerosol growth processes in the mixing layer, scatter plots forM0,M3 and d = M1=M0

are given in �gures 13, 14, and 15. These scatter plots demonstrate how aerosol moments are correlated with the

mixture fraction. Sample data at two cross sections x=H = 300 and x=H = 700 are shown. Essentially, the plots

exhibit qualitatively the same trend at the two cross sections. For M0 (Fig. 13), the mean curve has a peak towards

the lean vapor side, which agrees with the analysis of Fig. 8. The peak becomes less prominent along the streamwise

direction [comparing (a) and (b) in Fig. 13], because the nucleation rate decreases due to vapor consumption. ForM3

(Fig. 14), the peak of the mean curve (x=H = 46) appears near � = 0:7, close to the position corresponding to the

maximum growth rate (Fig. 11). Along the streamwise direction, the peak shifts toward the center. For the average

diameter d, the mean curve closely resembles that in Fig. 11(b), which provides a clue that the particle growth is

dominated by condensation in the free molecule regime.

Figure 16 shows snapshots of instantaneous moments �elds of M0 and M3. M0 is the particle number density,
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Figure 15: Scatter plots for average diameter d = M1=M0.

mainly determined by the nucleation process (coagulation is too weak to affect the number density signi�cantly). The

highest number density appears in the mixing layer towards the lean vapor side (lower side in the �gure), which agrees

with the analysis of the nucleation rate function. M3 is the volume fraction (lacking a factor �=6). It increases along
the streamwise direction, due to vapor condensing incessantly on existing particles.

To investigate the streamwise evolution of moments, total moments are de�ned similarly to the total kinetic energy

as in Eqn. (21). Figure 17 shows the evolution of the total moments, which are normalized by their corresponding

maximum values. Generally, all moments increase along the streamwise direction. However, a constant plateau

is observed before x=H = 20 for all the moments. Within this region, the mixing layer is laminar. It implies

aerosol processes are very slow in laminar diffusion �ows. In the turbulent mixing region (x=H > 20), higher order
moments have a faster increasing rate, because particle diameter increases along the streamwise direction, and high

order moments involve high power of the diameter, and so increase faster.

Figure 18 shows the cross pro�les of moments at various streamwise positions. Pro�les for M0 are given in

sub�gure (a). All the peaks ofM0 at different downstream positions appear nearly in the same location, corresponding

to the peak of Inuc(T;C) in Fig. 9(a). From x=H = 77 to 107, the peak value of M0 decreases slightly. This is

mainly due to the factor that condensation continues to consume vapor (nucleation consumes a negligible amount of

vapor, because the nucleated particles are too small), which causes the nucleation rate to become smaller downstream.

Sub�gure (b) gives the M1 pro�le. The peak value increases along the streamwise direction, but at an even slower

rate. M3 increases almost linearly along the streamwise direction. The pro�les for the average diameter are also

shown [sub�gure (d)]. In method of moments, the average diameter is not solved directly, but derived from the

known moments. It can be de�ned as M1=M0 or (M3=M0)
1=3. From the �gure it can be seen that (M3=M0)

1=3

is systematically higher than M1=M0, but both exhibit practically the same behavior. The diameter increases along

the streamwise direction, but is nearly constant across the mixing layer. Taking into account the fact that particles

start growing from around 2 nm (critical size from nucleation), we can observe that particles grow very fast due to

condensation.

4 Conclusion

In this work, the nucleation and growth of dibutyl phthalate particles in a turbulent mixing layer has been simulated

through the combination of direct numerical simulation for the �ow �eld and the quadrature method of moments

for aerosol dynamics. A Lagrangian particles scheme is used to transport the moments of the particle size density

function. The scheme circumvents the problem of the realizability of moments, which is usually encountered in

conventional advection schemes. The effects of turbulence on particle dynamics are assessed by comparing the exact

mean nucleation and growth rates with the rates evaluated from mean quantities (temperature and concentration). This

simulation of a developing mixing layer also shows that the turbulent �uctuations of temperature and concentration

lead to a nucleation region that was wider but with a reduced peak nucleation rate (compared with the nucleation

evaluated from the mean quantities), which was found in a free turbulent jet �ow both by analysis [37] and numerical

simulation [2]. Turbulent �uctuation is found always to inhibit particle growth for DBP particles (i.e., the exact mean
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Figure 16: Snapshots of instantaneous �elds. (a). M0; (b). M3.
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Figure 18: Cross pro�les of moments and average diameter.

growth rate is always smaller than the rate evaluated from the mean temperature and concentration). However, Das and

Garrick [3] found that turbulent �uctuation can both augment and inhibit titanium dioxide particle growth, although

the predominant effect is to reduce particle growth. Therefore the effect of turbulent �uctuation on particle growth of

various aerosols may vary, due to different shapes of the growth rate function.

Most particles are nucleated on the lean (cool) vapor side in the mixing layer. However, particles experience a high

growth rate due to condensation on the rich (hot) vapor side. Owing to turbulent transport, the mean cross pro�les of

number density and volume fraction peak near the center of the mixing layer. The average diameter is almost constant

across the layer.
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