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Abstract: Numerical simulation of two dimensional roughness effects on modal 
growth is conducted over a hypersonic boundary layer. The steady base flow is firstly 
simulated by solving compressible Navier-Stokes equations. Perturbation corresponds to 
Mode S at 100KHz  and a wall normal velocity pulse which has a frequency range of  
 are imposed into the mean flow with roughness separately. FFT is used to study ݖܪܯ	1
the evolution of perturbation at different frequency. Both one roughness case and two 
roughness case have been considered. It is found that when roughness is at a location 
corresponding to the synchronization point of a particular frequency (synchronization 
point frequency), perturbation at frequency higher than the synchronization point 
frequency is damped. On the other hand, perturbation at frequency lower than the 
synchronization point frequency is amplified by roughness. This result is consistent with 
our previous study in which roughness location is changed. The relation between 
roughness and synchronization point can be a candidate to explain roughness delay 
transition as shown by some experiments. 
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1. Introduction 
Roughness induced transition has a great impact on the development of hypersonic vehicles[1]. For 
example, transition can have a first-order impact on the lift and drag, stability and control, and heat 
transfer properties of the vehicles [2]. Roughness induced transition is an important consideration in the 
design of thermal protection systems (TPS) of hypersonic vehicles [3, 4]. For a reentry vehicle entering 
earth’s atmosphere, it initially experiences a heating environment associated with a laminar boundary 
layer. As the vehicle altitude decreases, the vehicle surface becomes rougher and the boundary layer 
becomes turbulent. The transition from a laminar boundary layer to a turbulent one leads to the increase 
of surface heating rates by a factor of five or more. Thus, the ability to understand the physics of 
roughness induced transition plays an essential role in the design of TPS for reentry vehicles. Currently, 
roughness induced laminar-turbulent transition in hypersonic boundary layers, especially that induced by 
arbitrary surface roughness, is still poorly understood due to the limitation in experimental facilities and 
numerical methods [5]. 

Ideally the laminar-turbulent transition process can be divided into four stages. The first stage involves 
small disturbance fields which are initialized via a process termed “receptivity” by the viscous flow. The 
initial disturbance fields can involve both free stream and vehicle self-induced fluctuations such as 
acoustics, dynamic vortices, entropy spottiness, etc. The next stage is the linear growth stage, where small 
disturbances are amplified until they reach certain amplitude where nonlinear effects become important. 
The amplification can be in the form of exponential growth of Eigen modes (Tollmien-Schlichting waves 
or Mack waves) and non-modal growth of optimal disturbances (Transient growth). Once a disturbance 
has reached finite amplitude, it often saturates and transforms the flow into a new, possibly unsteady 
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state, which is termed as the secondary instability stage. The last stage is the breakdown stage where 
nonlinearities and/or high-order instabilities excite an increasing number of scales and frequencies in the 
flow. 

The receptivity study is mainly concerned with the excitation of instability waves, the characteristics 
of which can be analyzed by the linear stability theory (LST) [6]. The LST analyzes the propagation of 
individual sinusoidal waves in the streamwise direction inside the boundary layer. These waves are 
referred as Tollmien-Schlichting (T-S) waves for low speed flow, whose amplitudes vary though the 
boundary layer and die off exponentially outside the boundary layer. Extensive numerical and theoretical 
researches have been conducted to solve the linearized Navier-Stokes equations and many characteristics 
regarding the instability waves in hypersonic boundary layers have been discovered [6-10]. Mack [6] 
identified the unstable modes by using the LST for compressible flow. He showed that inside a supersonic 
boundary layer, there are multiple higher instability modes in addition to the first mode, which is the 
compressible counterpart of T-S waves in the incompressible boundary layers. These instability modes in 
the supersonic boundary layer are termed as first mode, second mode, third mode, etc. For supersonic 
boundary layer with Mach number larger than four, Mack’s second mode is the most unstable mode, and 
it plays an important role in hypersonic boundary layer transition.  

Direct numerical simulation has become an effective research tool for studying hypersonic boundary 
layer receptivity, stability, and transition by numerically solving the time-dependent three-dimensional 
Navier–Stokes equations for the temporally or spatially evolving instability waves. Malik et al. [11] 
investigated the responses of a Mach 8 flow over a sharp wedge of a half-angle of 5.3o to three types of 
external forcing: a planar freestream acoustic wave, a narrow acoustic beam enforced on the bow shock 
near the leading edge, and a blowing-suction slot on the wedge surface. They concluded that these three 
types of forcing eventually resulted in the same type of instability waves in the boundary layer. Ma and 
Zhong[12] studied the receptivity mechanisms of the same hypersonic boundary layer to various 
freestream disturbances, i.e., fast and slow acoustic waves, vorticity waves, and entropy waves, by 
solving the two-dimensional compressible Navier-Stokes equations. They found that the stable modes in 
the boundary layer played a very important role in the receptivity process. Recently, Wang et al. [13] 
further studied the response of the Mach 8 flow over a 5.3o half-angle sharp wedge to wall blowing–
suction. The results showed that mode S is strongly excited when the actuator is located upstream of the 
corresponding synchronization point. There is no significant amplification of pressure perturbation when 
the actuator is downstream of the synchronization point. Although the exact cause and mechanism of this 
result were not clear, such a result was obtained for wall blowing–suction at all frequencies considered in 
their study. Balakumar[14] numerically investigated the receptivity of a 2-D roughness to acoustic waves 
and found the isolated roughness does not contribute much in generating unstable disturbances. Marxen et 
al. [15] simulated the effects of a localized two-dimensional roughness element on the disturbance 
amplification in a hypersonic boundary layer. Their numerical experiments showed that in the vicinity of 
the separation regions, which are located in the upstream and downstream of the roughness, an increased 
amplification of a second-mode disturbance occurs for a certain frequency. 

Roughness has long been used to trip boundary layer to turbulence, but studies have been found that 
roughness is capable of stabilizing boundary layer as well. Back in 1964, Holloway and Sterrett [16] 
performed experiments on a boundary layer at Mach 4.0 and 6.0 with surface roughness at different local 
Reynolds number. They found that under certain circumstances, roughness with height less than boundary 
layer thickness can delay the transition onset on the flatplate compared with no roughness situation. 
However, no physical reasons had been given in the paper. Later, Fujii investigated the effect of two 
dimensional surface roughness on a hypersonic boundary layer[17]. The experiment was carried out at the 
JAXA 0.5m hypersonic wind tunnel using a 5 deg half angle sharp cone. It was found that wavy wall 
roughness can delay transition. Nevertheless, the exact cause of the delay is still unknown.  

Previous DNS studies have shown that the roughness location plays an important role in the 
developments of mode S excited by the blowing-suction slot [18]. It is found that the location of 
synchronization point and roughness is important in deciding roughness effect [19]. Duan et al [19] shows 
that when roughness is placed downstream of the synchronization point of one mode, that mode will be 
damped by roughness. However, if roughness is placed upstream of the synchronization point, the mode 
will be amplified. This could lead to an explanation of roughness delay transition as shown by 
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experiments. [16, 17] Thus, providing a way to control transition using two dimensional roughness may 
be possible. In this paper, we further investigate the finite roughness effect on perturbation growth over a 
Mach 5.92 flat-plate boundary layer. To expand the study by Duan et al [19] and Fong et al [20], the 
unsteady simulation model in this paper are mode S perturbation and a wall normal velocity pulse. The 
wall normal velocity pulse has a frequency range of ݖܪܯ	1	 . The effect of roughness location and 
perturbation frequency is studied by FFT analysis. Moreover, the role of roughness height is also studied 
in mode S case. 

2. Governing Equations 
For direct numerical simulation of hypersonic boundary layer transition, the governing equations are the 
three-dimensional Navier–Stokes equations. We assume that we are dealing with Newtonian fluids with 
the perfect gas assumption and isothermal or adiabatic wall conditions. The governing equations can be 
written in the following conservation-law form in the Cartesian coordinates, 
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where U , jF  and vjF are the vectors of flow variables, convective flux, and viscous flux in the jth

spatial direction respectively, i.e., 
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In this paper, only perfect-gas hypersonic flow is considered, i.e., 
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where R is the gas constant. The specific heat vC is assumed to be constant with a given ratio of specific 

heats  . The viscosity coefficient  can be calculated by Sutherland’s law in the form: 
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where, for air, 5 2
01.7894 10 / , 288.0 , 110.33r sNs m T K T K      and  is assumed to be 2 / 3 . 

The heat conductivity coefficient k can be computed through a constant Prantl number. 
 

3. High Order Cut-Cell Method 
 
A schematic of a computational domain and a cut-cell grid in roughness induced hypersonic boundary 
layer transition is shown in Figure 1. This figure shows a typical hypersonic flow over a blunt body, 
where a bow shock is created by the supersonic freestream. In this paper, a high-order shock-fitting 
method is used to track the movement of the bow shock which is treated as the upper boundary of the 
computational domain. The computational grid for a shock-fitting formulation is bounded between the 
bow shock above and the blunt body below. The cut-cell grid is a smooth curvilinear grid fitted to the 
baseline body shape without the roughness. As a result, the roughness surface cuts across the grid lines. 
The roughness surface,  , is represented by surface equation in the following form,  
 
 : ( , , ) 0f x y z   (10) 
 

For a problem concerning practical arbitrary roughness, it is likely that there is no analytical equation 
applicable to represent the shape of the roughness element. In this case, a set of n  discrete points 

 1 1 1 2 2 2( , , ), ( , , ),..., ( , , )n n nx y z x y z x y z  are used to represent the surface.  

 
 (a)                                                                                          (b) 

Figure 1.Physical and computational domain and a cut-cell grid of hypersonic flow over a blunt 
body with surface roughness: (a) physical grid, (b) computational grid with a transformed 
roughness  

 
Both the governing Eq. (1) and the roughness equation (10) in the physical domain are transformed 

into a Cartesian computational domain bounded by bow shock and flat plate. Under the computational 
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coordinate system, the body fitted grids are represented by a curvilinear three-dimensional coordinates 
( , , )    along the grid lines. The unsteady movement of the bow shock is treated as the computational 

upper boundary located at max  , which is time dependent. The other grid lines const  and 

const   remains stationary during computations. The coordinate transformation is defined by: 
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where ( , , , )x y z t  are the physical coordinates defined under Cartesian coordinate system. 
 

A third-order accurate Cut-Cell method is used in current numerical simulation [21]. A set of 
uniformly distributed Cartesian grids can be generated in the computational domain where the grid 
distribution in the physical domain is not uniformly distributed. Because smooth body-fitted grids are 
generated in the regular computational domain without the roughness, some of the Cartesian grid cells 
may be cut by the roughness boundary, which leads to irregular Cartesian grid cells. More details of the 
grid structure are discussed in a previous paper [21]. 
 

4. Result and Discussion 
4.1. Flow conditions and roughness model 

We have applied the high order cut cell method to model an isolated roughness on the surface of a 
hypersonic flatplate. Both steady and unsteady flows with surface roughness are considered. The 
freestream condition is the same as those used in used in Maslov’s experiment [7] as follows, 
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where M , T , P , rP , R  are Mach number, temperature, pressure, Prandtl number and unit Reynolds 

number, respectively. The flat plate is assumed to be isothermal. The total length of the flat plate is about
1.69 m .  
 An isolated roughness element of smooth shape is placed on the surface of the flat plate. Motivated by 
Whiteheard’s experiments [22], the shape of the surface roughness is chosen to be a two-dimensional 
bump, governed by the following elliptic equation,  
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where the parameters a , b and h  control roughness width and height. In our test cases, roughness width 
is fixed at 2 times local boundary layer thickness while the height ranges from 25% to 62.5% of local 
boundary layer thickness. In addition, cx defines the location of the roughness center. The grid size is 241 

points in streamwise direction and 121 points in wall-normal direction in each computational zone. A 
third-order cut-cell method is used to compute the two-dimensional viscous hypersonic flow over the flat 
plate with the roughness element. A coordinate transformation is employed to transform the physical 
domain into a rectangle computational domain with a set of Cartesian grid. The detail of the 
transformation can be found in Fong et al [20]. 
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Klebanoff [23], we are interested in the region upstream and downstream of a roughness where the flow is 
distorted by the existence of the roughness. Figure 5 to Figure 8 shows the streamwise velocity profile 
upstream of roughness for case 2 with different roughness heights at different streamwise locations. The 
symbols in the figure represent the velocity profile for the case with roughness, while lines represent the 
profile for a flatplate without roughness. The figures clearly show that a bigger roughness not only 
increases boundary layer thickness. It also extends the size of region where one can ‘feel’ the existence of 
roughness. For example, the tallest roughness can affect of flow upstream at 0.1446x m , while the 
shortest roughness can only have effect up to 0.1671x m . The same trend is observed downstream of the 
roughness as shown in Figure 9 to Figure 12. For the shortest roughness case, the distortion is weak. The 
recovery zone only extends to 0.21683x m . As the roughness gets bigger, the distortion gets stronger 
and the separation region becomes more obvious. The size of recovery zone consequentially becomes 
bigger. In our tallest roughness case, it extends to 0.24135x m .  

 

 
Figure 3. Pressure contour and streamline pattern around different roughness. 
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Figure 4. Mach number contour and streamline pattern around different roughness. 

 

Figure 5.Streamwise velocity profile at different locations upstream of 25% roughness compared 
with no roughness case. 

 

 
Figure 6.Streamwise velocity profile at different locations upstream of 37.5% roughness compared 

with no roughness case. 
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Figure 7.Streamwise velocity profile at different locations upstream of 50% roughness compared 

with no roughness case. 

 

 
Figure 8.Streamwise velocity profile at different locations upstream of 62.5% roughness compared 

with no roughness case. 

 
Figure 9.Streamwise velocity profile at different locations downstream of 25% roughness compared 

with no roughness case. 

 
Figure 10.Streamwise velocity profile at different locations upstream of 37.5% roughness compared 

with no roughness case. 
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Figure 11.Streamwise velocity profile at different locations upstream of 50% roughness compared 

with no roughness case. 

 
Figure 12.Streamwise velocity profile at different locations upstream of 62.5% roughness compared 

with no roughness case. 

4.3. Stability characteristics of boundary layer without roughness 
 

Stability characteristics of boundary-layer waves of the Mach 5.92 flow is studied by LST using a multi-
domain spectral method of Malik [24]. The dimensionless frequency used for linear stability analysis is 
defined as 
 

 
2

2
u

f
F

 


  (14) 

 
Where F is dimensionless frequency,  is kinematic viscous coefficient. In present simulation,

5 26.05 10 /v m s  , 55.30 10F    for the case of 100f KHz and 827.29 /u m s  .  

 
In LST analyses of boundary layer flows, the Reynolds number based on the local length scale of 
boundary layer thickness  . They are expressed as 

 ,u xR
u

  
 
  

  

   (15) 

 
Hence the relation between R  and the unit Reynolds number R  is,  
 

 R R x  (16) 

 
With the definitions of Reynolds number R  and the dimensionless frequency F , the dimensionless 
circular frequency   can also be expressed as, 
 
 RF   (17) 
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for taller roughness, perturbation only grows in far upstream region. As the perturbation gets 
closer to the roughness, it starts to be damped suddenly. The location where the damping starts 
depends on roughness height. In 0.375h case, damping starts at around 0.317x m . When 
roughness height is increased to 0.5h , the onset of damping moves to around 0.309x m . 
Further increase roughness height to 0.625h moves it to even more upstream 0.303x m . In the 
region between the onset of damping and roughness, strong modulation of different modes is 
observed. Since modulation does not exist for the case without roughness, the modes which 
interact with the imposed mode must be generated by the roughness. Downstream of the 
roughness, perturbation in small roughness case ( 0.25h ) follows the trend as no roughness case. 
On the other hand, perturbation is highly damped in tall roughness cases. The bigger the 
roughness is, the weaker pressure perturbation is compared with the case without roughness. Tall 
roughness in the location acts as a perturbation damper of the imposed mode instead of an 
amplifier like in case 1 and case 2. 

In the final test case, the roughness is moved to even further downstream to 0.410x m , 
which is behind the synchronization point of the imposed frequency. Figure 16 (d) shows how 
pressure perturbation interacts with different roughness height at this location. Similar to case 3, 
perturbation is amplified far upstream of roughness, but is all damped when it gets close to the 
vicinity of roughness. One difference between this case and case 3 is for all roughness height, 
damping effect is observed. In addition, the location of the onset of damping moves to more 
upstream than in case 3. In the region behind roughness, perturbation for all cases stays on the 
same level and does not grow at all, which is significantly different from case 3. Judging from 
this result, we can say that roughness in this location acts as a more effective perturbation 
damper of the imposed mode than in case 3, which can potentially stabilize the flow.  
 

 
Figure 16. Evolution of Mode S pressure wall-perturbations  with different roughness height. (a) case1 roughness at 

x=0.1101m (b) case 2 roughness at 0.185m (c) case 3 roughness at 0.331m (d) case 4 roughness at 0.410m 
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4.5. The effect of roughness on the perturbation of different frequencies 
 
In our previous study [20], perturbation mode corresponding to mode S and mode F at 100KHz have been 
imposed into the meanflow separately. In this paper, it is of interest that how roughness affects 
disturbance at different frequency. Therefore, a perturbation with a wide range of frequency is also 
imposed into the meanflow. An example of such perturbation is a Gaussian shape pulse perturbation. A 
hole is modeled on the flatplate located at 0.1x m with a width of 0.003m . The hole introduces wall 
normal velocity in the flow. At each grid point, the perturbation is Gaussian in time, as shown in Figure 
17(a). However, in order not to introduce any additional mass into the meanflow, the perturbation is 
sinusoidal in space as shown in Figure 17(b).Figure 17(c) shows the FFT spectrum of the perturbation. It 
can be seen that the pulse has a frequency range around 1MHz , which is broad enough to cover the most 
unstable modes in the flow. 

This pulse model is implemented into the meanflow of case 2 in which roughness locates at
0.185x m . Figure 18 shows the pressure perturbation contour resulted from the pulse for 50%  

boundary layer thickness roughness case. The hole and roughness are also shown. Figure 19 shows the 
pressure perturbation at different locations. It is seen that besides the excited perturbation on the wall 
region. The wall normal velocity pulse has also created perturbation outside of boundary layer. However, 
this perturbation is weak and it decays fast outside of boundary layer. The pulse also excites the flow 
inside the boundary layer and creates pressure perturbation on the wall with pattern similar to mode S or 
mode F in the previous section. Yet this perturbation is not periodic due to the Gaussian shape of the 
pulse. Figure 20 shows the time history of pressure wall perturbation at various streamwise locations 
upstream of 50% boundary layer roughness. Initially, the front part of the wave pack is amplified as it 
travels closer to the roughness. Meanwhile, the tail part is slightly damped. When the wave pack travels 
further, for example at 0.18285m , the front part is also damped while the tail part is highly damped. Since 
this pulse comprises a wide range of frequency, an FFT analysis is performed to get a better 
understanding of the relation between roughness and perturbation frequency. Figure 21 shows the 
frequency spectra of the pulse at the same locations as in Figure 20. The results for both with roughness 
and without roughness are included. The location of roughness in this case, 0.185x m , corresponds to 
the location of synchronization point for perturbation at frequency 133.26KHz which is highlighted in 
Figure 21(a). It is seen that in the upstream region of roughness, perturbations at frequency from 0Hz to 
120KHz are amplified compared with the no roughness case. Moreover, the peak observed in Figure 
21(b) around 165f KHz has switched to a lower frequency region around 125f KHz at 

0.17385x m with roughness. This shift can be explained by the increase of boundary layer thickness due 
to existence of roughness. Since the wavelength of second mode is related to the boundary layer 
thickness, a thicker boundary layer produces a longer second mode wavelength and thus the frequency 
becomes lower. This result also agrees with Marxen et al [27] in which states that roughness can move the 
second mode instability to lower frequency region. At 0.18285x m , the perturbation arrives at a location 
just upstream of roughness. It can be seen that the perturbation at frequency around 133.26f KHz (

116KHz to 155KHz ) is strongly damped. The lowest part of the FFT result is at 140f KHz  , which is 
very close to the synchronization point frequency. 
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Figure 17.(a) Time history of wall normal velocity on the wall. (b) Snapshot  of wall normal velocity 
in space. (c) FFT result of the Gaussian shape perturbation in (a). 

 
Figure 18. Schematic presentation of numerical setup for the pulse case; the hole to introduce 
perturbation, roughness and pressure perturbation are shown. 

 
Figure 19. Pressure perturbation contour at different location 
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Figure 20.Time history trace of pressure wall-perturbations at various streamwise locations at the 
upstream part of roughness. 

 
Figure 21. Non-dimensional frequency spectra of wall pressure perturbation at different location. 
(a) Upstream of roughness (b) No roughness case 

 

Time(s)

d
p

/|
p

|

0 0.0001 0.0002
-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

Time(s)

d
p

/|
p

|

0 5E-05 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045
-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004 x= 0.18285m

Time(s)

d
p

/|
p

|

0 5E-05 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045
-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004 x = 0.1440m

Time(s)

d
p

/|
p

|

0 5E-05 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045
-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004 x= 0.17385m

Time(s)

d
p

/|
p

|

0 5E-05 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045
-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004 x = 0.15885m

Frequency (Hz)

(|
d

P
|/

|P

|)

/(
|d

V
|/

|U

|)

0 100000 200000 300000
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00 0.1440m
0.15885m
0.17385m
0.18285m

133.26KHz

(a)
Frequency (Hz)

(|
d

P
|/

|P

|)

/(
|d

V
|/

|U

|)

0 100000 200000 300000
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00 0.1440m
0.15885m
0.17385m
0.18285m

(b)



18 
 

 

Figure 22 shows time history of wall perturbation at different x location behind the roughness. The 
front part of the wave starts to grow again once it has passed the roughness. However, the tail part still 
exhibits some sort of damping effect due to the roughness. At 0.21735x m , the tail part of the wave has 
reached its lowest amplitude and it starts to grow thereafter. The growth at the tail part has become 
stronger than the front part after it has reached it minimum. A detail FFT analysis on such perturbation is 
shown in Figure 23(a). Figure 23(b) shows the FFT results of the same locations without roughness. At

0.19635x m , a location just behind the roughness, perturbation at frequency around 120KHz  to 
100KHz  is amplified compared with no roughness. However, frequencies around 133.26KHz are all 
highly damped. The frequency range of this damping effect is from around 120KHz to 170KHz . It can 
also be seen that the strongest damping occurs very close to the synchronization point frequency.  As the 
perturbation travels downstream, the high frequency perturbation (around 140KHz to170KHz ) that has 
been damped in the previous location drops even further. Meanwhile, perturbation at frequency around 
133.26KHz starts to grow at a slow rate. For the amplified perturbation at frequency around120KHz , the 
growth is very strong, and the perturbation amplitude is always greater than the no roughness case. The 
FFT results from upstream and downstream of roughness shows that a two dimensional roughness is 
capable of amplifying perturbation at frequency lower than the synchronization frequency, while it damps 
frequency close to and higher than the synchronization frequency.  

Figure 24 shows the normalized amplitude of wall pressure perturbation at three different frequencies. 
In particular, we are interested in the frequencies higher than, close to and lower than the synchronization 
point frequency133.26KHz . Therefore, 120KHz 130KHz and140KHz are chosen. For comparison, their 
evolution in the case without roughness is also included. It can be clearly seen that at 120KHz , 
perturbation is highly amplified due to the roughness. At the end of the figure, its amplitude is almost 
twice than the case without roughness. This trend is very similar to the one obtained for our mode S case 
2 shown in Figure 16 (b) .However, perturbation at 130KHz , which is close to the synchronization 
frequency, is damped compared with no roughness. Without roughness, perturbation at this frequency 
grows exponentially and it reaches normalized amplitude almost 4 at the end of the figure. With 
roughness, this perturbation is amplified a little bit far upstream of roughness. As it gets closer to the 
roughness, it starts to be damped significantly. Its normalized amplitude only reaches about 2.5 at the end 
of the figure. This result compares very well with the mode S case in which roughness is placed at the 
synchronization point as shown in Figure 16 (c). For perturbation at 140KHz , the damping effect is even 
more pronounced than the previous case. As shown in Figure 24 (c), its normalized amplitude grows to 
around 8 without roughness. On the other hand, with the existence of roughness, the amplitude level stays 
at around 2 at the end of the figure. Again, this result agrees very well with our mode S case 4 which 
roughness is placed downstream of synchronization point as shown in Figure 16 (d). 

The agreement between results obtained from the pulse case and mode S case can be explained by the 
analogy of imposing different frequencies and changing roughness location. Equation (18) implies the 
position of synchronization point is inverse proportion to non-dimensional frequency. Therefore, 
roughness at different location corresponds to the synchronization points of different frequencies. 
Namely, an upstream location corresponds to the synchronization point of high frequency. In our mode S 
case, four different roughness locations have been considered but only one frequency of perturbation is 
imposed. The results show that upstream of synchronization point for the perturbation frequency, the 
perturbation is amplified. However, as roughness is placed close to or downstream of synchronization 
point, the perturbation is damped. In the pulse case, roughness location is fixed. Instead, perturbation of a 
wide range of frequency is imposed. Therefore, the location of roughness is the synchronization point of 
one particular frequency (133.26KHz ) in this case. In the view of perturbation which frequency is below
133.26KHz , the roughness location is the same as upstream of its synchronization point. As a result, the 
amplified perturbation at around 120KHz is consistent with the previous conclusion. On the other hand, in 
the view of perturbation which frequency is higher than 133.26KHz , the roughness location is located 
downstream of its synchronization points. The damping effect observed for 140KHz supports the previous 
conclusion as well. This agreement solidifies our findings. 
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Figure 22.Time history trace of pressure wall-perturbations at various streamwise locations at the 
downstream part of roughness. 
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Figure 23. Non-dimensional frequency spectra of wall pressure perturbation at different location. 
(a) Downstream of roughness (b) No roughness case 

 
 

 
Figure 24. Spatial evolution of wall pressure perturbation at three different frequencies (a) 120 
KHz (b) 130 KHz (c) 140 KHz 
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4.6. The effect of two roughness elements 
 

Other than one single roughness, a two roughness model is also considered. The first roughness is at the 
same location as case 2, xr=0.185 m. The first roughness height is fixed at 50% local boundary layer 
thickness. The second roughness is put in the downstream region of first roughness at xr=0.231 m, while 
its height is kept the same as the first roughness. The location of first roughness corresponds to the 
synchronization point of frequency133.26KHz , while the location of the second roughness corresponds to 
the synchronization point of frequency119.26KHz . 

Figure 25 shows the pressure contour of the two roughness meanflow. It is seen that the second 
roughness generated the same Mach wave as one roughness case. Moreover, the wave pattern looks very 
similar to that for the first roughness. In unsteady simulation, the same pulse model mentioned in the 
section 4.5 is implemented into this meanflow. Therefore, the perturbation would have a frequency range 
of 1MHz as in Figure 17. The pressure perturbation contour is shown in Figure 26. Similar to one 
roughness case, it is of interest to study how the perturbation interacts with the two roughness elements. 
Figure 27 shows the spatial development of perturbation at different frequency. Same as in Figure 24, the 
frequency chosen are120KHz ,130KHz  and 140KHz . Since the location of the second roughness 
corresponds to the synchronization point of frequency119.26KHz , it is expected the perturbation at these 
three frequencies will be damped after the second roughness. Figure 27 confirms the expectation. It is 
shown that the first roughness amplifies 120KHz perturbation since it is upstream of its synchronization 
point. However, when the perturbation travels downstream and approaches the second roughness, it starts 
to be damped since the roughness locates very close to its synchronization point. Downstream of the 
second roughness, the perturbation at 120KHz is weaker than the case without roughness. On the other 
hand, both roughness are located downstream of their synchronization point for perturbation at frequency 
130KHz and140KHz . Therefore, the two roughness elements have damping effect on these two 
frequencies. Figure 27 (b) and (c) show this trend. It is seen that the damping effect is more pronounced 
in two roughness case than in one roughness as seen in Figure 27. 

 

 
Figure 25. Pressure contour of two roughness meanflow. 
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Figure 26. Pressure perturbation contour for two roughness case. 

 
Figure 27. Spatial evolution of wall pressure perturbation for two roughness case at three different 
frequencies (a) 120 KHz (b) 130 KHz (c) 140 KHz 
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5. Conclusion 
In this paper, we have further investigated the effect of two dimension roughness on modal growth of 
perturbation with a wide frequency spectrum on a hypersonic flatplate at Mach 5.92. Both one roughness 
element case and two roughness elements case have been studied. The steady flow is simulated by solving 
compressible Navier-Stokes equation. In unsteady simulation, a wall normal velocity pulse is modeled 
and imposed into the meanflow. Our results confirmed our previous finding in Duan et al, and Fong et al 
[18, 20] that roughness is capable of amplifying perturbation at certain frequency if roughness is placed 
upstream of the synchronization point of a particular frequency. Meanwhile, if roughness is place 
downstream of the synchronization point of a frequency, the perturbation which has higher frequency will 
be damped. The agreement between mode S case and pulse case solidified our conclusion.  This finding 
can provide an explanation of roughness delay transition as shown in some experiments [16, 17]. 
Moreover, using this information can also give us a new way to control boundary layer transition by using 
two dimensional surface roughness. In the future, we will extend our study from two dimensions to three 
dimensional roughness effect.  
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