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Abstract: Numerical simulation of two dimensional roughness effects on modal
growth is conducted over a hypersonic boundary layer. The steady base flow is firstly
simulated by solving compressible Navier-Stokes equations. Perturbation corresponds to
Mode S at 1I00KHz and a wall normal velocity pulse which has a frequency range of
1 MHz are imposed into the mean flow with roughness separately. FFT is used to study
the evolution of perturbation at different frequency. Both one roughness case and two
roughness case have been considered. It is found that when roughness is at a location
corresponding to the synchronization point of a particular frequency (synchronization
point frequency), perturbation at frequency higher than the synchronization point
frequency is damped. On the other hand, perturbation at frequency lower than the
synchronization point frequency is amplified by roughness. This result is consistent with
our previous study in which roughness location is changed. The relation between
roughness and synchronization point can be a candidate to explain roughness delay
transition as shown by some experiments.
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1. Introduction

Roughness induced transition has a great impact on the development of hypersonic vehicles[1]. For
example, transition can have a first-order impact on the lift and drag, stability and control, and heat
transfer properties of the vehicles [2]. Roughness induced transition is an important consideration in the
design of thermal protection systems (TPS) of hypersonic vehicles [3, 4]. For a reentry vehicle entering
earth’s atmosphere, it initially experiences a heating environment associated with a laminar boundary
layer. As the vehicle altitude decreases, the vehicle surface becomes rougher and the boundary layer
becomes turbulent. The transition from a laminar boundary layer to a turbulent one leads to the increase
of surface heating rates by a factor of five or more. Thus, the ability to understand the physics of
roughness induced transition plays an essential role in the design of TPS for reentry vehicles. Currently,
roughness induced laminar-turbulent transition in hypersonic boundary layers, especially that induced by
arbitrary surface roughness, is still poorly understood due to the limitation in experimental facilities and
numerical methods [5].

Ideally the laminar-turbulent transition process can be divided into four stages. The first stage involves
small disturbance fields which are initialized via a process termed “receptivity” by the viscous flow. The
initial disturbance fields can involve both free stream and vehicle self-induced fluctuations such as
acoustics, dynamic vortices, entropy spottiness, etc. The next stage is the linear growth stage, where small
disturbances are amplified until they reach certain amplitude where nonlinear effects become important.
The amplification can be in the form of exponential growth of Eigen modes (Tollmien-Schlichting waves
or Mack waves) and non-modal growth of optimal disturbances (Transient growth). Once a disturbance
has reached finite amplitude, it often saturates and transforms the flow into a new, possibly unsteady
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state, which is termed as the secondary instability stage. The last stage is the breakdown stage where
nonlinearities and/or high-order instabilities excite an increasing number of scales and frequencies in the
flow.

The receptivity study is mainly concerned with the excitation of instability waves, the characteristics
of which can be analyzed by the linear stability theory (LST) [6]. The LST analyzes the propagation of
individual sinusoidal waves in the streamwise direction inside the boundary layer. These waves are
referred as Tollmien-Schlichting (T-S) waves for low speed flow, whose amplitudes vary though the
boundary layer and die off exponentially outside the boundary layer. Extensive numerical and theoretical
researches have been conducted to solve the linearized Navier-Stokes equations and many characteristics
regarding the instability waves in hypersonic boundary layers have been discovered [6-10]. Mack [6]
identified the unstable modes by using the LST for compressible flow. He showed that inside a supersonic
boundary layer, there are multiple higher instability modes in addition to the first mode, which is the
compressible counterpart of T-S waves in the incompressible boundary layers. These instability modes in
the supersonic boundary layer are termed as first mode, second mode, third mode, etc. For supersonic
boundary layer with Mach number larger than four, Mack’s second mode is the most unstable mode, and
it plays an important role in hypersonic boundary layer transition.

Direct numerical simulation has become an effective research tool for studying hypersonic boundary
layer receptivity, stability, and transition by numerically solving the time-dependent three-dimensional
Navier—Stokes equations for the temporally or spatially evolving instability waves. Malik et al. [11]
investigated the responses of a Mach 8 flow over a sharp wedge of a half-angle of 5.3° to three types of
external forcing: a planar freestream acoustic wave, a narrow acoustic beam enforced on the bow shock
near the leading edge, and a blowing-suction slot on the wedge surface. They concluded that these three
types of forcing eventually resulted in the same type of instability waves in the boundary layer. Ma and
Zhong[12] studied the receptivity mechanisms of the same hypersonic boundary layer to various
freestream disturbances, i.e., fast and slow acoustic waves, vorticity waves, and entropy waves, by
solving the two-dimensional compressible Navier-Stokes equations. They found that the stable modes in
the boundary layer played a very important role in the receptivity process. Recently, Wang et al. [13]
further studied the response of the Mach 8 flow over a 5.3° half-angle sharp wedge to wall blowing—
suction. The results showed that mode S is strongly excited when the actuator is located upstream of the
corresponding synchronization point. There is no significant amplification of pressure perturbation when
the actuator is downstream of the synchronization point. Although the exact cause and mechanism of this
result were not clear, such a result was obtained for wall blowing—suction at all frequencies considered in
their study. Balakumar[14] numerically investigated the receptivity of a 2-D roughness to acoustic waves
and found the isolated roughness does not contribute much in generating unstable disturbances. Marxen et
al. [15] simulated the effects of a localized two-dimensional roughness element on the disturbance
amplification in a hypersonic boundary layer. Their numerical experiments showed that in the vicinity of
the separation regions, which are located in the upstream and downstream of the roughness, an increased
amplification of a second-mode disturbance occurs for a certain frequency.

Roughness has long been used to trip boundary layer to turbulence, but studies have been found that
roughness is capable of stabilizing boundary layer as well. Back in 1964, Holloway and Sterrett [16]
performed experiments on a boundary layer at Mach 4.0 and 6.0 with surface roughness at different local
Reynolds number. They found that under certain circumstances, roughness with height less than boundary
layer thickness can delay the transition onset on the flatplate compared with no roughness situation.
However, no physical reasons had been given in the paper. Later, Fujii investigated the effect of two
dimensional surface roughness on a hypersonic boundary layer[17]. The experiment was carried out at the
JAXA 0.5m hypersonic wind tunnel using a 5 deg half angle sharp cone. It was found that wavy wall
roughness can delay transition. Nevertheless, the exact cause of the delay is still unknown.

Previous DNS studies have shown that the roughness location plays an important role in the
developments of mode S excited by the blowing-suction slot [18]. It is found that the location of
synchronization point and roughness is important in deciding roughness effect [19]. Duan et al [19] shows
that when roughness is placed downstream of the synchronization point of one mode, that mode will be
damped by roughness. However, if roughness is placed upstream of the synchronization point, the mode
will be amplified. This could lead to an explanation of roughness delay transition as shown by
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experiments. [16, 17] Thus, providing a way to control transition using two dimensional roughness may
be possible. In this paper, we further investigate the finite roughness effect on perturbation growth over a
Mach 5.92 flat-plate boundary layer. To expand the study by Duan et al [19] and Fong et al [20], the
unsteady simulation model in this paper are mode S perturbation and a wall normal velocity pulse. The
wall normal velocity pulse has a frequency range of 1 MHz. The effect of roughness location and
perturbation frequency is studied by FFT analysis. Moreover, the role of roughness height is also studied
in mode S case.

2.  Governing Equations

For direct numerical simulation of hypersonic boundary layer transition, the governing equations are the
three-dimensional Navier—Stokes equations. We assume that we are dealing with Newtonian fluids with
the perfect gas assumption and isothermal or adiabatic wall conditions. The governing equations can be
written in the following conservation-law form in the Cartesian coordinates,
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where U , Fj and ij are the vectors of flow variables, convective flux, and viscous flux in the jth

spatial direction respectively, i.e.,

U ={p,pu,, pu,, pu,,e} )
pu;
PUU; + Po;
Fj =1 pu,u; + pdy, 3)
PUU; + Po;
(e+ puy;
0
0j
F, =12, )
T3j
—q,

In this paper, only perfect-gas hypersonic flow is considered, i.e.,

p=pRT (%)
e=p(C,T +%ukuk) ©)
B
3 —,u(—'+—) +6 (;(: %)
oT
k& 8
qJ ax ( )



where R is the gas constant. The specific heat C, is assumed to be constant with a given ratio of specific

heats y . The viscosity coefficient g can be calculated by Sutherland’s law in the form:

3/2
T J T, +T, )

”:”{R T+T,

where, for air, 2. =1.7894x107°Ns/m*, T, = 288.0K, T, =110.33K and A is assumed to be —2 /34 .

The heat conductivity coefficient K can be computed through a constant Prantl number.

3. High Order Cut-Cell Method

A schematic of a computational domain and a cut-cell grid in roughness induced hypersonic boundary
layer transition is shown in Figure 1. This figure shows a typical hypersonic flow over a blunt body,
where a bow shock is created by the supersonic freestream. In this paper, a high-order shock-fitting
method is used to track the movement of the bow shock which is treated as the upper boundary of the
computational domain. The computational grid for a shock-fitting formulation is bounded between the
bow shock above and the blunt body below. The cut-cell grid is a smooth curvilinear grid fitted to the
baseline body shape without the roughness. As a result, the roughness surface cuts across the grid lines.
The roughness surface, I, is represented by surface equation in the following form,

r:f(x,y,2)=0 (10)

For a problem concerning practical arbitrary roughness, it is likely that there is no analytical equation
applicable to represent the shape of the roughness element. In this case, a set of N discrete points

{(Xl, Y5 2)s (%55 Y5525 e (X5 Vi Zn)} are used to represent the surface.
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Figure 1.Physical and computational domain and a cut-cell grid of hypersonic flow over a blunt
body with surface roughness: (a) physical grid, (b) computational grid with a transformed
roughness

Both the governing Eq. (1) and the roughness equation (10) in the physical domain are transformed
into a Cartesian computational domain bounded by bow shock and flat plate. Under the computational
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coordinate system, the body fitted grids are represented by a curvilinear three-dimensional coordinates
(¢,1m,¢) along the grid lines. The unsteady movement of the bow shock is treated as the computational

upper boundary located at =7, , which is time dependent. The other grid lines & = const and

¢ = const remains stationary during computations. The coordinate transformation is defined by:

&=4&(x,Y,2) X=X(&,n,6,7)
n=n(xXYy,z,t) oY= y(&,1,6,7)
¢=¢(XY,2) 2=12(&,1,6,7)
T=t t=r1

(1)

where (X, Y, Z,t) are the physical coordinates defined under Cartesian coordinate system.

A third-order accurate Cut-Cell method is used in current numerical simulation [21]. A set of
uniformly distributed Cartesian grids can be generated in the computational domain where the grid
distribution in the physical domain is not uniformly distributed. Because smooth body-fitted grids are
generated in the regular computational domain without the roughness, some of the Cartesian grid cells
may be cut by the roughness boundary, which leads to irregular Cartesian grid cells. More details of the
grid structure are discussed in a previous paper [21].

4.  Result and Discussion
4.1. Flow conditions and roughness model

We have applied the high order cut cell method to model an isolated roughness on the surface of a
hypersonic flatplate. Both steady and unsteady flows with surface roughness are considered. The
freestream condition is the same as those used in used in Maslov’s experiment [7] as follows,

P=072,R =p, *u, /pu, =132x10°/m
{r 5" o poo o) ILloo x (12)

M_=5.92T =48.69K,P_ =742.76Pa

whereM _, T, P, P., R are Mach number, temperature, pressure, Prandtl number and unit Reynolds
number, respectively. The flat plate is assumed to be isothermal. The total length of the flat plate is about

1.69m.

An isolated roughness element of smooth shape is placed on the surface of the flat plate. Motivated by
Whiteheard’s experiments [22], the shape of the surface roughness is chosen to be a two-dimensional
bump, governed by the following elliptic equation,

v \2 2
—(Xa’jc) +§:h2 (13)

where the parameters a,band h control roughness width and height. In our test cases, roughness width
is fixed at 2 times local boundary layer thickness while the height ranges from 25% to 62.5% of local

boundary layer thickness. In addition, X, defines the location of the roughness center. The grid size is 241

points in streamwise direction and 121 points in wall-normal direction in each computational zone. A
third-order cut-cell method is used to compute the two-dimensional viscous hypersonic flow over the flat
plate with the roughness element. A coordinate transformation is employed to transform the physical
domain into a rectangle computational domain with a set of Cartesian grid. The detail of the
transformation can be found in Fong et al [20].



4.2. Steady Flow solution with surface roughness

As mentioned, the high order cut cell method is implemented to model the roughness. In order to study
the effect of both roughness locations and roughness heights on a hypersonic flatplate, the roughness is
placed at four different locations. In each location, four different roughness heights ranging from 25% to
62.5% of the local boundary layer thickness are considered. The locations of roughness are chosen
according to the synchronization point of 100KHZ modes that are imposed into the flow for unsteady
simulations in the previous study [20]. The details of each test case are listed below,

Case 1: Roughness at far upstream of the synchronization point, x,=0.1101 m; Local boundary layer
thickness; &= 1.448x107° m; Roughness height 0.253, 0.3759, 0.55, 0.6256

Case 2: Roughness at upstream of the synchronization point, x,~=0.185 m; Local boundary layer
thickness 8=1.61x10" m; Roughness height 0.2598, 0.3759, 0.56, 0.6256

Case 3: Roughness at the synchronization point, x,=0.331 m; Local boundary layer thickness
5=2.82x10" m; Roughness height 0.2538, 0.3759, 0.55, 0.6256

Case 4: Roughness at downstream of the synchronization point, x,=0.410 m; Local boundary layer
thickness 6=3.42x10° m; Roughness height 0.258, 0.3759, 0.59, 0.6250

Figure 2.A schematic of the problem: 1. Roughness 2. Bow Shock 3. Synchronization point 4.
Boundary layer 5. Pure Mode S or Mode F perturbation based on LST results, or pulse case.

Figure 2 shows the schematic of the numerical simulation. Figure 3 shows that pressure contour and
streamline pattern for case 2 in which roughness is located at x =0.185m . A strong compression region is
observed upstream of roughness. Around the roughness, Mach waves are generated, and they travel
downstream at an angle almost parallel to the shock. In the downstream vicinity of roughness, expansion
waves can be seen. Moreover, streamline pattern shows that roughness introduces circulation in the
vicinity around roughness. As Figure 3 shown, the size of such circulation is bigger in the upstream
region of roughness. Bigger roughness also results a bigger circulation. Mach number contour is shown in
Figure 4. It shows that roughness increases the Mach number boundary layer. Similar to the paper by
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Klebanoff [23], we are interested in the region upstream and downstream of a roughness where the flow is
distorted by the existence of the roughness. Figure 5 to Figure 8 shows the streamwise velocity profile
upstream of roughness for case 2 with different roughness heights at different streamwise locations. The
symbols in the figure represent the velocity profile for the case with roughness, while lines represent the
profile for a flatplate without roughness. The figures clearly show that a bigger roughness not only
increases boundary layer thickness. It also extends the size of region where one can ‘feel’ the existence of
roughness. For example, the tallest roughness can affect of flow upstream at x =0.1446m , while the
shortest roughness can only have effect up to x=0.1671m . The same trend is observed downstream of the
roughness as shown in Figure 9 to Figure 12. For the shortest roughness case, the distortion is weak. The
recovery zone only extends to X =0.21683m. As the roughness gets bigger, the distortion gets stronger
and the separation region becomes more obvious. The size of recovery zone consequentially becomes
bigger. In our tallest roughness case, it extends to x = 0.24135m .

g1
x (m) x(m)

Figure 3. Pressure contour and streamline pattern around different roughness.
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Figure 6.Streamwise velocity profile at different locations upstream of 37.5% roughness compared
with no roughness case.
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with no roughness case.
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4.3. Stability characteristics of boundary layer without roughness

Stability characteristics of boundary-layer waves of the Mach 5.92 flow is studied by LST using a multi-
domain spectral method of Malik [24]. The dimensionless frequency used for linear stability analysis is
defined as

_2xfv
T2

o0

F (14)

u

Where F is dimensionless frequency, Vv is kinematic viscous coefficient. In present simulation,
V=6.05x10"m*/s, F =5.30x10" for the case of f =100KHzand u_ =827.29m/s.

In LST analyses of boundary layer flows, the Reynolds number based on the local length scale of
boundary layer thickness ¢ . They are expressed as
R — pwuocé‘ 5 — /’l:x:X

15
D (15)

0

Hence the relation between R and the unit Reynolds number R_ is,
(16)

With the definitions of Reynolds number R and the dimensionless frequency F , the dimensionless
circular frequency @ can also be expressed as,
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Figure 13 shows the eigenvalue spectra of boundary-layer waves at a frequency of 100 KHz at x =
0.189 m. The figure shows wave spectra corresponding to fast acoustic wave, entropy and vorticity waves,
and slow acoustic wave. The two discrete waves marked by circles are modes F and S, respectively. Mode
F originates from fast acoustic spectrum on the left side of the figure and passes entropy and vorticity
spectra at the center as dimensionless frequency increases. Mode S originates from slow acoustic
spectrum on the right side of the figure. It becomes unstable in certain range of dimensionless frequency.
The figure also shows that mode S at this frequency is unstable at x = 0.189 m with ¢; <0.
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Figure 13. Eigenvalue spectra of boundary-layer waves at the frequency of =100 kHz at x=0.189 m.

Figure 14 shows phase velocities of boundary-layer waves at two locations of x=0.159m and
x=0.189m as a function of circular frequency. The three horizontal dashed lines represent phase
velocities of fast acoustic wave, entropy and vorticity waves, and slow acoustic wave, respectively. The
excellent agreement of phase velocities at two different locations indicates that phase velocity is
approximately a function of circular frequency only. The figure clearly shows that mode F originates from
fast acoustic spectrum. As @ increases, phase velocity of mode F decreases. When mode F passes
entropy and vorticity spectra near w= 0.1, there exists a jump of phase velocity, which is consistent with
theoretical analysis of Fedorov and Khokhlov [25]. On the other hand, mode S originates from slow
acoustic spectrum. The figure also shows that mode S synchronizes with mode F at the point of @, =

0.11563 and a,= 0.93076.
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Although Figure 14 shows that the synchronization point has a constant value of circular frequency
@, =0.11563, the location of the synchronization point in x coordinate, X, are different for different

dimensionless frequencies F. The synchronization location in x coordinate for a given dimensionless
frequency can be calculated using the following formula:
(e /F)°
X, =—" (18)
Re,,

This equation indicates that the synchronization point moves upstream with dimensionless frequency
increasing. Figure 15 shows growth rates of modes F and S at the same set of locations as a function of
circular frequency. The horizontal dotted line stands for neutral waves ¢; = 0. In Figure 15 the growth
rates of either mode S or mode F are approximately functions of circular frequency only. Mode S is

unstable in the region from @, = 0.00827 to @, = 0.18465, whereas mode F is always stable. The
parameters o, and o, are called branches I and II neutral points of mode S. The locations of branches I
and II neutral points in x coordinate, which changes with different dimensionless frequencies, can be

calculated by
FY F)’
Re Re

0 0

Eq. (19) indicates that when non-dimensionalized frequency (F) increases, the corresponding
coordinates of branch points decrease. In other words, branches I and II neutral points move upstream
when F increases. For wall blowing-suction disturbance at the frequency of f =100KHz , the branch I
and the branch II neutral points are located at 0.00678977m and 3.384887m. More results on the LST
analysis on the meanflow without roughness can be found in Wang and Zhong’s paper [26].
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4.4. The effect of roughness on Mode S perturbation

Mode S perturbation is imposed into the meanflow. In order to study the evolution of the
perturbation in streamwise direction, an FFT analysis is performed on the unsteady simulations.
Figure 16 (a) and (b) show the growth of mode S pressure perturbation on the wall for case 1 and
case 2 respectively. The data for each roughness height is also included on each plot. Here, the
symbol hrepresents the local boundary layer thickness. Since the algorithm of cut cell method
doesn’t solve for the grid point inside solid region, all perturbation drops back to zero inside the
roughness element. That is responsible for the discontinuity in the plot. The roughness of case 1
and case 2 are located upstream of synchronization point at X, =0.1101m and x, =0.185m

respectively. In Figure 16 (a), we can see the perturbation for 0.375h roughness is damped a little
bit in front of roughness before it starts to grow. The physical explanation for this is not known.
However, for all other roughness height, roughness upstream of synchronization point always
amplifies perturbation upstream of roughness. The amplification rate depends strongly on the
size of roughness. For example, in roughness height 0.25h of case 2, the maximum amplitude is
just about 3 times the case without roughness. On the other hand, in the biggest roughness case,
the jump in perturbation amplitude reaches as high as 13 times without roughness. This
amplification in the separation region upstream of roughness agrees with the result by Marxen et
al [27].

Downstream of roughness, evolution of perturbation has different trend depending on
roughness location. In case 1, perturbation returns to the level as if there is no roughness.
However, in case 2 (Figure 16 (b)), roughness height controls how perturbation grows
downstream of roughness. It is found that perturbation is amplified for tall roughness (0.5h and
0.625h). For small roughness, perturbation remains the same as no roughness case. In general,
roughness element at this location has more pronounced amplification effect in the vicinity
upstream of roughness than downstream. Moreover, if roughness is placed too upstream of
synchronization point, roughness tends to have very small effect on modal growth.

As roughness moves closer to the synchronization point in case 3 and case 4, we observed
different trend for the growth of pressure perturbation. In Figure 16 (c), the roughness sits at
exactly the synchronization point of the perturbation frequency. The perturbation for the smallest
roughness, 0.25h, is still amplified and grows downstream as if there is no roughness. However,
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for taller roughness, perturbation only grows in far upstream region. As the perturbation gets
closer to the roughness, it starts to be damped suddenly. The location where the damping starts
depends on roughness height. In 0.375h case, damping starts at around x=0.317m . When
roughness height is increased to 0.5h, the onset of damping moves to around x=0.309m .
Further increase roughness height to 0.625h moves it to even more upstream x = 0.303m. In the
region between the onset of damping and roughness, strong modulation of different modes is
observed. Since modulation does not exist for the case without roughness, the modes which
interact with the imposed mode must be generated by the roughness. Downstream of the
roughness, perturbation in small roughness case (0.25h ) follows the trend as no roughness case.
On the other hand, perturbation is highly damped in tall roughness cases. The bigger the
roughness is, the weaker pressure perturbation is compared with the case without roughness. Tall
roughness in the location acts as a perturbation damper of the imposed mode instead of an
amplifier like in case 1 and case 2.

In the final test case, the roughness is moved to even further downstream to x=0.410m,
which is behind the synchronization point of the imposed frequency. Figure 16 (d) shows how
pressure perturbation interacts with different roughness height at this location. Similar to case 3,
perturbation is amplified far upstream of roughness, but is all damped when it gets close to the
vicinity of roughness. One difference between this case and case 3 is for all roughness height,
damping effect is observed. In addition, the location of the onset of damping moves to more
upstream than in case 3. In the region behind roughness, perturbation for all cases stays on the
same level and does not grow at all, which is significantly different from case 3. Judging from
this result, we can say that roughness in this location acts as a more effective perturbation
damper of the imposed mode than in case 3, which can potentially stabilize the flow.
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Figure 16. Evolution of Mode S pressure wall-perturbations with different roughness height. (a) casel roughness at
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4.5. The effect of roughness on the perturbation of different frequencies

In our previous study [20], perturbation mode corresponding to mode S and mode F at 100KHz have been
imposed into the meanflow separately. In this paper, it is of interest that how roughness affects
disturbance at different frequency. Therefore, a perturbation with a wide range of frequency is also
imposed into the meanflow. An example of such perturbation is a Gaussian shape pulse perturbation. A
hole is modeled on the flatplate located at X =0.1m with a width of0.003m. The hole introduces wall
normal velocity in the flow. At each grid point, the perturbation is Gaussian in time, as shown in Figure
17(a). However, in order not to introduce any additional mass into the meanflow, the perturbation is
sinusoidal in space as shown in Figure 17(b).Figure 17(c) shows the FFT spectrum of the perturbation. It
can be seen that the pulse has a frequency range around 1MHz , which is broad enough to cover the most
unstable modes in the flow.

This pulse model is implemented into the meanflow of case 2 in which roughness locates at
x=0.185m . Figure 18 shows the pressure perturbation contour resulted from the pulse for 50%
boundary layer thickness roughness case. The hole and roughness are also shown. Figure 19 shows the
pressure perturbation at different locations. It is seen that besides the excited perturbation on the wall
region. The wall normal velocity pulse has also created perturbation outside of boundary layer. However,
this perturbation is weak and it decays fast outside of boundary layer. The pulse also excites the flow
inside the boundary layer and creates pressure perturbation on the wall with pattern similar to mode S or
mode F in the previous section. Yet this perturbation is not periodic due to the Gaussian shape of the
pulse. Figure 20 shows the time history of pressure wall perturbation at various streamwise locations
upstream of 50% boundary layer roughness. Initially, the front part of the wave pack is amplified as it
travels closer to the roughness. Meanwhile, the tail part is slightly damped. When the wave pack travels
further, for example at 0.18285m, the front part is also damped while the tail part is highly damped. Since
this pulse comprises a wide range of frequency, an FFT analysis is performed to get a better
understanding of the relation between roughness and perturbation frequency. Figure 21 shows the
frequency spectra of the pulse at the same locations as in Figure 20. The results for both with roughness
and without roughness are included. The location of roughness in this case, x =0.185m, corresponds to
the location of synchronization point for perturbation at frequency 133.26KHz which is highlighted in
Figure 21(a). It is seen that in the upstream region of roughness, perturbations at frequency from 0Hz to
120KHz are amplified compared with the no roughness case. Moreover, the peak observed in Figure
21(b) around f =165KHz has switched to a lower frequency region around f =125KHz at
x =0.17385m with roughness. This shift can be explained by the increase of boundary layer thickness due
to existence of roughness. Since the wavelength of second mode is related to the boundary layer
thickness, a thicker boundary layer produces a longer second mode wavelength and thus the frequency
becomes lower. This result also agrees with Marxen et al [27] in which states that roughness can move the
second mode instability to lower frequency region. At x = 0.18285m, the perturbation arrives at a location
just upstream of roughness. It can be seen that the perturbation at frequency around f =133.26KHz (

116KHz to 155KHz ) is strongly damped. The lowest part of the FFT result is at f =140KHz , which is
very close to the synchronization point frequency.
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Figure 22 shows time history of wall perturbation at different x location behind the roughness. The
front part of the wave starts to grow again once it has passed the roughness. However, the tail part still
exhibits some sort of damping effect due to the roughness. At x =0.21735m, the tail part of the wave has
reached its lowest amplitude and it starts to grow thereafter. The growth at the tail part has become
stronger than the front part after it has reached it minimum. A detail FFT analysis on such perturbation is
shown in Figure 23(a). Figure 23(b) shows the FFT results of the same locations without roughness. At
x=0.19635m, a location just behind the roughness, perturbation at frequency around 120KHz to
100KHz is amplified compared with no roughness. However, frequencies around 133.26KHz are all
highly damped. The frequency range of this damping effect is from around 120KHz to 170KHz . It can
also be seen that the strongest damping occurs very close to the synchronization point frequency. As the
perturbation travels downstream, the high frequency perturbation (around 140KHz to170KHz ) that has
been damped in the previous location drops even further. Meanwhile, perturbation at frequency around
133.26KHz starts to grow at a slow rate. For the amplified perturbation at frequency around120KHz , the
growth is very strong, and the perturbation amplitude is always greater than the no roughness case. The
FFT results from upstream and downstream of roughness shows that a two dimensional roughness is
capable of amplifying perturbation at frequency lower than the synchronization frequency, while it damps
frequency close to and higher than the synchronization frequency.

Figure 24 shows the normalized amplitude of wall pressure perturbation at three different frequencies.
In particular, we are interested in the frequencies higher than, close to and lower than the synchronization
point frequency133.26KHz. Therefore, 120KHz 130KHz and 140KHz are chosen. For comparison, their
evolution in the case without roughness is also included. It can be clearly seen that at 120KHz ,
perturbation is highly amplified due to the roughness. At the end of the figure, its amplitude is almost
twice than the case without roughness. This trend is very similar to the one obtained for our mode S case
2 shown in Figure 16 (b) .However, perturbation at 130KHz , which is close to the synchronization
frequency, is damped compared with no roughness. Without roughness, perturbation at this frequency
grows exponentially and it reaches normalized amplitude almost 4 at the end of the figure. With
roughness, this perturbation is amplified a little bit far upstream of roughness. As it gets closer to the
roughness, it starts to be damped significantly. Its normalized amplitude only reaches about 2.5 at the end
of the figure. This result compares very well with the mode S case in which roughness is placed at the
synchronization point as shown in Figure 16 (c). For perturbation at 140KHz , the damping effect is even
more pronounced than the previous case. As shown in Figure 24 (c), its normalized amplitude grows to
around 8 without roughness. On the other hand, with the existence of roughness, the amplitude level stays
at around 2 at the end of the figure. Again, this result agrees very well with our mode S case 4 which
roughness is placed downstream of synchronization point as shown in Figure 16 (d).

The agreement between results obtained from the pulse case and mode S case can be explained by the
analogy of imposing different frequencies and changing roughness location. Equation (18) implies the
position of synchronization point is inverse proportion to non-dimensional frequency. Therefore,
roughness at different location corresponds to the synchronization points of different frequencies.
Namely, an upstream location corresponds to the synchronization point of high frequency. In our mode S
case, four different roughness locations have been considered but only one frequency of perturbation is
imposed. The results show that upstream of synchronization point for the perturbation frequency, the
perturbation is amplified. However, as roughness is placed close to or downstream of synchronization
point, the perturbation is damped. In the pulse case, roughness location is fixed. Instead, perturbation of a
wide range of frequency is imposed. Therefore, the location of roughness is the synchronization point of
one particular frequency (133.26KHz) in this case. In the view of perturbation which frequency is below
133.26KHz, the roughness location is the same as upstream of its synchronization point. As a result, the
amplified perturbation at around 120KHz is consistent with the previous conclusion. On the other hand, in
the view of perturbation which frequency is higher than 133.26KHz, the roughness location is located
downstream of its synchronization points. The damping effect observed for 140KHz supports the previous
conclusion as well. This agreement solidifies our findings.
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4.6. The effect of two roughness elements

Other than one single roughness, a two roughness model is also considered. The first roughness is at the
same location as case 2, x,=0.185 m. The first roughness height is fixed at 50% local boundary layer
thickness. The second roughness is put in the downstream region of first roughness at x,=0.231 m, while
its height is kept the same as the first roughness. The location of first roughness corresponds to the
synchronization point of frequency 133.26KHz , while the location of the second roughness corresponds to
the synchronization point of frequency119.26KHz.

Figure 25 shows the pressure contour of the two roughness meanflow. It is seen that the second
roughness generated the same Mach wave as one roughness case. Moreover, the wave pattern looks very
similar to that for the first roughness. In unsteady simulation, the same pulse model mentioned in the
section 4.5 is implemented into this meanflow. Therefore, the perturbation would have a frequency range
of IMHz as in Figure 17. The pressure perturbation contour is shown in Figure 26. Similar to one
roughness case, it is of interest to study how the perturbation interacts with the two roughness elements.
Figure 27 shows the spatial development of perturbation at different frequency. Same as in Figure 24, the
frequency chosen are 120KHz ,130KHz and 140KHz . Since the location of the second roughness
corresponds to the synchronization point of frequency119.26KHz, it is expected the perturbation at these
three frequencies will be damped after the second roughness. Figure 27 confirms the expectation. It is
shown that the first roughness amplifies 120KHz perturbation since it is upstream of its synchronization
point. However, when the perturbation travels downstream and approaches the second roughness, it starts
to be damped since the roughness locates very close to its synchronization point. Downstream of the
second roughness, the perturbation at 120KHz is weaker than the case without roughness. On the other
hand, both roughness are located downstream of their synchronization point for perturbation at frequency
130KHz and 140KHz . Therefore, the two roughness elements have damping effect on these two
frequencies. Figure 27 (b) and (c) show this trend. It is seen that the damping effect is more pronounced
in two roughness case than in one roughness as seen in Figure 27.
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Figure 25. Pressure contour of two roughness meanflow.
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5. Conclusion

In this paper, we have further investigated the effect of two dimension roughness on modal growth of
perturbation with a wide frequency spectrum on a hypersonic flatplate at Mach 5.92. Both one roughness
element case and two roughness elements case have been studied. The steady flow is simulated by solving
compressible Navier-Stokes equation. In unsteady simulation, a wall normal velocity pulse is modeled
and imposed into the meanflow. Our results confirmed our previous finding in Duan et al, and Fong et al
[18, 20] that roughness is capable of amplifying perturbation at certain frequency if roughness is placed
upstream of the synchronization point of a particular frequency. Meanwhile, if roughness is place
downstream of the synchronization point of a frequency, the perturbation which has higher frequency will
be damped. The agreement between mode S case and pulse case solidified our conclusion. This finding
can provide an explanation of roughness delay transition as shown in some experiments [16, 17].
Moreover, using this information can also give us a new way to control boundary layer transition by using
two dimensional surface roughness. In the future, we will extend our study from two dimensions to three
dimensional roughness effect.
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