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Abstract: We study scalable high-order least-squares reconstruction on arbitrary unstructured
grids. We discuss in particular stencil construction and conditioning of the reconstruction pro-
cedure as a function of the degree of the reconstructing polynomial. The order-of-accuracy of
the schemes is evaluated on different types of unstructured grids by calculating the error of the
solution of the advection equation. Finally, we discuss the spectral accuracy of the reconstruction
procedure.
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1 Introduction

Finite-volume methods are mathematically equivalent [1] to Petrov-Galerkin methods whose test space con-
sists of piecewise constant functions. Several authors [1, 2, 3] have studied the influence of numerical grid on
the accuracy of the reconstruction procedure, both concerning the choice between cell-centered and node-
centered approaches, and various triangulations. Notice that the node-centered control-volumes are formed
by joining together the centroids of all the cells having the node as vertex, ie the node-centered control-
volumes are the dual-grid of the cell-centered mesh. This is analogous to the relation between Delaunay
triangulations and Voronoi tesselations [4].

Therefore the relative advantages of cell-centered and node-centered finite-volume (Fvs) schemes [1]
are best understood, especially for high-order schemes, as the comparison of the relative performance of
high-degree polynomial least-squares approximations [5] on different control volumes, relative to Delauney
triangulations [4] or Voronoi tesselations [4] or some other connectivity between points [2]. We study in the
present paper the performance of very-high-order least-squares reconstruction on different types of general
regular polygonal grids.

2 Reconstruction of a scalar field

The reconstruction of the values of a scalar field from its cell-averages [6, 7, 8] is a particular case of the
optimal recovery theory [1] where some property of an unknown function (feature operator) is sought from a
set of (linear) functionals of the unknown function (information operator). Most finite volume methods are
based on or are higher-order extensions of the basic least squares reconstruction procedure [3]. We formalize,
in the following, polynomial least-squares (LSQ) reconstruction of a scalar field from the knowledge of its
averages on general polygonal cells. We restrict the analysis to polygonal cells with straight edges, but it
is straightforward to extend it to general curvilinear polygons (where the edges are smooth curves) using
appropriate definitions of the Gauss integration points on the edges (quadrature of fluxes) and in the interior
of the polygons (cubature to evaluate averages and moments [9, 10]). The grids considered are conformal,
ie each edge is either a common edge of exactly 2 elements, or a boundary-edge [1]. Since the elements can



IS000980808888088888888884

N
S

QSIIIIIIIIIIZ
RS
S

QSIS

NN

¥
i
i
S

SIS

N

N
S

SRRNaNE

SNRRNRNNY

S
S

S

\\\\\\‘\\l\\

INONN
it

SRS

33
SRRRNNREY

INONN

ISORNNN

&\\\\l\\\

INONNN
QIIIIIJIIS

3
SIS

QIIIIIIIIIS
RN
SIS

S
S8

ISR

&3
S
&3
N
SN

SRR
SRR

2
oo,
&
2

o
100880980808888880888808988888
10088988808 88888988888889888884
i

N

3
SN
a8

9808898888888

Figure 1: Examples of different triangular and general polygonal grids (dual to the triagular), obtained from
a basic underlying Cartesian grid.

be arbitrary polygons, with different numbers of edges, all hanging nodes, eventually present in the grid, are
eliminated by dividing the corresponding edge into 2 or more edges.

2.1 Basic mathematical tools

2.1.1 Polynomial p(z,y) € Ry[(z,y)]

An algebraic polynomial of (z,y) € R?, with real coefficients, of degree M reads

and has (

M2
2

) coefficients

M m
pley) = D> armealy™

m=0 £=0
M m
= a0+ Y Y armga'y™ (1)
m=1 £=0
ang = [CLO,O’ y Ak 5 ) a‘O,M] ]T (2)
~~ ~—~—
o=l me(tR) (M)



Figure 2: Typical stencils, for the M 4+ 1 = 10 LSQ reconstruction, for various computational grids (Fig. 1),
constructed by adding successive levels of von Neumann neighbours to the previous level of the stencil (each
colour corresponds to a level of neighbours).

where, for practical purposes, when building linear systems for the computation of the coefficients, we use
instead the coefficient index

ne(l, k) = <€+§+1>+k+1 e{1,.-.,<M2+2)}
0k €{0,---, M} (3)

defining the row-index of the column-vector ay; (eq. 2) corresponding to the coefficient asj of the powers
z'y™= % in (eq. 1). If a scalar field is reconstructed for a polynomial of degree M, then, provided all cubature
and quadrature operations are exact for a polynomial of degree M, the resulting finite-volume method is
O(A0MT1) Al being a characteristic cell-size.



2.1.2 Quadrature and Cubature

The finite-volume reconstruction-based algorithm requires integration operations, both quadrature on the
edges of an element (all elements considered in the present work are polygons with straight edges) and
cubature on the surface of the element. In both cases we used Gauss-integration.

2.1.2.1 Quadrature For the computation of integrals on a segment, we used Gauss-Legendre quadra-
ture, accurate to O(AM+1) (exact for polynomials of degree M)

Ps L4 ]+1

f(xay) = d£P1P2 = |:Z:2 - fl' Z

Ne=1

M+1
Py ng,L%J+1f($nGPIP2uynGP1P2) +O(Af ) (4)

where P; P is the segment defined by the distinc points p; = (21,y1) and ps = (22,y2) and w,,_ are the
weights corresponding to the Gauss-Legendre quadrature points on pips

1
Wney = §1DGL(”G7 N) (5)
S Lo, 1 Lo
Tney,y = T1F ig(nG, N)(&y — #1) (6)

The weights and locations of the Gauss-Legendre quadrature points are available in many textbooks, and
can be easily computed using symbolic calculation. They were tabulated for completeness (Tab. 1) with
69-digit accuracy (when simple analytical expressions were not available).

Notice that, for nonlinear conservation laws, the Gauss points on the edge of an element determine the
points where the exact or approximate Riemann solver is applied so that the Gauss-Legendre points, which
are symmetrically distributed around the edge-midpoint and do not contain the edges, are a good choice.

2.1.2.2 Cubature Cubature (surface integration) is necessary to determine the relation between the
coefficients of the reconstructing polynomial and its cell-averages. Therefore, as long as the cubature used
is exact for the chosen degree M of the reconstructing polynomial (which determines the order-of-accuracy
of the scheme, the particular Gauss cubature used has no influence on the solution.

In the present computations, we used the cubature locations and weights defined by Dunavant [11],
following the moments approach of Cowper [12]. For a triangular element Qa := Ap, p, p,

Ngy,
/ f z y)dl'dy - AQA Z f ‘T"G M? y"lc M)wnc M (7)
Qa Ne=1
where
fnG,M = ClnG’Mfl + CQnG,MfQ + CBTLQ,MfB (8)

are the Gauss points providing exact cubature on the triangle for polynomials of degree < M, with wy,
the corresponding weights and ¢y, ,,, c2,_,,, ¢3,,, the corresponding barycentric coordinates (these were
tabulated up to M = 20 by Dunavant [11]) The cubature rules for some M € {1,20} given in [11] include
some cases with negative weights (N[11]) or with Gauss points outside of the triangle (0[11]). In the present
work, these rules (M € {3,7,11,15, 16, 18}) were replaced by the higher-order rules (M € {4,8,12,17,17,19}
respectively). This gives fully symmetric (in barycentric coordinates) and PI (positive weights and Gauss
points inside the triangle [11]) rules up to M = 19, which corresponds to the O(A¢?°) scheme. Notice, that
such symmetric PI rules for cubature on the triangle can also be used for face-integration in the 3-D extension
of the method.



nom LLEG,m WGAUSLEG
1 1 0 2
1
2 1 — ? 1
2 +§ 1
3 5
3 1 - 3
2 0 8
\/§ 5
3 +¥2 3
4 1 _ V/15+42V30 49
V35 6(18++/30)
2 _ V15-2V30 49
V35 6(18—+/30)
3 + 15—2v/30 49
V35 6(18—+/30)
4 + 15+2v/30 49
V35 6(18-++/30)
5 1 vV 354270 5103
3v7 50(322413+/70)
9 _ \/35-2v70 5103
3V7 50(322—131/70)
3 0 128
225
9 + 35—270 5103
3V7T 50(322—131/70)
5 + 1/ 354270 5103
3V7 50(322+13/70)
6 1 —0.932469514203152027812301554493994609134765737712289824872549616526613 ...  0.171324492379170345040296142172732893526822501484043982398635439798945 . . .
2 —0.661209386466264513661399595019905347006448564395170070814526705852183 ...  0.360761573048138607569833513837716111661521892746745482289739240237140 ...
3  —0.238619186083196908630501721680711935418610630140021350181395164574274 ...  0.467913934572691047389870343989550994811655605769210535311625319963914 . . .
4 40.238619186083196908630501721680711935418610630140021350181395164574274 ...  0.467913934572691047389870343989550994811655605769210535311625319963914 . . .
5 +0.661209386466264513661399595019905347006448564395170070814526705852183 ...  0.360761573048138607569833513837716111661521892746745482289739240237140 ...
6 +0.932469514203152027812301554493994609134765737712289824872549616526613 ...  0.171324492379170345040296142172732893526822501484043982398635439798945 . . .
7 1 —0.949107912342758524526189684047851262400770937670617783548769103913063 ... 0.129484966168869693270611432679082018328587402259946663977208638724655 . . .
2 —0.741531185599394439863864773280788407074147647141390260119955351967429 ...  0.279705391489276667901467771423779582486925065226598764537014032693618 . . .
3 —0.405845151377397166906606412076961463347382014099370126387043251794663 ...  0.381830050505118944950369775488975133878365083533862734751083451030705 .. .
4 0 0.417959183673469387755102040816326530612244897959183673469387755102040 . . .
5  +0.405845151377397166906606412076961463347382014099370126387043251794663 ...  0.381830050505118944950369775488975133878365083533862734751083451030705 . . .
6 +0.741531185599394439863864773280788407074147647141390260119955351967429 ... 0.279705391489276667901467771423779582486925065226598764537014032693618 . . .
7 +0.949107912342758524526189684047851262400770937670617783548769103913063 ...  0.129484966168869693270611432679082018328587402259946663977208638724655 . . .
8 1 —0.960289856497536231683560868569472990428235234301452038271639777372424 ...  0.101228536290376259152531354309962190115394091051684957059003698064740 . . .
2
3
4
5
6
7
8

—0.796666477413626739591553936475830436837171731615964832070170295039217 . ..
—0.525532409916328985817739049189246349041964243120392857750857099272454 . . .
—0.183434642495649804939476142360183980666757812912973782317188473699204 . . .
+0.183434642495649804939476142360183980666757812912973782317188473699204 . . .
+0.525532409916328985817739049189246349041964243120392857750857099272454 . . .
+0.796666477413626739591553936475830436837171731615964832070170295039217 . ..
-+0.960289856497536231683560868569472990428235234301452038271639777372424 . ..

0.222381034453374470544355994426240884430130870051249564725909289293616 . . .
0.313706645877887287337962201986601313260328999002734937690263945074656 . . .
0.362683783378361982965150449277195612194146039894330540524823067566686 . . .
0.362683783378361982965150449277195612194146039894330540524823067566686 . . .
0.313706645877887287337962201986601313260328999002734937690263945074956 . . .
0.222381034453374470544355994426240884430130870051249564725909289293616 . . .
0.101228536290376259152531354309962190115394091051684957059003698064740 . . .

Table 1: Roots z,xe,,, of Legendre polynomials py g, (x) for n € {1,---,8}, and associated weights weayspee,,, for Gauss-Legendre quadrature.



Finally, in the case of polygonal elements €2, we may simply split the elements into triangle defined by
the centroid of the polygone and each edge

Nedge
Q= |J Ascone 9)
Nedge =1
and apply the rules (eq. 7) for each triangle
Nedgeg
[ [ rewdzay = 3> [ [ sz (10)
Q Medge=1 BC:Medge

Neg,
= AQ Z f(a:ncn ) yan )wncg (]']')

Ne=1

where the weights for the integration on the polygons are readily assembled from the cubature rules on each
triangle.

Notice that, for the 2-D case studied here, the cubature operation is only required to compute the least-
squares matrix, whose inversion determines the coefficients of the reconstructing polynomial, so that, if the
grid is fixed in time, the cubature cost is not relevant.

2.1.3 Least squares reconstruction

Reconstruction [7] consists in approximating a function u(x,y) from information concerning the values of a
(linear) functional of uw at several distinct locations. In the finite-volume case (Petrov-Galerkin finite-elements
with constant test functions [1]) the functional is the cell-average of u(z,y) on the element 2,

1
uq, = —// u(w, y)dzdy (12)
Aq, Q,

Given a stencil around the element €,,,

Sp 1= {Qn} U Sngbn (13)
Sngb,, = {Qngb17 T 7Qnngng } (14)

b’!l
containing the element and N,g, neighbours, the reconstruction problem approximates u(x,y) from the
values of the averages {@m;m € Spg} of the elements in the stencil. In the least-squares approach of [5]
which is widely used the approximating (reconstructing) polynomial pg s, (2, y) satisfies exactly the value
of the average @, in the cell n, and in a least-squares sense the value of the average on the other cells of the
stencil

1
A—// PR,M,sn(%y)dfdy:ﬂQn (15)
Q. Qn

M:o VOke {0, M}: £+k<M (16)
aa’RvM»Sn»Z;k
1 2
JLSQ’R’M’S" = Z wESQQm,Qn [H/L pR,M,Sn(xvy)dIdy_an (17)

MESngb,,

Many authors use distance weighting. In the present paper, we used unweighted least-squares

Wisqq,, q, = 1 (18)



3 Results

As an example, consider linear (in the sense of Godunov’s theorem [13]) least-squares schemes [5] for the 2-D
advection equation on a square domain (Fig. 1). The points of a regular Cartesian grid can be triangulated
in different ways (Fig. 1), and the dual-grids composed by the control-volumes constructed by joining the
barycenters of the cells around each vertex are general polygonal grids (Fig. 1), while the dual of a basic
quasi-Delauney triangulation with equilateral triangles is a quasi-Voronoi tesselation of the square (Fig. 1).
The stencil was constructed using successive levels of neighbours (Fig. 2). Level fyqs = 1 consists of the
edge-neighbours (von Neumann neighbours) of the element (Fig. 2). For any given level £yqs € {1, -, Lygs}
of stencil construction, the next level fygp + 1 is constructed by adding the edge-neighbours of the elements
belonging to the lygp-level (Fig. 2). The minimum requirement is that the number of neighbours

NNGB Z (M;— 1) -1 (19)

be larger than the coefficients of the polynomial. This necessary condition is not always sufficient, because
in some instances the reconstruction matrix A.gq is singular. For all the cases studied (M < 9), when A,sq
was found singular, adding one more level of neighbours suffices to solve the problem.

Comparison of the numerical solution of the 2-D advection equation with the analytical solution, on
progressively refined grids of each type (Figs. 3-9), indicates that O(A¢¥*1)-accuracy is always obtained for
polynomial reconstruction of degree M. Accuracy for a given level of grid refinement, is higher when the
number of neighbours is closest to the equality in (eq. 19).

In order to compare the performance of different grids, as they are progressively refined, a common mea-
sure of grid-size is required. Often, when considering triangular grids, the triangle diameter (circumradius)
is used. Nonetheless, for irregular polygons, the extension of this definition is not unique, and, eg, defining
the cell-size as the largest circumradius of all triangles constructed from any possible triplet of the vertices
of the polygon may yield very large values for skew cells (Fig. 9). For this reason, it was prefered to define

the size of polygon Q,,, with vertices Vo, := {Z1,--- ,Zn, } as the maximum Euclidian distance between 2
vertices
Aan = ﬂmax ||£Z"g —fm||2 (20)
Te€Va,
Zm€Va,

and the representative grid-size as the maximum cell-size

Afg = max Aan (21)
Pn€G
Plotting the error for the advection problem as a function of A/¢, for the various grids studied, provides
counsistant results between various grids (Fig. 10). Notice that the finite-volume LSQ-reconstruction results
on the Cartesian grid, are very close to the upwind-biased finite-difference computations [14] on the same
grid (Fig. 10).

As the order of accuracy M +1 increases, the condition number of A s, increases, roughly as condoo Apsq ~

3
102(v—2) (Fig. 11). Notice that cond.cA,sq for the quasi-equilateral triangles grid is substantially lower
(better conditioning) compared to the other grids, as M + 1 increases.
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Figure 3: Lo.-norm error Ez_ and rate-of-convergence Tonvrar s 88 @ function of the number of grid-cells
N, = N; —1 = N; — 1 of the underlying Cartesian grid, for the difference from the analytical solution of
numerical computations of for the 2-D linear advection equation 0; + dyu+0yu =0 (z € [-1,1], y € [-1,1]),
with periodic BCs, and I1C up(x) = sin (7(z + y)), using LSQ reconstruction, on a Cartesian finite-volume
grid, for various orders M + 1 € {2,---,10}, and ¢sSPRK(M + 2, M + 1) time-integration [15] with CFL =
AtAx = AtAy L = 1%, on progressively refined computational grids.
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(sSPRK(M + 2, M + 1) time-integration [15] with CFL = AtAzgl,, = AtAycl . = 2, on progressively
refined computational grids.
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refined computational grids.
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N, = N; —1 = N; — 1 of the underlying Cartesian grid, for the difference from the analytical solution of
numerical computations of the advection equation, for the 2-D linear advection equation 0; + 0,u + dyu =0
(x € [-1,1], y € [-1,1]), with periodic BCs, and IC ug(z) = sin (w(x + y)), using LSQ reconstruction, on the
finite-volume dual grid of the cross-orthogonal triangles mesh (Fig. 6), for various orders M +1 € {2,--- ,10},
and (SSPRK(M + 2, M + 1) time-integration [15] with CFL = AtAz L, = AtAyg L, = &, on progressively
refined computational grids.
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Figure 8: Lo.-norm error Ez_ and rate-of-convergence Tonvrar s 88 @ function of the number of grid-cells
N, = N; —1 = N; — 1 of the underlying Cartesian grid, for the difference from the analytical solution of
numerical computations of the advection equation, for the 2-D linear advection equation d; + 0,u + Oyu =0
(x € [-1,1], y € [-1,1]), with periodic BCs, and 1C up(x) = sin (7(z + y)), using LSQ reconstruction, on a
finite-volume grid of orthogonal triangles obtained by destructuring a Cartesian mesh (type III of [2]), for

various orders M +1 € {2,---,10}, and ¢SSPRK(M +2, M + 1) time-integration [15] with cFL = AtAz_ L. =
on progressively refined computational grids.
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Figure 9: Lo.-norm error Ez_ and rate-of-convergence Tonvrar s 88 @ function of the number of grid-cells
N, = N; —1 = N; — 1 of the underlying Cartesian grid, for the difference from the analytical solution of
numerical computations of the advection equation, for the 2-D linear advection equation 0; + 0,u + dyu =0
(x € [-1,1], y € [-1,1]), with periodic BCs, and IC ug(z) = sin (w(x + y)), using LSQ reconstruction, on the
finite-volume dual grid of the orthogonal triangles mesh (Fig. 8), for various orders M + 1 € {2,---,10},
and (sSPRK(M + 2, M + 1) time-integration [15] with CFL = AtAz L, = AtAyg L, = &, on progressively
refined computational grids.
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Figure 10: Comparison of the evolution of the error of the computations (Figs. 3-9) of the 2-D linear advection
equation 0y + O,u + dyu = 0 (xz € [-1,1], y € [-1,1]), with periodic BCs, and 1C ug(x) = sin (7w (z + y)),
between different types of grids (Fig. 1), for various orders (M + 1 € {2,---,10}), as a function of grid-size
A/l (dotted green line with +, is the upwind-biased finite-difference solution on the corresponding Cartesian
grid [14].
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Figure 11: Evolution with order-of-accuracy (M + 1), of the condition number of the reconstruction matrix
(logipcondacALsq), of the number of neighbours in the stencil Nygs and of the number of edge-neighbours
levels of von Neumann neighbours used to construct the stencil Lygg, for different types of regular polygonal
grids.

4 Conclusion

In the present work we studied the order-of-accuracy of linear schemes on general unstructured meshes, The
theoretical O(A¢¥*1)-accuracy was always obtained for polynomial reconstruction degree M, but the level
of the error for a given grid-size is sensitive to the computational grid (skew hexagonal grid being the worst).

Current work concentrates on representing the spectral accuracy of least-squares-reconstruction for dif-
ferent grids, developing a WENO reconstruction approach of scalable order on arbitrary grids (choice of
substencils) and the evaluation of LsQ reconstruction for arbitrary curved polygons.
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