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High-order �nite-volume reonstrution on arbitraryunstrutured gridsG.A. Gerolymos∗ and I. Vallet∗Corresponding author: isabelle.vallet�upm.fr

∗ Université Pierre-et-Marie-Curie, 4 plae Jussieu, 75005 Paris, Frane.Abstrat: We study salable high-order least-squares reonstrution on arbitrary unstruturedgrids. We disuss in partiular stenil onstrution and onditioning of the reonstrution pro-edure as a funtion of the degree of the reonstruting polynomial. The order-of-auray ofthe shemes is evaluated on di�erent types of unstrutured grids by alulating the error of thesolution of the advetion equation. Finally, we disuss the spetral auray of the reonstrutionproedure.Keywords: High-Order Shemes, Unstrutured Meshes, Multidimensional Least-Squares Reon-strution, Advetion Equation.1 IntrodutionFinite-volume methods are mathematially equivalent [1℄ to Petrov-Galerkin methods whose test spae on-sists of pieewise onstant funtions. Several authors [1, 2, 3℄ have studied the in�uene of numerial grid onthe auray of the reonstrution proedure, both onerning the hoie between ell-entered and node-entered approahes, and various triangulations. Notie that the node-entered ontrol-volumes are formedby joining together the entroids of all the ells having the node as vertex, ie the node-entered ontrol-volumes are the dual-grid of the ell-entered mesh. This is analogous to the relation between Delaunaytriangulations and Voronoi tesselations [4℄.Therefore the relative advantages of ell-entered and node-entered �nite-volume (fvs) shemes [1℄are best understood, espeially for high-order shemes, as the omparison of the relative performane ofhigh-degree polynomial least-squares approximations [5℄ on di�erent ontrol volumes, relative to Delauneytriangulations [4℄ or Voronoi tesselations [4℄ or some other onnetivity between points [2℄. We study in thepresent paper the performane of very-high-order least-squares reonstrution on di�erent types of generalregular polygonal grids.2 Reonstrution of a salar �eldThe reonstrution of the values of a salar �eld from its ell-averages [6, 7, 8℄ is a partiular ase of theoptimal reovery theory [1℄ where some property of an unknown funtion (feature operator) is sought from aset of (linear) funtionals of the unknown funtion (information operator). Most �nite volume methods arebased on or are higher-order extensions of the basi least squares reonstrution proedure [3℄. We formalize,in the following, polynomial least-squares (lsq) reonstrution of a salar �eld from the knowledge of itsaverages on general polygonal ells. We restrit the analysis to polygonal ells with straight edges, but itis straightforward to extend it to general urvilinear polygons (where the edges are smooth urves) usingappropriate de�nitions of the Gauss integration points on the edges (quadrature of �uxes) and in the interiorof the polygons (ubature to evaluate averages and moments [9, 10℄). The grids onsidered are onformal,ie eah edge is either a ommon edge of exatly 2 elements, or a boundary-edge [1℄. Sine the elements an1
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Figure 1: Examples of di�erent triangular and general polygonal grids (dual to the triagular), obtained froma basi underlying Cartesian grid.be arbitrary polygons, with di�erent numbers of edges, all hanging nodes, eventually present in the grid, areeliminated by dividing the orresponding edge into 2 or more edges.2.1 Basi mathematial tools2.1.1 Polynomial p(x, y) ∈ Rm[(x, y)]An algebrai polynomial of (x, y) ∈ R
2, with real oe�ients, of degree M reads

p(x, y) =

M∑

m=0

m∑

ℓ=0

aℓ,m−ℓ xℓym−ℓ

= a0,0 +
M∑

m=1

m∑

ℓ=0

aℓ,m−ℓ xℓym−ℓ (1)and has (
M+2

2

) oe�ients
aM := [a0,0

︸︷︷︸

n=1

, · · · , aℓ,k
︸︷︷︸

n(ℓ,k)

, · · · , a0,M℄
︸ ︷︷ ︸

n=(M+2
2 )

]T (2)
2



Figure 2: Typial stenils, for the M + 1 = 10 lsq reonstrution, for various omputational grids (Fig. 1),onstruted by adding suessive levels of von Neumann neighbours to the previous level of the stenil (eaholour orresponds to a level of neighbours).where, for pratial purposes, when building linear systems for the omputation of the oe�ients, we useinstead the oe�ient index
n(ℓ, k) :=

(
ℓ + k + 1

2

)

+ k + 1 ∈ {1, · · · ,

(
M + 2

2

)

}

ℓ, k ∈ {0, · · · , M} (3)de�ning the row-index of the olumn-vetor aM (eq. 2) orresponding to the oe�ient aℓ,k of the powers
xℓym−ℓ in (eq. 1). If a salar �eld is reonstruted for a polynomial of degree M , then, provided all ubatureand quadrature operations are exat for a polynomial of degree M , the resulting �nite-volume method is
O(∆ℓm+1), ∆ℓ being a harateristi ell-size.
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2.1.2 Quadrature and CubatureThe �nite-volume reonstrution-based algorithm requires integration operations, both quadrature on theedges of an element (all elements onsidered in the present work are polygons with straight edges) andubature on the surfae of the element. In both ases we used Gauss-integration.2.1.2.1 Quadrature For the omputation of integrals on a segment, we used Gauss-Legendre quadra-ture, aurate to O(∆ℓm+1) (exat for polynomials of degree M)
∫ P2

P1

f(x, y) = dℓP1P2
= |~x2 − ~x1|

⌊M
2
⌋+1

∑

ng=1

wng,⌊ M
2

⌋+1
f(xngP1P2

, yngP1P2
) + O(∆ℓm+1) (4)where P1P2 is the segment de�ned by the distin points p1 = (x1, y1) and p2 = (x2, y2) and wng are theweights orresponding to the Gauss-Legendre quadrature points on p1p2

wng,n =
1

2
w̌gl(ng, N) (5)

~xngp1p2
= ~x1 +

1

2
ζ(ng, N)(~x2 − ~x1) (6)The weights and loations of the Gauss-Legendre quadrature points are available in many textbooks, andan be easily omputed using symboli alulation. They were tabulated for ompleteness (Tab. 1) with69-digit auray (when simple analytial expressions were not available).Notie that, for nonlinear onservation laws, the Gauss points on the edge of an element determine thepoints where the exat or approximate Riemann solver is applied so that the Gauss-Legendre points, whihare symmetrially distributed around the edge-midpoint and do not ontain the edges, are a good hoie.2.1.2.2 Cubature Cubature (surfae integration) is neessary to determine the relation between theoe�ients of the reonstruting polynomial and its ell-averages. Therefore, as long as the ubature usedis exat for the hosen degree M of the reonstruting polynomial (whih determines the order-of-aurayof the sheme, the partiular Gauss ubature used has no in�uene on the solution.In the present omputations, we used the ubature loations and weights de�ned by Dunavant [11℄,following the moments approah of Cowper [12℄. For a triangular element Ω∆ := ∆P1P2P3

∫ ∫

Ω∆

f(x, y)dxdy = AΩ∆

Ngm∑

ng=1

f(xng,m , yng,m)wng,m (7)where
~xng,m = c1ng,m~x1 + c2ng,m~x2 + c3ng,m~x3 (8)are the Gauss points providing exat ubature on the triangle for polynomials of degree ≤ M , with wng,mthe orresponding weights and c1ng,m , c2ng,m , c3ng,m the orresponding baryentri oordinates (these weretabulated up to M = 20 by Dunavant [11℄). The ubature rules for some M ∈ {1, 20} given in [11℄ inludesome ases with negative weights (n[11℄) or with Gauss points outside of the triangle (o[11℄). In the presentwork, these rules (M ∈ {3, 7, 11, 15, 16, 18}) were replaed by the higher-order rules (M ∈ {4, 8, 12, 17, 17, 19}respetively). This gives fully symmetri (in baryentri oordinates) and pi (positive weights and Gausspoints inside the triangle [11℄) rules up to M = 19, whih orresponds to the O(∆ℓ20) sheme. Notie, thatsuh symmetri pi rules for ubature on the triangle an also be used for fae-integration in the 3-D extensionof the method.
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6 1 −0.932469514203152027812301554493994609134765737712289824872549616526613 . . . 0.171324492379170345040296142172732893526822501484043982398635439798945 . . .

2 −0.661209386466264513661399595019905347006448564395170070814526705852183 . . . 0.360761573048138607569833513837716111661521892746745482289739240237140 . . .

3 −0.238619186083196908630501721680711935418610630140021350181395164574274 . . . 0.467913934572691047389870343989550994811655605769210535311625319963914 . . .

4 +0.238619186083196908630501721680711935418610630140021350181395164574274 . . . 0.467913934572691047389870343989550994811655605769210535311625319963914 . . .

5 +0.661209386466264513661399595019905347006448564395170070814526705852183 . . . 0.360761573048138607569833513837716111661521892746745482289739240237140 . . .

6 +0.932469514203152027812301554493994609134765737712289824872549616526613 . . . 0.171324492379170345040296142172732893526822501484043982398635439798945 . . .

7 1 −0.949107912342758524526189684047851262400770937670617783548769103913063 . . . 0.129484966168869693270611432679082018328587402259946663977208638724655 . . .

2 −0.741531185599394439863864773280788407074147647141390260119955351967429 . . . 0.279705391489276667901467771423779582486925065226598764537014032693618 . . .

3 −0.405845151377397166906606412076961463347382014099370126387043251794663 . . . 0.381830050505118944950369775488975133878365083533862734751083451030705 . . .

4 0 0.417959183673469387755102040816326530612244897959183673469387755102040 . . .

5 +0.405845151377397166906606412076961463347382014099370126387043251794663 . . . 0.381830050505118944950369775488975133878365083533862734751083451030705 . . .

6 +0.741531185599394439863864773280788407074147647141390260119955351967429 . . . 0.279705391489276667901467771423779582486925065226598764537014032693618 . . .

7 +0.949107912342758524526189684047851262400770937670617783548769103913063 . . . 0.129484966168869693270611432679082018328587402259946663977208638724655 . . .

8 1 −0.960289856497536231683560868569472990428235234301452038271639777372424 . . . 0.101228536290376259152531354309962190115394091051684957059003698064740 . . .

2 −0.796666477413626739591553936475830436837171731615964832070170295039217 . . . 0.222381034453374470544355994426240884430130870051249564725909289293616 . . .

3 −0.525532409916328985817739049189246349041964243120392857750857099272454 . . . 0.313706645877887287337962201986601313260328999002734937690263945074656 . . .

4 −0.183434642495649804939476142360183980666757812912973782317188473699204 . . . 0.362683783378361982965150449277195612194146039894330540524823067566686 . . .

5 +0.183434642495649804939476142360183980666757812912973782317188473699204 . . . 0.362683783378361982965150449277195612194146039894330540524823067566686 . . .

6 +0.525532409916328985817739049189246349041964243120392857750857099272454 . . . 0.313706645877887287337962201986601313260328999002734937690263945074956 . . .

7 +0.796666477413626739591553936475830436837171731615964832070170295039217 . . . 0.222381034453374470544355994426240884430130870051249564725909289293616 . . .

8 +0.960289856497536231683560868569472990428235234301452038271639777372424 . . . 0.101228536290376259152531354309962190115394091051684957059003698064740 . . .Table 1: Roots xlegnm
of Legendre polynomials pleg,n(x) for n ∈ {1, · · · , 8}, and assoiated weights wgauslegnm

for Gauss-Legendre quadrature.
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Finally, in the ase of polygonal elements Ω, we may simply split the elements into triangle de�ned bythe entroid of the polygone and eah edge
Ω =

Nedge⋃

nedge=1

∆b,nedge
(9)and apply the rules (eq. 7) for eah triangle

∫ ∫

Ω

f(x, y)dxdy =

NedgeΩ∑

nedge=1

∫ ∫

∆b,nedge

f(x, y)dxdy (10)
= AΩ

NgΩ∑

ng=1

f(xngΩ , yngΩ )wngΩ (11)where the weights for the integration on the polygons are readily assembled from the ubature rules on eahtriangle.Notie that, for the 2-D ase studied here, the ubature operation is only required to ompute the least-squares matrix, whose inversion determines the oe�ients of the reonstruting polynomial, so that, if thegrid is �xed in time, the ubature ost is not relevant.2.1.3 Least squares reonstrutionReonstrution [7℄ onsists in approximating a funtion u(x, y) from information onerning the values of a(linear) funtional of u at several distint loations. In the �nite-volume ase (Petrov-Galerkin �nite-elementswith onstant test funtions [1℄) the funtional is the ell-average of u(x, y) on the element Ωn

ūΩn
:=

1

AΩn

∫ ∫

Ωn

u(x, y)dxdy (12)Given a stenil around the element Ωn, sn := {Ωn}
⋃ sngbn

(13)sngbn
:= {Ωngb1

, · · · , ΩngbNngbn

} (14)ontaining the element and Nngbn
neighbours, the reonstrution problem approximates u(x, y) from thevalues of the averages {ūm; m ∈ sngb} of the elements in the stenil. In the least-squares approah of [5℄whih is widely used the approximating (reonstruting) polynomial pr,m,sn

(x, y) satis�es exatly the valueof the average ūn in the ell n, and in a least-squares sense the value of the average on the other ells of thestenil
1

AΩn

∫ ∫

Ωn

pr,m,sn
(x, y)dxdy = ūΩn

(15)
∂Jlsq,r,m,sn

∂ar,m,sn,ℓ,k

= 0 ∀ℓ, k ∈ {0, · · · , M} : ℓ + k ≤ M (16)
Jlsq,r,m,sn

:=
∑

m∈sngbn

w2lsqΩm,Ωn

[
1

AΩm

∫ ∫

Ωm

pr,m,sn
(x, y)dxdy − ūΩm

]2 (17)Many authors use distane weighting. In the present paper, we used unweighted least-squares
wlsqΩm,Ωn

:= 1 (18)
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3 ResultsAs an example, onsider linear (in the sense of Godunov's theorem [13℄) least-squares shemes [5℄ for the 2-Dadvetion equation on a square domain (Fig. 1). The points of a regular Cartesian grid an be triangulatedin di�erent ways (Fig. 1), and the dual-grids omposed by the ontrol-volumes onstruted by joining thebaryenters of the ells around eah vertex are general polygonal grids (Fig. 1), while the dual of a basiquasi-Delauney triangulation with equilateral triangles is a quasi-Voronoi tesselation of the square (Fig. 1).The stenil was onstruted using suessive levels of neighbours (Fig. 2). Level ℓngb = 1 onsists of theedge-neighbours (von Neumann neighbours) of the element (Fig. 2). For any given level ℓngb ∈ {1, · · · , Lngb}of stenil onstrution, the next level ℓngb + 1 is onstruted by adding the edge-neighbours of the elementsbelonging to the ℓngb-level (Fig. 2). The minimum requirement is that the number of neighbours
Nngb ≥

(
M + 1

2

)

− 1 (19)be larger than the oe�ients of the polynomial. This neessary ondition is not always su�ient, beausein some instanes the reonstrution matrix Alsq is singular. For all the ases studied (M ≤ 9), when Alsqwas found singular, adding one more level of neighbours su�es to solve the problem.Comparison of the numerial solution of the 2-D advetion equation with the analytial solution, onprogressively re�ned grids of eah type (Figs. 3-9), indiates that O(∆ℓm+1)-auray is always obtained forpolynomial reonstrution of degree M . Auray for a given level of grid re�nement, is higher when thenumber of neighbours is losest to the equality in (eq. 19).In order to ompare the performane of di�erent grids, as they are progressively re�ned, a ommon mea-sure of grid-size is required. Often, when onsidering triangular grids, the triangle diameter (irumradius)is used. Nonetheless, for irregular polygons, the extension of this de�nition is not unique, and, eg, de�ningthe ell-size as the largest irumradius of all triangles onstruted from any possible triplet of the vertiesof the polygon may yield very large values for skew ells (Fig. 9). For this reason, it was prefered to de�nethe size of polygon Ωn, with verties VΩn
:= {~x1, · · · , ~xNΩn

} as the maximum Eulidian distane between 2verties
∆ℓΩn

:= max
~xℓ∈VΩn

~xm∈VΩn

||~xℓ − ~xm||2 (20)and the representative grid-size as the maximum ell-size
∆ℓG = max

pn∈G
∆ℓΩn

(21)Plotting the error for the advetion problem as a funtion of ∆ℓ, for the various grids studied, providesonsistant results between various grids (Fig. 10). Notie that the �nite-volume lsq-reonstrution resultson the Cartesian grid, are very lose to the upwind-biased �nite-di�erene omputations [14℄ on the samegrid (Fig. 10).As the order of auray M+1 inreases, the ondition number of Alsq inreases, roughly as cond∞Alsq ∼
102(m− 3

2 ) (Fig. 11). Notie that cond∞Alsq for the quasi-equilateral triangles grid is substantially lower(better onditioning) ompared to the other grids, as M + 1 inreases.
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, as a funtion of the number of grid-ells

Nc = Ni − 1 = Nj − 1 of the underlying Cartesian grid, for the di�erene from the analytial solution ofnumerial omputations of for the 2-D linear advetion equation ∂t +∂xu+∂yu = 0 (x ∈ [−1, 1], y ∈ [−1, 1]),with periodi bs, and i u0(x) = sin (π(x + y)), using lsq reonstrution, on a Cartesian �nite-volumegrid, for various orders M + 1 ∈ {2, · · · , 10}, and ℓssprk(M + 2, M + 1) time-integration [15℄ with fl =
∆t∆x−1rtsn = ∆t∆y−1rtsn = 2

10 , on progressively re�ned omputational grids.
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Nc = Ni − 1 = Nj − 1 of the underlying Cartesian grid, for the di�erene from the analytial solution ofnumerial omputations of the advetion equation, for the 2-D linear advetion equation ∂t + ∂xu + ∂yu = 0(x ∈ [−1, 1], y ∈ [−1, 1]), with periodi bs, and i u0(x) = sin (π(x + y)), using lsq reonstrution, on a�nite-volume grid of near-equilateral triangles (type III of [2℄), for various orders M + 1 ∈ {2, · · · , 10}, and
ℓssprk(M + 2, M + 1) time-integration [15℄ with fl = ∆t∆x−1rtsn = ∆t∆y−1rtsn = 2

10 , on progressivelyre�ned omputational grids.
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, as a funtion of the number of grid-ells

Nc = Ni − 1 = Nj − 1 of the underlying Cartesian grid, for the di�erene from the analytial solution ofnumerial omputations of the advetion equation, for the 2-D linear advetion equation ∂t + ∂xu + ∂yu = 0(x ∈ [−1, 1], y ∈ [−1, 1]), with periodi bs, and i u0(x) = sin (π(x + y)), using lsq reonstrution, on the�nite-volume dual grid of the near-equilateral triangles mesh (Fig. 4), for various orders M +1 ∈ {2, · · · , 10},and ℓssprk(M + 2, M + 1) time-integration [15℄ with fl = ∆t∆x−1rtsn = ∆t∆y−1rtsn = 2
10 , on progressivelyre�ned omputational grids.
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Nc = 2∆x−1 ✲ Nc = 2∆x−1 ✲Figure 6: L∞-norm error eL∞ and rate-of-onvergene rnvrgL∞
, as a funtion of the number of grid-ells

Nc = Ni − 1 = Nj − 1 of the underlying Cartesian grid, for the di�erene from the analytial solution ofnumerial omputations of the advetion equation, for the 2-D linear advetion equation ∂t + ∂xu + ∂yu = 0(x ∈ [−1, 1], y ∈ [−1, 1]), with periodi bs, and i u0(x) = sin (π(x + y)), using lsq reonstrution,on a �nite-volume grid of ross-orthogonal triangles obtained by destruturing a Cartesian mesh (type IIof [2℄), for various orders M + 1 ∈ {2, · · · , 10}, and ℓssprk(M + 2, M + 1) time-integration [15℄ withfl = ∆t∆x−1rtsn = ∆t∆y−1rtsn = 2
10 , on progressively re�ned omputational grids.

11



-10

-8

-6

-4

-2

 0

 10  100  1000  10000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 10  100  1000  10000

-1

 0

 1

-1  0  1

0 1

u0(x, y) = sin4 (π(x + y))

∂tu + ∂xu + ∂yu = 0

x ∈ [−1, 1]

y ∈ [−1, 1]

t = 2

rcnvrgL∞M + 1 = 10

M + 1 = 9

M + 1 = 8

M + 1 = 7

M + 1 = 6

M + 1 = 5

M + 1 = 4

M + 1 = 3

M + 1 = 2

eL∞

∆ℓ−10

(M + 1 = 10)

∆ℓ−9

(M + 1 = 9)

∆ℓ−8 (M + 1 = 8)

∆ℓ−7 (M + 1 = 7)

∆ℓ−6 (M + 1 = 6)

∆ℓ−5 (M + 1 = 5)

∆ℓ−4 (M + 1 = 4)

∆ℓ−3 (M + 1 = 3)

∆ℓ−2 (M + 1 = 2)

 M + 1 = 10

 M + 1 = 9

 M + 1 = 8

 M + 1 = 7

 M + 1 = 6

 M + 1 = 5

 M + 1 = 4

 M + 1 = 3

 M + 1 = 2

Nc = 2∆x−1 ✲ Nc = 2∆x−1 ✲Figure 7: L∞-norm error eL∞ and rate-of-onvergene rnvrgL∞
, as a funtion of the number of grid-ells

Nc = Ni − 1 = Nj − 1 of the underlying Cartesian grid, for the di�erene from the analytial solution ofnumerial omputations of the advetion equation, for the 2-D linear advetion equation ∂t + ∂xu + ∂yu = 0(x ∈ [−1, 1], y ∈ [−1, 1]), with periodi bs, and i u0(x) = sin (π(x + y)), using lsq reonstrution, on the�nite-volume dual grid of the ross-orthogonal triangles mesh (Fig. 6), for various orders M +1 ∈ {2, · · · , 10},and ℓssprk(M + 2, M + 1) time-integration [15℄ with fl = ∆t∆x−1rtsn = ∆t∆y−1rtsn = 2
10 , on progressivelyre�ned omputational grids.
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Nc = Ni − 1 = Nj − 1 of the underlying Cartesian grid, for the di�erene from the analytial solution ofnumerial omputations of the advetion equation, for the 2-D linear advetion equation ∂t + ∂xu + ∂yu = 0(x ∈ [−1, 1], y ∈ [−1, 1]), with periodi bs, and i u0(x) = sin (π(x + y)), using lsq reonstrution, on a�nite-volume grid of orthogonal triangles obtained by destruturing a Cartesian mesh (type III of [2℄), forvarious orders M +1 ∈ {2, · · · , 10}, and ℓssprk(M +2, M +1) time-integration [15℄ with fl = ∆t∆x−1rtsn =
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10 , on progressively re�ned omputational grids.
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Nc = 2∆x−1 ✲ Nc = 2∆x−1 ✲Figure 9: L∞-norm error eL∞ and rate-of-onvergene rnvrgL∞
, as a funtion of the number of grid-ells

Nc = Ni − 1 = Nj − 1 of the underlying Cartesian grid, for the di�erene from the analytial solution ofnumerial omputations of the advetion equation, for the 2-D linear advetion equation ∂t + ∂xu + ∂yu = 0(x ∈ [−1, 1], y ∈ [−1, 1]), with periodi bs, and i u0(x) = sin (π(x + y)), using lsq reonstrution, on the�nite-volume dual grid of the orthogonal triangles mesh (Fig. 8), for various orders M + 1 ∈ {2, · · · , 10},and ℓssprk(M + 2, M + 1) time-integration [15℄ with fl = ∆t∆x−1rtsn = ∆t∆y−1rtsn = 2
10 , on progressivelyre�ned omputational grids.
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